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ABSTRACT
The increasing fidelity of scientific simulations as they scale
towards exascale sizes is straining the proven IO techniques
championed throughout terascale computing. Chief among
the successful IO techniques is the idea of collective IO where
processes coordinate and exchange data prior to writing to
storage in an effort to reduce the number of small, inde-
pendent IO operations. As well as collective IO works for
efficiently creating a data set in the canonical order, 3-D do-
main decompositions prove troublesome due to the amount
of data exchanged prior to writing to storage. When each
process has a tiny piece of a 3-D simulation space rather
than a complete ‘pencil’ or ‘plane’, 2-D or 1-D domain de-
compositions respectively, the communication overhead to
rearrange the data can dwarf the time spent actually writ-
ing to storage [27]. Our approach seeks to transparently in-
crease scalability and performance while maintaining both
the IO routines in the application and the final data format
in the storage system. Accomplishing this leverages both the
Nessie [23] RPC framework and a staging area with staging
services. Through these tools, we employ a variety of data
processing operations prior to invoking the native API to
write data to storage yielding as much as a 3× performance
improvement over the native calls.

1. INTRODUCTION
Collective IO has offered tremendous benefits for appli-

cations with moderate per process data sizes (<= 20MB)
as they scale by trading additional communication time to
build larger data blocks for reducing the number and increas-
ing the size of the IO operations to storage. This reduces the
total amount of time spent performing IO because the com-
munication time is much less than the corresponding time
spent writing to or reading from storage. In spite of the
benefits, collective IO is not a panacea for IO performance
problems. Many pieces of recent work [20, 27, 28, 13] have
shown scaling collective IO can be problematic. For the MPI
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Tile IO benchmark, with as few as 512 processes, the data
rearrangement communication overhead can dominate the
actual data movement to storage time [27] taking 72% of
the IO time.

Log-based formats [18, 25, 19] have demonstrated that
changing the IO API or on disk storage format can achieve
much better performance. Staging has been effective in im-
proving perceived IO performance [29, 15, 22, 6, 14] through
techniques like asynchronous IO. The problem with both of
these approaches is the requirement to change the IO API
and/or the file format used in the storage system. In some
cases, one or both of these attributes cannot change. To ad-
dress these situations specifically, a different approach must
be used.

One approach is to create a new implementation of the
IO library API that uses different IO techniques to address
the performance for a particular application. The down-
side to this approach is that the file organization may have
to change to achieve any performance benefits beyond the
highly optimized implementation provided by the IO library
itself. Using this new implementation of an IO library ap-
proach with a staging area offers the opportunity to main-
tain both the API and the file layout while performing data
manipulation on far fewer resources reducing the communi-
cation overhead. By concentrating the data into fewer re-
sources, data reorganization operations can be performed in
a more localized environment reducing the communication
costs. Sandia’s NEtwork Scalable Service Interface (Nessie) [23]
system provides a simple RPC mechanism originally devel-
oped for the Lightweight File Systems [24] project. Nessie
was designed specifically for systems with native support
for remote direct-memory access (RDMA) and has ports for
Portals [9], InfiniBand [8], Gemini [1], and LUC [5]. Com-
bining this mechanism with a staging area that understands
the needs of the IO API leads to both flexibility in how the
IO is performed and a transparent wedge that disturbs nei-
ther the host application source code nor the file format in
the storage system.

Two effective uses of collective IO are the PnetCDF [17]
and Parallel NetCDF IO libraries. Both have been adopted
by the Community Earth System Model (CESM) [21] cli-
mate community to support their standardized netCDF data
format with an API nearly identical to the earlier serial
NetCDF API. While CESM uses their own PIO [12] as the
user-level interface for IO calls, underneath, one of these two
collective IO libraries is used for the actual to storage opera-
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tions. For CESM, changing either the API or the file format
is not a consideration. To address the needs of applications
like CESM, we choose to leverage the Nessie framework to
provide a transparent redirector to a staging area where data
consolidation or simply operation caching and queuing can
occur. This staging area will still use the PnetCDF API
to write to storage, but from a radically reduced number
of clients and with some techniques, far fewer IO operations
due to data consolidation happening as a pre-processing step
in the staging area.

Some other efforts that have focused on interposing a layer
between the application and the storage system include the
IO Forwarding Scalability Layer [7] (IOFSL), the Cray Data
Virtualization Service [26] (DVS), and Kangaroo [4] for grid.
The IOFSL provides services below the middleware layer
where techniques such as the two-phase IO portion of col-
lective IO are implemented. This is too low in the IO stack
to be able to address the coordination communication over-
head of collective IO that is addressed by this work. Systems
like DVS provide a way to work around the access bottle-
necks of a file system, but again do not address the collective
communication overhead prior to accessing storage. Kanga-
roo offers a way to move data from the application to or
from storage via a staging style approach. This successfully
offloads the IO operations off the main compute processes,
but still only intercepts the IO calls after any data rear-
rangement or aggregation happens as part of the collective
IO process.

The rest of the paper is organized as follows. Section 2
contains an architectural description. Section 3 has perfor-
mance results. Conclusion and future work appear in Sec-
tion 4, followed by references.

2. SOFTWARE ARCHITECTURE
The idea explored in this paper is the possibilities of im-

proving collective IO performance through staging while main-
taining both the application IO API and the final file format
in storage. Our approach is to re-implement the IO API to
forward each IO request to a staging area where the data is
processed prior to using the native IO library to store the
data. In this case, we chose to implement the PnetCDF API
because it is a mature and well-tuned IO API that effectively
uses collective IO.

For our PnetCDF staging library, we reimplemented the
PnetCDF 1.2.0 API, creating a drop-in, link-time replace-
ment for the native PnetCDF library that uses the Nessie
RPC mechanism to forward every API call to the staging
area. Once the staging area has applied any requested pro-
cessing to the data, it then calls the native PnetCDF API
to complete the data movement to disk in the native nc5 file
format. We illustrate these components in Figure 1.

The current implementation offers several options for pro-
cessing the individual requests from the compute processes
once they arrive in the staging area:

1. direct - immediately use the PnetCDF library to exe-
cute the request synchronously with the file system

2. caching independent - caches the write calls in the stag-
ing area until either no more buffer space is available
or the file close call is made. At that time, the data
is written using an independent IO mode rather than
collective IO. This avoids both coordination among the
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Figure 1: System Architecture

staging processes and any additional data rearrange-
ment prior to movement to storage.

3. aggregate independent - similar to caching independent
except that the data is aggregated into larger, contigu-
ous chunks as much as possible within all of the server
processes on a single compute node prior to writing
to storage. That is, to optimize the data rearrange-
ment performance, the movement is restricted to stay
within the same node avoiding any network communi-
cation overhead.

Additional processing modes using collective rather than
independent IO are available in the staging area, but have
not been tested for this paper and will be examined in future
work.

In addition to this PnetCDF implementation, the NetCDF
API has also been implemented in the same code base. Both
of these frameworks are available in the Trilinos [16] library
as part of the Trios components. In this work, only the
PnetCDF implementation is evaluated.

3. EXPERIMENTAL EVALUATION
The efficacy of this approach is evaluated in three parts.

First, the performance of the Nessie layer is evaluated show-
ing the scalability and performance of that infrastructure.
Second, we evaluate the potential of the PnetCDF staging
service by comparing it to netCDF and PnetCDF using the
IOR benchmark. Finally, we evaluate the end-to-end perfor-
mance of the PnetCDF staging library when applied to the
IO kernel of S3D, a combustion simulation code that uses a
3-D domain decomposition.

3.1 Nessie Evaluation
To measure the overhead imposed by the Nessie frame-

work, we evaluated it on two different platforms at Sandia:
Red Storm and Thunderbird. In all tests, a 16-byte struc-
ture, shown in Figure 2, is sent to validate the overheads
rather than the data transfer bandwidth of the links them-
selves.

Red Storm is a Cray XT3 located at Sandia. At the
time of testing, Red Storm had 12960 dual-core compute



struct data t {
int i n t v a l ; /∗ 4 by t e s ∗/
f loat f l o a t v a l ; /∗ 4 by t e s ∗/
double doub le va l ; /∗ 8 by t e s ∗/

} ;

Figure 2: The 16-byte data structure used for the
data-movement experiments.

nodes. The compute nodes are arranged in a regular three-
dimensional grid, connected with a hypertorus topology. Each
node has an interconnect with a custom Cray SeaStar net-
working chip and a dedicated PowerPC chip. The inter-
connect is coupled to the processor using a HyperTransport
link that has a theoretical (excluding wire protocol over-
head) bandwidth of 2.8GB/s [10]. Each of the six links from
each node can support 2.5GB/s, after protocol overheads.
Low-level software access to the interconnects is provided
through the Portals library [9], which provides a connec-
tionless RDMA-based interface.

At the time these tests were performed, the Thunderbird
system was Sandia National Laboratories largest capacity
cluster. It is composed of 4,480 compute nodes, each with
dual 3.6 GHz Intel EM64T processors with 6 GB of memory.
Thunderbird uses an InfiniBand network with a two level
CLOS topology with eight top-level core switches and 280
leaf switches (24 ports per leaf switch). Each leaf switch
has 16 downlinks (16 compute nodes per leaf switch) and 8
uplinks. Thus, the network is 2-to-1 oversubscribed in terms
of raw number of links.

Although Thunderbird is primarily a capacity cluster, de-
signed for large numbers of small jobs, it is still useful as
a system to evaluate performance of the InfiniBand port of
Nessie and the use of staging nodes for the caching service.
It is also generally more accessible than Red Storm for test-
ing.

3.1.1 Nessie Throughput Results
Figure 3(a) shows the throughput of the simple data-

transfer application moving data to a single staging area
for 1, 4, 16, and 64 clients. The maximum observed node-
to-node unidirectional bandwidth of the SeaStar network
through the Portals API is around 2.1GB/s [10]. In our
experiments, we achieved very close to the peak for each
of the experiments, showing that the Nessie software adds
very little overhead to the native transport. In addition,
the increase in scale from a single client to sixty-four clients
resulted in a minor performance decrease, despite the dra-
matic increase in the number of requests handled by the
staging node.

Figure 3(b) shows the same experiments performed on
Thunderbird. While we only achieve 75% of the maximum
performance over the InfiniBand link, given the 80% over-
head for the protocol [2], we are nearly at the peak perfor-
mance of the network link.

3.2 PnetCDF Staging Evaluation
To evaluate the potential of PnetCDF staging, we mea-

sured the performance of our PnetCDF staging library when
used by the IOR benchmark code. IOR (Interleave-or-random) [3]
is a highly configurable benchmark code from LLNL that

IOR is often used to find the peak measurable throughput
of an I/O system. In this case, IOR provides a tool for eval-
uating the impact of offloading the management overhead of
the netCDF and PnetCDF libraries onto staging nodes.

Figure 4 shows measured throughput of three different
experiments: writing a single shared file using PnetCDF
directly, writing a file-per-process using standard netCDF3,
and writing a single shared file using the PnetCDF staging
service. In every experiment, each client wrote 25% of its
compute-node memory, so we allocated one staging node for
each four compute nodes to provide enough memory in the
staging area to handle an I/O “dump”.

Results on Thunderbird show terrible performance for both
the PnetCDF and netCDF file-per-process case when using
the library directly. The PnetCDF experiments maxed out
at 217 MiB/s and reached the peak almost immediately.
The PnetCDF shared file did not do much better, achiev-
ing a peak throughput of 3.3 GiB/s after only 10s of clients.
The PnetCDF staging service, however, achieved an “effec-
tive” I/O rate of 28 GiB/s to a single shared file. This is the
rate observed by the application as the time to transfer the
data from the application to the set of staging nodes. The
staging nodes still have to write the data to storage, but
for applications with “bursty” IO patterns, staging is very
effective.

0 200 400 600 800 1000

0
50

00
15

00
0

25
00

0

IOR Performance on Thunderbird

Number of Processors

M
B

/s
ec

●●●● ●
● ● ● ● ● ●

●

PnetCDF Staging
netCDF (file−per−proc)
PnetCDF

Figure 4: Measured throughput of the IOR bench-
mark code on Thunderbird

3.3 Application Evaluation of S3D using PnetCDF
Staging

In the final set of experiments, we evaluate the perfor-
mance of the PnetCDF staging library when used by San-
dia’s S3D simulation code [11], a flow solver for performing
direct numerical simulation of turbulent combustion.

All experiments take place on the JaguarPF system at
Oak Ridge National Laboratories. JaguarPF is a Cray XT5
with 18,688 compute nodes in addition to dedicated login
and service nodes. Each compute node has dual hex-core
AMD Opteron 2435 processors running at 2.6GHz, 16 GB
RAM, and a SeaStar 2+ router. The PnetCDF version is
1.2.0 and uses the default Cray MPT MPI implementation.
The file system, called Spider, is a Lustre 1.6 system with
672 object storage targets and a total of 5 PB of disk space.
It has a demonstrated maximum bandwidth of 120 GB/sec.
We configured the file system to stripe using the default 1
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Figure 3: Measured throughput from a set of compute-node clients to a single caching server on Red Storm
(upper) and Thunderbird (lower). The time includes including bandwidth excluding open time and the raw
RMA get bandwidth.

MB stripe size across 160 storage targets for each file for all
tests.

In our test configuration, we use ten, 32 cubes (32×32×32)
of doubles per process across a shared, global space. The
data size is 2.7 GB per 1024 processes. We write the whole
dataset at a single time and measure the time from the file
open through the file close. We use five tests for each process
count and show the best performance for each size. In this
set of tests, we use a single node for staging. To maximize
the parallel bandwidth to the storage system, one staging
process per core is used (12 staging processes). Additional
testing with a single staging process did not show significant
performance differences. The client processes are split as
evenly as possible across the staging processes in an attempt
to balance the load.

Figure 5 shows the results of S3D using the PnetCDF li-
brary directly with the four different configurations of our
PnetCDF staging library described in Section 2. In all cases
measured, the base PnetCDF performance was no better
than any other technique at any process count. The biggest
difference between the base performance and one of the tech-
niques is for 1024 processes using the caching independent
mode at only 32% as much time spent performing IO. The
direct technique starts at about 50% less time spent and
steadily increases until it reached parity at 7168 processes.
Both cache independent and aggregate independent advan-
tages steadily decrease as the scale increases, but still have
a 20% advantage at 8192 processes.

In spite of there only being 12 staging processes with a
total gross of 16 GB of RAM, the performance improvement
is still significant. The lesser performance of the direct writ-
ing method is not very surprising. By making the broadly
distributed calls synchronous through just 12 processes, the
calling application must wait for the staging area to com-
plete the write call before the next process will attempt to
write. The advantage shown for smaller scales shows the dis-
advantage of the communication to rearrange the data com-
pared to just writing the data. Ultimately, the advantage
is overwhelmed by the number of requests being performed
synchronously through the limited resources.

The advantage of the caching and aggregating over the
direct and base techniques shows that by queueing all of

the requests and letting them execute without interruption
and delay of returning back to the compute area offers a
non-trivial advantage over the synchronous approach. Some-
what surprisingly, the aggregation approach that reduces the
number of IO calls via data aggregation did not yield per-
formance advantages over just caching the requests. This
suggests that for the configuration of the Spider file system
at least, reducing the number of concurrent clients to the IO
system is the advantageous approach. Additional efforts to
reduce the number of IO calls do not yield benefits.
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Figure 5: Writing performance on JaguarPF one
staging node (12 processes)

4. CONCLUSIONS AND FUTURE WORK
This paper demonstrates that it is possible, using a very

small amount of additional staging resources, to transpar-
ently improve IO performance without requiring changing
the application source code. By using an efficient RPC layer,
like Nessie, to communicate efficiently with a staging area,
additional processing or simply changing the synchronous
nature of IO requests can improve IO performance without
changing the file layout in storage. The overheads added by
the RPC layer are minimized on Red Storm achieving nearly
100% efficiency for the data movement. While Thunderbird



was slower, it still achieved 75% efficiency for large block
data movement.

The staging data processing techniques demonstrated that
simply synchronously offloading the IO calls to a small stag-
ing area is not sufficient for improving performance. Differ-
ent techniques can innovate in the staging area to deal with
large data blocks moving to storage in a desirable format.
Additional investigations into the file system parameters and
varying the staging area size for different techniques will fur-
ther explain the tradeoffs available for achieving improved
IO performance without having to change the IO routines
in the application.

This initial work is leading into some additional studies to
be represented in a longer work in the near future. First, the
general lack of difference between the aggregating and just
caching performance suggests some file system configuration
parameter is penalizing the performance of the aggregation
approach. Testing is underway on RedSky at Sandia Labs,
also using a Lustre file system, and is showing a different
performance profile. Second, the additional tests strongly
suggested by the data is to scale the number of staging nodes
employed with the client count. Those tests are also under-
way.

Additional tests using collective versions of the aggregate
independent and caching independent processing techniques
are also available and being tested. These results will also
be included in the next paper about this project.
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