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SNL’s Core Polymer Aging Team

 Robert Bernstein

 John L. Schroeder 

 Patricia S. Sawyer

 Derek J. Wichhart

 Guillermo A. Mata

 Amy Garner 

 Kenneth T. Gillen (not shown)

 Greg White



Collaborators



More than 9,400 full-time employees

Annual budget ~ $2.4B

1185 buildings, 6.5 M sq. feet

1,550 PhDs, 2,500 Masters

• Mechanical Engineering – 15%
• Electrical Engineering – 25%
• Other Engineering – 14%
• Other Fields – 11%
• Physics – 8%
• Chemistry – 7%
• Math – 3%
• Computing – 11%
• Other – 6%

SNL in Round Numbers



Organic Materials Employed in Service for Decades in 
Critical High Reliability and Performance Applications

OO--ringsrings Nuclear Power Plant Cable InsulationNuclear Power Plant Cable Insulation

Textiles/FibersTextiles/Fibers Glass Fiber Reinforced EpoxiesGlass Fiber Reinforced Epoxies



How do we accelerate time?

None of these are available or approved through None of these are available or approved through SNL suppliersSNL suppliers!!



How do we accelerate time?
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Polymer Aging Polymer Aging -- Approaches/GoalsApproaches/Goals

GoalsGoals

• Prediction of physical properties vs. time• Prediction of physical properties vs. time
• Predict remaining • Predict remaining physical properties physical properties of field materialsof field materials

• Develop condition monitoring method• Develop condition monitoring method
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Methodologies

Proposal of Underlying Degradation MechanismsProposal of Underlying Degradation Mechanisms



Power Plant Cables

Hashemian, Nuclear Technology 2011, vol. 176, 414-429

Nuclear Power Plant Cable Insulation
One of the 5 critical concerns for license renewal 
of US Nuclear Power Plants (NPPs)

Sample 
Prep

Aging

Tensile Testing

IEEE 383-1974:  ~50 Mrad (500 kGy) in 40 years at 50 °C



Dose-to-Equivalent Damage = DED
DED is assumed to be EB = 100%

(IEEE Standards Define End-of-Life when a cable achieves EB = 50%)

Power Plant Cables

Hashemian, Nuclear Technology 2011, vol. 176, 414-429

Nuclear Power Plant Cable Insulation
One of the 5 critical concerns for license renewal 
of US Nuclear Power Plants (NPPs)
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Nuclear Power Plant Cable Insulation
One of the 5 critical concerns for license renewal 
of US Nuclear Power Plants (NPPs)

20 C

40 C

60 C

80 C

Dose-to-Equivalent Damage = DED
DED is assumed to be EB = 100%

(IEEE Standards Define End-of-Life when a cable achieves EB = 50%)

1E+3

1E+2

1E+1

1E+0

1E-1
1E-5 1E-4 1E-3 1E-2 1E-1 1E+0

Dose Rate (Gy/s)

HIGH DOSE RATE AGING 
CAN BE MISLEADING

20 °C

40 °C

60 °C

80 °C

IAEA Nuclear Energy Series “Assessing and Managing Cable Ageing 
in Nuclear Power Plants” IEAE No. NP-T-3.6



Cables Insulation Types of Interest
Rank Insulation Material Entries

Percentage 
of total

1 XLPE 439 36
2 EPR 434 36
3 Silicone rubber 63 5
4 Kerite 61 5
5 Polyethylene 52 4
6 ETFE 39 3
7 Flame retardant 36 3
8 CSPE 28 2
9 Butyl rubber 20 2
10 Mineral 12 1
11 PVC 12 1
12 Polyimide 8 1
13 Polypropylene 3 0
14 XLN (cross-linked neoprene) 3 0
15 Neoprene 2 0
16 Industrite 2 0
17 Styrene 1 0

Total 1215

EPRI TR-103841 (1994)



Cables Insulation Types of Interest
Rank Insulation Material Entries

Percentage 
of total

1 XLPE 439 36
2 EPR 434 36
3 Silicone rubber 63 5
4 Kerite 61 5
5 Polyethylene 52 4
6 ETFE 39 3
7 Flame retardant 36 3
8 CSPE 28 2
9 Butyl rubber 20 2
10 Mineral 12 1
11 PVC 12 1
12 Polyimide 8 1
13 Polypropylene 3 0
14 XLN (cross-linked neoprene) 3 0
15 Neoprene 2 0
16 Industrite 2 0
17 Styrene 1 0

Total 1215

EPRI TR-103841 (1994)

SNL is actively studying XLPO, EPR, and SiR Cables of interest



UTILITY ENVIRONMENTAL DATA
What are expected accumulated doses and dose rates?



Westinghouse PWR Environmental Data

Thank you Drew Mantey and EPRI for passing this information onto our team!Thank you Drew Mantey and EPRI for passing this information onto our team!



Lots of Plants included in PWR Study…

 Beaver Valley

 Braidwood Units

 Callaway

 Comanche Peak

 Diablo Canyon

 Indian Point

 Kewaunee

 KRSKO

 Milestone

 North Anna

 Prairie Island

 Salem

 Crystal River

 Oconee

 TMI

 Waterford

 Sequoyah

 Shearon Harris

 South Texas Project

 Surry

 Turkey Point

 V.C. Summer

 Vogtle

 Wolf Creek

 ANO

 Calvert Cliffs

 Fort Calhoun

 Palisades

 Palo Verde

 St. Lucie

 SONGS

Andreychek, T. “PWR At-Power Dose Survey:  Summary and Conclusions” ASTM D33 Committee Meeting,  June 11, 2001



Gamma Dose Rates

Andreychek, T. “PWR At-Power Dose Survey:  Summary and Conclusions” ASTM D33 Committee Meeting,  June 11, 2001



Gamma Dose Rates

Andreychek, T. “PWR At-Power Dose Survey:  Summary and Conclusions” ASTM D33 Committee Meeting,  June 11, 2001

0.001 Gy/hr

0.01 Gy/hr

0.1 Gy/hr

Measured dose rates are on average <~0.1 Gy/hr



Total Integrated Dose to 60 years

Andreychek, T. “PWR At-Power Dose Survey:  Summary and Conclusions” ASTM D33 Committee Meeting,  June 11, 2001

Reported dose rates were extrapolated to total integrated dose after 60 Effective Full Power Years.



Total Integrated Dose to 60 years

Andreychek, T. “PWR At-Power Dose Survey:  Summary and Conclusions” ASTM D33 Committee Meeting,  June 11, 2001

10 kGy

1 kGy

0.1 kGy

100 kGy

Reported dose rates were extrapolated to total integrated dose after 60 Effective Full Power Years.

Highest 60 year EFPY dose was ~350 kGy



EATON DEKORON EPR
NEPO 51 – CSPE Jacket/EPR Insulation



SAND2005-7331 K. T. Gillen, R. A. Assink, and R. Bernstein

Ethylene Propylene Rubber (EPR)

Highly crystalline Highly crystalline polymerpolymer Exhibits Large “Induction Time”Exhibits Large “Induction Time”

Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Ethylene Propylene Rubber (EPR)

Crystalline polymerCrystalline polymer Exhibits Large “Induction Time”Exhibits Large “Induction Time”
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Tensile Properties – Thermal Aging
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties – Thermal Aging
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Tensile Properties – Thermal Aging
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Tensile Properties – Thermal Aging
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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TimeTime--Temperature SuperpositionTemperature Superposition

If same mechanism:If same mechanism:

•• same shape (log graph)same shape (log graph)
•• should be constant acceleration (multiple)should be constant acceleration (multiple)

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

Does mechanism change as a function of temperature?Does mechanism change as a function of temperature?

1.1. Pick a reference temperaturePick a reference temperature
2.2. Multiply the time at each temperature by the constant that gives the best Multiply the time at each temperature by the constant that gives the best 

overlap with the reference temperature dataoverlap with the reference temperature data
3.3. Define that multiple as ‘aDefine that multiple as ‘aTT’ (a’ (aT T = 1 for ref. temp.)= 1 for ref. temp.)
4.4. Find aFind aTT for each temperaturefor each temperature

kk =Ae=Ae--Ea/RTEa/RT ln(k) = ln(A) ln(k) = ln(A) –– Ea/RTEa/RT

Empirical equationEmpirical equationArrhenius equation:Arrhenius equation:

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Trends in Polymer Science, Extrapolation of Accelerated Aging Data Extrapolation of Accelerated Aging Data --Arrhenius or Erroneous? 1997Arrhenius or Erroneous? 1997, , 55, 250, 250--257.257.



Time-Temperature Superposition
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Time-Temperature Superposition
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Time-Temperature Superposition
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Time-Temperature Superposition
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Arrhenius Plot
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Arrhenius Plot
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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ENVIRONMENTAL SYNERGIES
Simultaneous Radiation and Thermal Aging



NEPO 51 – Eaton Dekoron EPR
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NEPO 51 – Eaton Dekoron EPR
Thermal/Radiation SynergyThermal/Radiation Synergy
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NEPO 51 – Eaton Dekoron EPR

New Data Point at 50 C

Thermal/Radiation SynergyThermal/Radiation Synergy
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NEPO 51 – Eaton Dekoron EPR
Thermal/Radiation SynergyThermal/Radiation Synergy
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BRAND-REX XLPO
NEPO 9 – CSPE Jacket/XLPO Insulation



BRAND-REX XLPO

Crystalline Polymer

• Cross-linked medium to high 
density ethylene-
vinylacetate co-polymer

• Melting region between

~ 89 and 119 °C 

• Obvious mechanism change 
when aging  at elevated 
temperatures



NEPO 9 – BRAND-REX XLPO
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NEPO 9 – BRAND-REX XLPO
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NEPO 9 – BRAND-REX XLPO

10 Mrad

Higher temperatures require Higher temperatures require MOREMORE Dose!Dose!
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NEPO 9 – BRAND-REX XLPO
Thermal/Radiation SynergyThermal/Radiation Synergy
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EEaa ~72 kJ/mol~72 kJ/mol
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NEPO 9 – BRAND-REX XLPO
Per PWR Environmental Data:Per PWR Environmental Data:
Brandrex XLPE cables are predominantly in the thermalBrandrex XLPE cables are predominantly in the thermal--oxidative dominant degradation regimeoxidative dominant degradation regime

EEaa ~72 kJ/mol~72 kJ/mol



DOSE RATE EFFECTS?
Specimen Location within same aging can



NEPO 9 – BRAND-REX XLPO



NEPO 9 – BRAND-REX XLPO



A

Y

C

X Z

Towards Co-60 Pencils

15 tensile specimens in A,X,Y, Z and C.
2 long gel-sol specimens in A,Y, and C.

1 long gel-sol specimen in X and Z.

NEPO 9 – BRAND-REX XLPO



NEPO 9 – BRAND-REX XLPO



2x Screws at back align with metal line



NEPO 9 – BRAND-REX XLPO
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NEPO 9 – BRAND-REX XLPO

A_142 kGy A 142 Elongation C_142 kGy C 142 Elongation X_142 kGy X 142 Elongation Y_142 kGy Y 142 Elongation Z_142 kGy Z 142 Elongation

0.0 350.2 0.0 350.2 0.0 350.2 0.0 350.2 0.0 350.2

0.0 349.1 0.0 349.1 0.0 349.1 0.0 349.1 0.0 349.1

0.0 330.4 0.0 330.4 0.0 330.4 0.0 330.4 0.0 330.4

0.0 331.2 0.0 331.2 0.0 331.2 0.0 331.2 0.0 331.2

0.0 325.8 0.0 325.8 0.0 325.8 0.0 325.8 0.0 325.8

0.0 315.0 0.0 315.0 0.0 315.0 0.0 315.0 0.0 315.0

71.0 290.0 71.0 302.2 71.0 293.7 71.0 317.3 71.0 313.5

71.0 214.2 71.0 296.4 71.0 300.6 71.0 243.7 71.0 290.5

71.0 311.5 71.0 328.8 71.0 312.7 71.0 299.7 71.0 315.7

142.4 202.1 142.4 276.2 142.4 232.1 142.4 203.9 142.4 232.0

180.3 118.6 142.4 208.8 142.4 190.3 142.4 249.8 142.4 243.8

180.3 149.1 180.3 233.5 142.4 234.7 142.4 237.0 142.4 148.9

180.3 235.1 180.3 130.4 180.3 147.5 180.3 143.7

180.3 122.9 180.3 181.9 180.3 209.6

180.3 147.4

A

Y

C

X Z

Towards Co-60 Pencils

Raw Data!Raw Data!



EATON DEKORON POLYSET XLPO
NEPO 73



NEPO 73 – Eaton Dekoron Polyset XLPO
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NEPO 73 – Eaton Dekoron Polyset XLPO
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NEPO 73 – Eaton Dekoron Polyset XLPO
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NEPO 73 – Eaton Dekoron Polyset XLPO
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SILICONE RUBBER
US-Argentine BEWG



Tensile Data

120

100

80

60

40

20

 T
e

n
si

le
 E

lo
n

g
a

ti
o

n
, 

%

8 9

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100
2

Dose, kGy



Physical Property Testing

 Is there correlation between mechanical properties and gel 
content and/or solvent uptake factors?

If so, these techniques could be employed as future condition 
monitoring techniques.



Solvent Uptake Factor
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Gel Content Analysis
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Correlation to Performance?
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Future Directions

 Work towards understanding relevant NPP cable conditions 
(temperature, dose rates) to better tailor current predictive 
models

 EPRI and Industry are leading  these efforts to identify 
their conditions

 Validate predictive models with service cables (e.g., cables 
from the Zion Nuclear Power Station)

 Investigate radiation effects at low dose-rates and plant 
relevant temperatures for EPR, XLPO, and SiR materials 
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BACKUP SLIDES



LICA AND THE CURRENT 
CAPABILITIES?

Recent Modernization



Low Intensity Cobalt Array

LICA is a unique low intensity

gamma irradiation facility 

located in TA-V at SNL NM.

Studies conducted here can be tailored to help 
elucidate gamma irradiation effects on materials and 
components.



Irradiation Dose Rates

••Headspace gas control (flowing system)Headspace gas control (flowing system)
••Thermal controlThermal control

SouthNorth

~ dose rate (PE), Gy/hr as of 6/1/2013

A

B

C

D

12345678

2381483111



Irradiation Dose Rates

Dosimetry is measured with CaF2 TLDs as 
a function of position within the cans (in 
all 3 axial directions).  The dose rates are 
corrected for material of interest, e.g. 
polyethylene.

176 Gy/hr114 Gy/hr 150 Gy/hr

Top

Dose rates are corrected for PE



Can 7, Position D4 (5/29/2013)
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227 268

Bottom Bottom

Dose Rates in Gy/hr corrected for PEDose Rates in Gy/hr corrected for PE

Top Top
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206 232



Can 8, Position D5 (5/29/2013)
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Can 9, Position D6 (5/31/2013)
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Can 10, Position D7 (5/31/2013)
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Dose Rates in Gy/hr corrected for PEDose Rates in Gy/hr corrected for PE

Top Top

11
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Dosimetry, May 2013



LICA Control System, ~2011

Tunable

 Temperature

 Gas Environment

“Ancient” Technology



Gas Environments

 Capability to perform 
experiments in an air or 
inert atmosphere

 Current experiments are 
run with an air flow rate 
of 5 cm3/min



Thermal Environments

 Experiments can be performed at varying 
temperatures
 27 °°CC to 150 °°CC (± 0.2 °C)

 Remote access for thermal control and 
monitoring on the SRN

 Email alerts for extreme temperature 
variation

 Backup power supply for data logging in 
case power loss

 4 elevated temperature cans and up to 7 
ambient temperature cans



Diffusion Limited Oxidation

OO22

OO22
OO22

OO22

OO22

OO22

OO22

OO22
OO22

OO22

OO22

OO22

HomogeneousHomogeneousHeterogeneousHeterogeneous

rxn rate > diffusion raterxn rate > diffusion rate rxn rate < diffusion raterxn rate < diffusion rate



DLO Effects with Temperature
Modulus profiles for samples aged at Modulus profiles for samples aged at 95 95 °°C show that diffusionC show that diffusion--limited oxidation (DLO) is limited oxidation (DLO) is 
becoming important; at 125becoming important; at 125°°C, DLO effects are very significantC, DLO effects are very significant
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Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, 1995, 49, 403-418.

Virgin vs Aged

Aged cable with DLO

Images shown below courtesy from our 
collaborator Kevin Simmons at PNNL



DLO Effects in Combined Environments

Virgin vs Aged

Aged cable with DLO

This same phenomena has been noted for irradiation dose rates…

K. T. Gillen and R. Bernstein, SAND 2010-7266

Combined environment tensile aging data for Okonite neoprene material with DED = 50% Combined environment tensile aging data for Okonite neoprene material with DED = 50% EEBB

Images shown below courtesy from our 
collaborator Kevin Simmons at PNNL



Enhanced Extrapolation ‘Good’
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Enhanced Extrapolation: ‘Bad’

1/Temperature, K1/Temperature, K--11
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98

Thermal-oxidative Aging: Nylon Shift 
Factor Graph
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Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.



Arrhenius Equation

99

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

kk =Ae=Ae--Ea/RTEa/RT

Arrhenius equation:Arrhenius equation:

What is Ea?What is Ea?

kk = anything= anything

ln(k) =ln(k) =––( Ea/R)(1/T) + ln(A) ( Ea/R)(1/T) + ln(A) 



Ea
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Reaction coordinateReaction coordinate

EnergyEnergy

reactantsreactants

productsproducts

------Imagine a marbleImagine a marble------



Ea
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Reaction coordinateReaction coordinate

EnergyEnergy

reactantsreactants

productsproducts



Ea
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Reaction coordinateReaction coordinate

EnergyEnergy

reactantsreactants

productsproducts

Intermediates/Transition statesIntermediates/Transition states

EEaa



Kinetics vs. Thermodynamics (really the same thing)
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Ea

104

Reaction coordinateReaction coordinate

EnergyEnergy

DiamondDiamond

GraphiteGraphite

Intermediates/Transition statesIntermediates/Transition states
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Arrhenius Equation
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kk = = AeAe--EaEa/RT/RT

Critical assumption is that Critical assumption is that EEaa is CONSTANT is CONSTANT 


