

# Uncertainty Quantification: Part 3

Laura P. Swiler

Sandia National Laboratories  
P.O. Box 5800, Albuquerque, NM  
87185-1318  
[lpswile@sandia.gov](mailto:lpswile@sandia.gov), 505-844-8093

Presentation at the RISMC (Risk-Informed Safety Margin Characterization) Meeting  
Light Water Reactor Program, DOE  
Nov. 8-10, 2011  
Albuquerque, NM



# Last time (January 2011)

# Uncertainty Quantification: Parts 1 and 2

- Part 1:
  - Sampling methods:
    - Monte Carlo, Latin Hypercube
    - Adaptive Methods: Importance Sampling
  - Sensitivity analysis:
    - Scatterplots, correlation analysis (simple, partial, rank)
    - Variance-based methods
    - Surrogate methods
- Part 2:
  - Surrogate Methods
    - Stochastic Expansion: Polynomial Chaos/Stochastic Collocation
    - Gaussian Process Models
  - Epistemic/Aleatory Distinction
    - History
    - Approaches



# This time (November 2011)

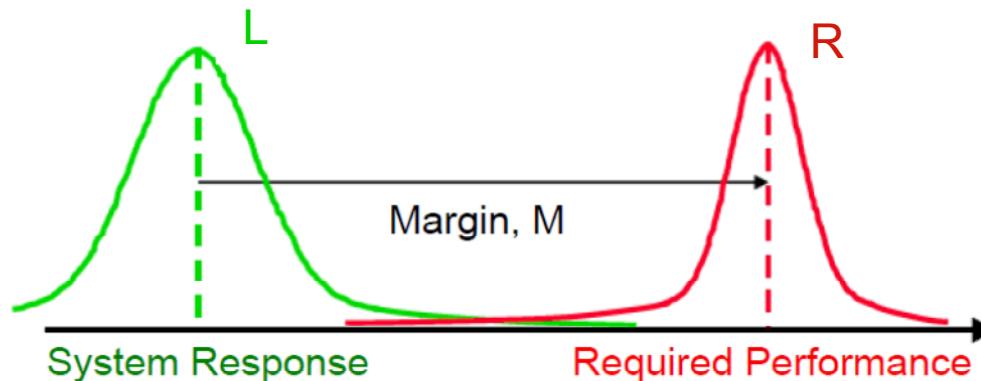
## Uncertainty Quantification: Part 3

- Part 3:
  - Reliability Methods
    - Limit state surface
    - Optimization approaches (local/global)
  - Kelly/Swiler analysis of surrogates
  - Next steps
    - Reliability methods
    - Importance sampling



# Safety Factors

- Much of the early work on engineering reliability comes from the civil engineering field, concerned with reliability of structures
- In this lecture, the notation of  $L$  = load,  $R$  = resistance, we want  $L < R$
- Nominal safety factor:  $SF = R_{\text{nom}}/L_{\text{nom}}$ , where  $R_{\text{nominal}}$  is usually a conservative value (e.g. 2-3 standard deviations below the mean) and  $L_{\text{nominal}}$  is also a conservative value (2-3 standard deviations above the mean)
- Problem: the nominal safety factor may not convey the true margin of safety in a design





# Probability of Failure

$$p_f = P(\text{failure}) = P(R < L)$$

$$p_f = \int_0^{\infty} \left[ \int_0^l f_R(r) dr \right] f_L(l) dl$$

$$p_f = \int_0^{\infty} F_R(l) f_L(l) dl$$

In practice, this integration is hard to perform and doesn't always have an explicit form, except in some special cases



# Probability of Failure

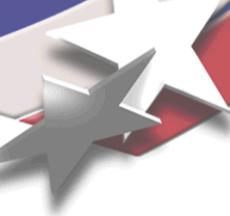
- Special Case:  $R \sim N(\mu_R, \sigma_R)$ ,  $L \sim N(\mu_L, \sigma_L)$
- Define  $Z = R - L$

$$p_f = P(\text{failure}) = P(Z < 0)$$

$$p_f = \Phi \left[ \frac{0 - (\mu_R - \mu_L)}{\sqrt{\sigma_R^2 + \sigma_L^2}} \right]$$

$$p_f = 1 - \Phi \left[ \frac{(\mu_R - \mu_L)}{\sqrt{\sigma_R^2 + \sigma_L^2}} \right]$$

- There are also modifications which treat multiple loads, or lognormal distributions (Haldar and Mahadevan)



# Reliability Analysis

- Assume that the probability of failure is based on a specific performance criterion which is a function of random variables, denoted  $X_i$ .
- The performance function is described by  $Z$ :

$$Z = g(X_1, X_2, X_3, \dots, X_n)$$

- The failure surface or limit state is defined as  $Z = 0$ . It is a boundary between safe and unsafe regions in a parameter space.
- Now we have a more general form of  $P_{failure}$

$$p_f = P(\text{failure}) = P(Z < 0)$$

$$p_f = \int \dots \int_{g(0) < 0} f_X(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$



# Reliability Analysis

- Note that the failure integral has the joint probability density function,  $f$ , for the random variables, and the integration is performed over the failure region

$$p_f = \int \dots \int_{g(\mathbf{x}) < 0} f_X(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

- If the variables are independent, we can replace this with the product of the individual density functions
- In general, this is a multi-dimensional integral and is difficult to evaluate.
- People use approximations. If the limit state is a linear function of the inputs (or is approximated by one), first-order reliability methods (FORM) are used.
- If the nonlinear limit state is approximated by a second-order representation, second-order reliability methods (SORM) are used.



# Mean Value Method (FOSM)

- Often called the First-Order Second-Moment (FOSM) method or the Mean Value FOSM method
- The FOSM method is based on a first-order Taylor series expansion of the performance function
- It is evaluated at the mean values of the random variables, and only uses means and covariances of the random variables
- The mean value method only requires one evaluation of the response function at the mean values of the inputs, plus  $n$  derivative values if one assumes the variables are independent  $\rightarrow n+1$  evaluations in the simplest approach (CHEAP!)

$$\mu_g = g(\mu_x)$$

$$\sigma_g^2 = \sum_{i=1}^n \sum_{j=1}^n Cov(i, j) \frac{dg}{dx_i}(\mu_x) \frac{dg}{dx_j}(\mu_x)$$

$$\sigma_g^2 = \sum_{i=1}^n \left( \frac{dg}{dx_i}(\mu_x) \right)^2 Var(x_i)$$



# Mean Value Method (FOSM)

- Introduce the idea of a safety index  $\beta$  (think of this as how far in “normal space” that your design is away from failure)

$$\beta = \frac{\mu_g}{\sigma_g}$$

$$p_f = \Phi[-\beta] = 1 - \Phi[\beta]$$

- FOSM does not use distribution information when it is available
- When  $g(x)$  is nonlinear, significant error may be introduced by neglecting higher order terms in the expansion
- The safety index fails to be constant under different problem formulations
- It can be very efficient. When  $g(x)$  is linear and the input variables are normal, the mean value method gives exact results!

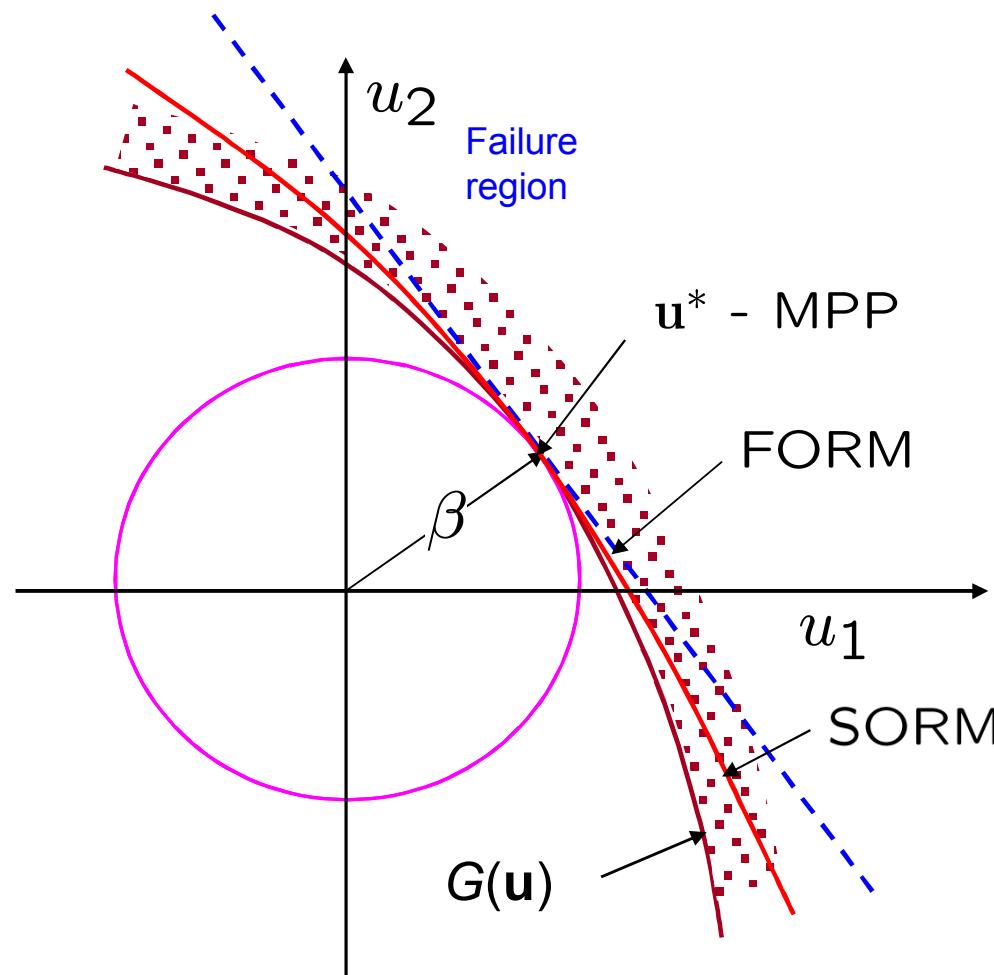


# Most Probable Point Methods

- Transform the uncertainty propagation problem into an optimization one: first transform all of the non-normal random variables into independent, unit normal variables. Then, find the point on the limit state surface with minimum distance to the origin.
- The point is called the Most Probable Point (MPP). The minimum distance,  $\beta$ , is called the safety index or reliability index.
- $X$  is often called the original space,  $U$  is the transformed space.



# MPP Search Methods





# Uncertainty Transformations

- Want to go from correlated non-normals to uncorrelated standard normals ( $u$ )

$$U_1 = F_{X_1}(X_1)$$

- Several methods

- Rosenblatt
- Rackwitz-Fiesler
- Chen-Lind
- Wu-Wirshing
- Nataf

$$U_2 = F_{X_2|X_1}(X_2 | x_1)$$

...

$$U_n = F_{X_n|X_1, X_2, \dots}(X_n | x_1, x_2, \dots, x_{n-1})$$

- Rosenblatt: First transform a set of arbitrarily, correlated random variables  $X_1 \dots X_n$  to uniform distributions, then transform to independent normals.

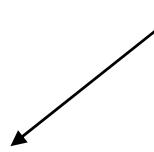
- Nataf: First transform to correlated normals ( $z$ ), then to independent normals  $u$ .  $L$  is the Cholesky factor of the correlation matrix

$$u_1 = \Phi^{-1}(U_1)$$

$$u_2 = \Phi^{-1}(U_2)$$

...

$$u_n = \Phi^{-1}(U_n)$$



$$\Phi(z_i) = F(x_i)$$
$$z = Lu$$

# MPP Search Methods

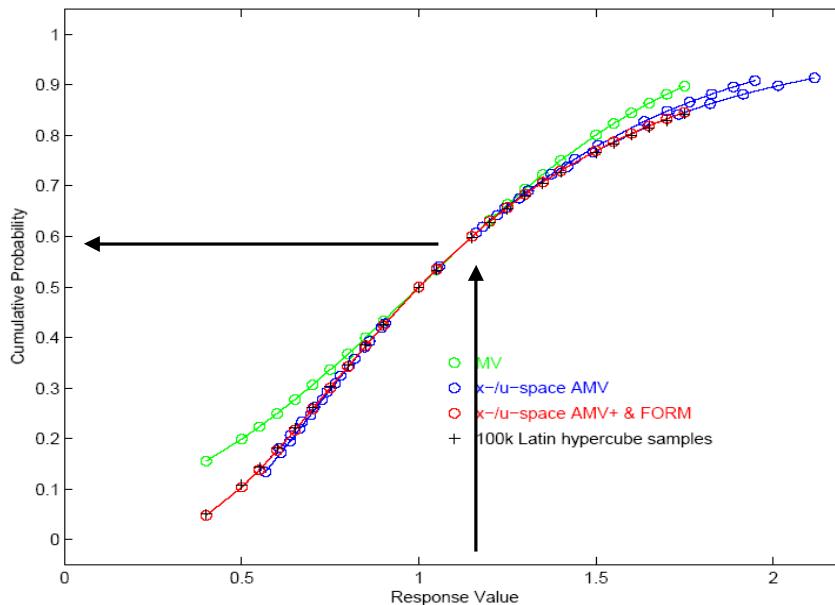
## Reliability Index Approach (RIA)

$$\text{minimize } \mathbf{u}^T \mathbf{u}$$

$$\text{subject to } G(\mathbf{u}) = \bar{z}$$

Find min dist to  $G$  level curve

Used for fwd map  $z \rightarrow p/\beta$



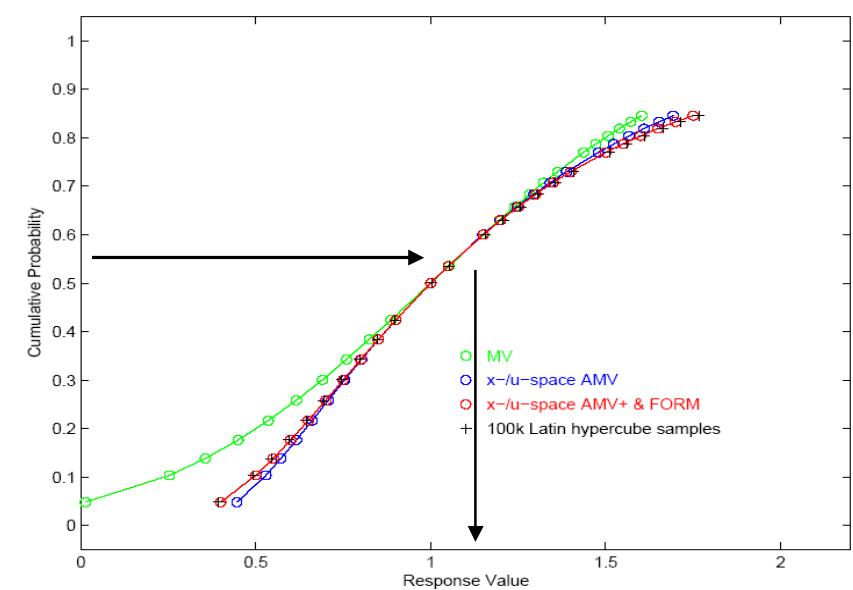
## Performance Measure Approach (PMA)

$$\text{minimize } \pm G(\mathbf{u})$$

$$\text{subject to } \mathbf{u}^T \mathbf{u} = \bar{\beta}^2$$

Find min  $G$  at  $\beta$  radius

Used for inv map  $p/\beta \rightarrow z$





# Reliability Algorithm Variations: First-Order Methods

## Limit state linearizations

$$\text{AMV: } g(\mathbf{x}) = g(\mu_{\mathbf{x}}) + \nabla_x g(\mu_{\mathbf{x}})^T (\mathbf{x} - \mu_{\mathbf{x}})$$

$$\text{u-space AMV: } G(\mathbf{u}) = G(\mu_{\mathbf{u}}) + \nabla_u G(\mu_{\mathbf{u}})^T (\mathbf{u} - \mu_{\mathbf{u}})$$

$$\text{AMV+: } g(\mathbf{x}) = g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*)$$

$$\text{u-space AMV+: } G(\mathbf{u}) = G(\mathbf{u}^*) + \nabla_u G(\mathbf{u}^*)^T (\mathbf{u} - \mathbf{u}^*)$$

FORM: no linearization

## Integrations

$$\text{1st-order: } \begin{cases} p(g \leq z) &= \Phi(-\beta_{cdf}) \\ p(g > z) &= \Phi(-\beta_{ccdf}) \end{cases}$$

## MPP search algorithm

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

## Warm starting

**When:** AMV+ iteration increment, z/p/β level increment, or design variable change

**What:** linearization point & assoc. responses (AMV+) and MPP search initial guess

# Reliability Algorithm Variations: Second-Order Methods

## 2nd-order local limit state approximations

- e.g., x-space AMV<sup>2+</sup>:

$$g(\mathbf{x}) \cong g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla_x^2 g(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*)$$

- Hessians may be full/FD/Quasi
- Quasi-Newton Hessians may be BFGS

## 2nd-order integrations

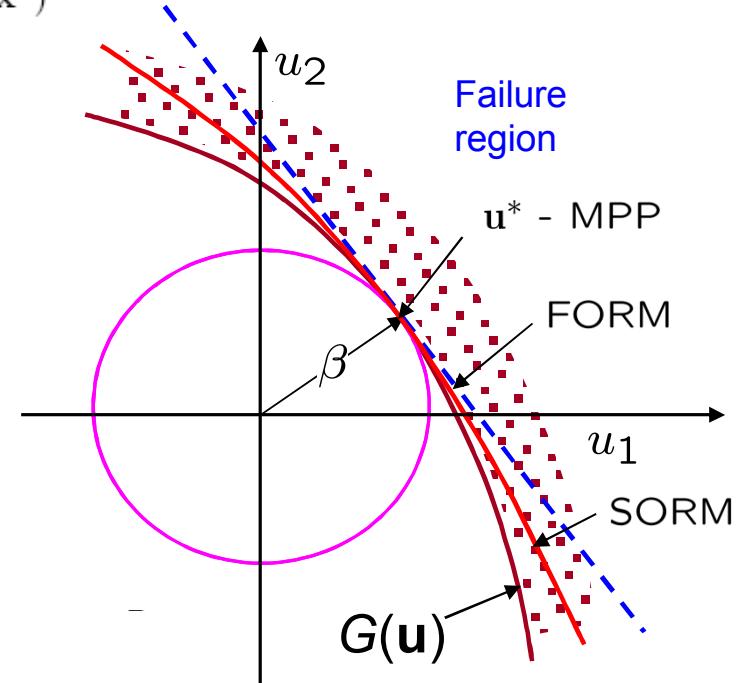
$$p = \Phi(-\beta) \prod_{i=1}^{n-1} \frac{1}{\sqrt{1 + \beta \kappa_i}}$$

curvature correction

### Synergistic features:

Hessian data needed for SORM integration can enable more rapid MPP convergence

[QN] Hessian data accumulated during MPP search can enable more accurate probability estimates



# Reliability Algorithm Variations: Second-Order Methods

## Multipoint limit state approximations

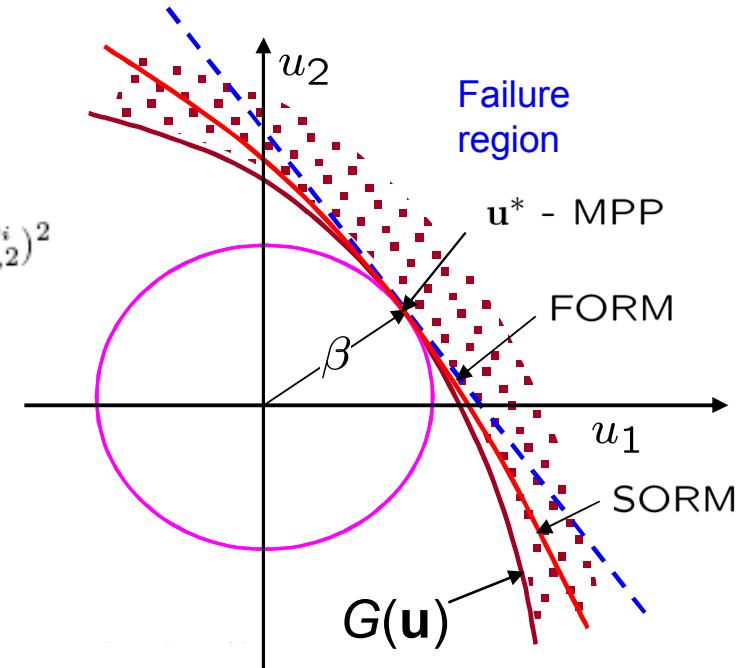
- e.g., TPEA, TANA:

$$g(\mathbf{x}) \cong g(\mathbf{x}_2) + \sum_{i=1}^n \frac{\partial g}{\partial x_i}(\mathbf{x}_2) \frac{x_{i,2}^{1-p_i}}{p_i} (x_i^{p_i} - x_{i,2}^{p_i}) + \frac{1}{2} \epsilon(\mathbf{x}) \sum_{i=1}^n (x_i^{p_i} - x_{i,2}^{p_i})^2$$

$$p_i = 1 + \ln \left[ \frac{\frac{\partial g}{\partial x_i}(\mathbf{x}_1)}{\frac{\partial g}{\partial x_i}(\mathbf{x}_2)} \right] / \ln \left[ \frac{x_{i,1}}{x_{i,2}} \right]$$

$$\epsilon(\mathbf{x}) = \frac{H}{\sum_{i=1}^n (x_i^{p_i} - x_{i,1}^{p_i})^2 + \sum_{i=1}^n (x_i^{p_i} - x_{i,2}^{p_i})^2}$$

$$H = 2 \left[ g(\mathbf{x}_1) - g(\mathbf{x}_2) - \sum_{i=1}^n \frac{\partial g}{\partial x_i}(\mathbf{x}_2) \frac{x_{i,2}^{1-p_i}}{p_i} (x_{i,1}^{p_i} - x_{i,2}^{p_i}) \right]$$



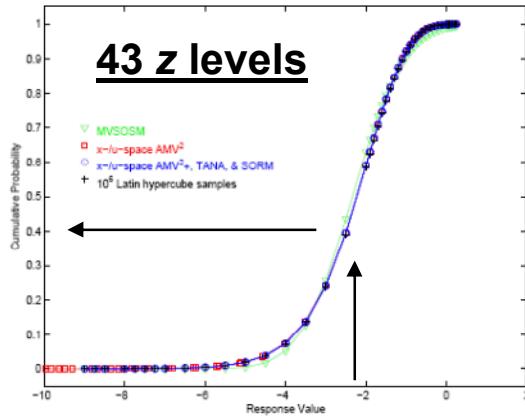
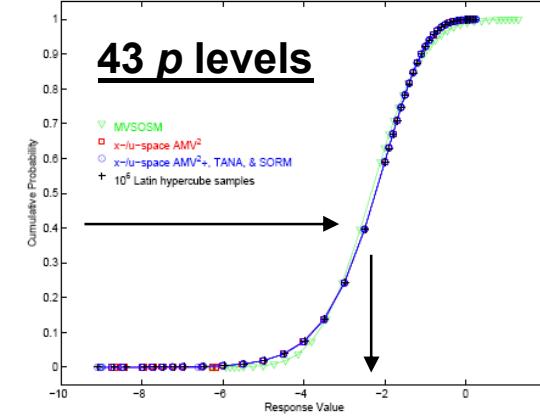
## Importance Sampling

Use of importance sampling to calculate prob of failure:

- After MPP is identified, sample around MPP to estimate  $P_f$  more accurately

# Reliability Algorithm Variations: Sample Results

Analytic benchmark test problems: lognormal ratio, [short column](#), cantilever



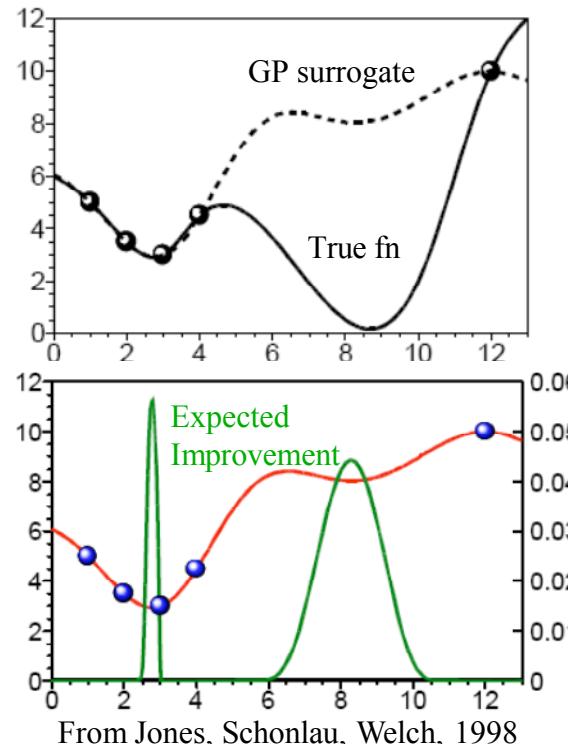
| RIA Approach               | SQP Function Evaluations | NIP Function Evaluations | CDF $p$ Error Norm | Target $z$ Offset Norm |
|----------------------------|--------------------------|--------------------------|--------------------|------------------------|
| MVFOSM                     | 1                        | 1                        | 0.1548             | 0.0                    |
| MVSOSM                     | 1                        | 1                        | 0.1127             | 0.0                    |
| x-space AMV                | 45                       | 45                       | 0.009275           | 18.28                  |
| u-space AMV                | 45                       | 45                       | 0.006408           | 18.81                  |
| x-space AMV <sup>2</sup>   | 45                       | 45                       | 0.002063           | 2.482                  |
| u-space AMV <sup>2</sup>   | 45                       | 45                       | 0.001410           | 2.031                  |
| x-space AMV+               | 192                      | 192                      | 0.0                | 0.0                    |
| u-space AMV+               | 207                      | 207                      | 0.0                | 0.0                    |
| x-space AMV <sup>2</sup> + | 125                      | 131                      | 0.0                | 0.0                    |
| u-space AMV <sup>2</sup> + | 122                      | 130                      | 0.0                | 0.0                    |
| x-space TANA               | 245                      | 246                      | 0.0                | 0.0                    |
| u-space TANA               | 296*                     | 278*                     | 6.982e-5           | 0.08014                |
| FORM                       | 626                      | 176                      | 0.0                | 0.0                    |
| SORM                       | 669                      | 219                      | 0.0                | 0.0                    |

| PMA Approach               | SQP Function Evaluations | NIP Function Evaluations | CDF $z$ Error Norm | Target $p$ Offset Norm |
|----------------------------|--------------------------|--------------------------|--------------------|------------------------|
| MVFOSM                     | 1                        | 1                        | 7.454              | 0.0                    |
| MVSOSM                     | 1                        | 1                        | 6.823              | 0.0                    |
| x-space AMV                | 45                       | 45                       | 0.9420             | 0.0                    |
| u-space AMV                | 45                       | 45                       | 0.5828             | 0.0                    |
| x-space AMV <sup>2</sup>   | 45                       | 45                       | 2.730              | 0.0                    |
| u-space AMV <sup>2</sup>   | 45                       | 45                       | 2.828              | 0.0                    |
| x-space AMV+               | 171                      | 179                      | 0.0                | 0.0                    |
| u-space AMV+               | 205                      | 205                      | 0.0                | 0.0                    |
| x-space AMV <sup>2</sup> + | 135                      | 142                      | 0.0                | 0.0                    |
| u-space AMV <sup>2</sup> + | 132                      | 139                      | 0.0                | 0.0                    |
| x-space TANA               | 293*                     | 272                      | 0.04259            | 1.598e-4               |
| u-space TANA               | 325*                     | 311*                     | 2.208              | 5.600e-4               |
| FORM                       | 720                      | 192                      | 0.0                | 0.0                    |
| SORM                       | 535                      | 191*                     | 2.410              | 6.522e-4               |



# Efficient Global Reliability Analysis (EGRA)

- Address known failure modes of local reliability methods:
  - Nonsmooth: fail to converge to an MPP
  - Multimodal: only locate one of several MPPs
  - Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
- Based on EGO (surrogate-based global opt.), which exploits special features of GPs
  - Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
  - Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

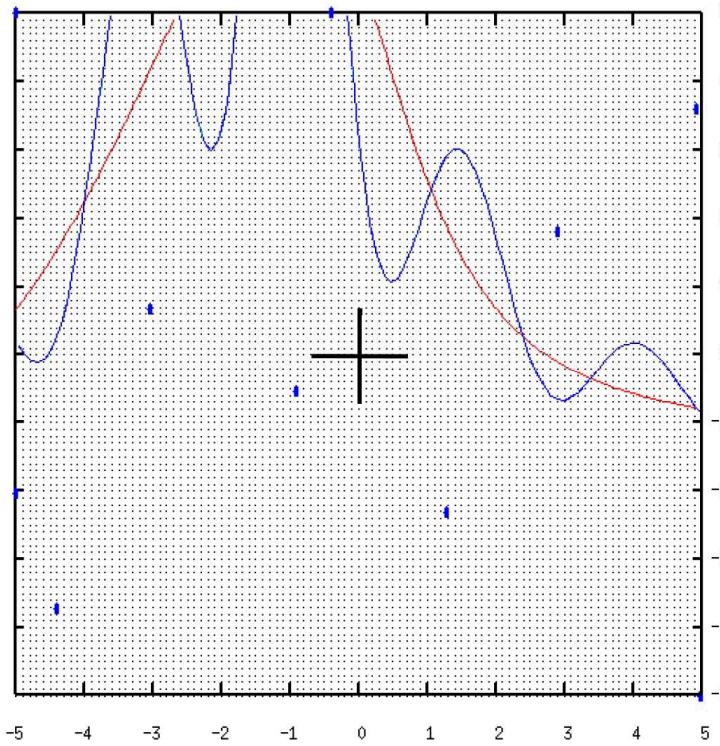




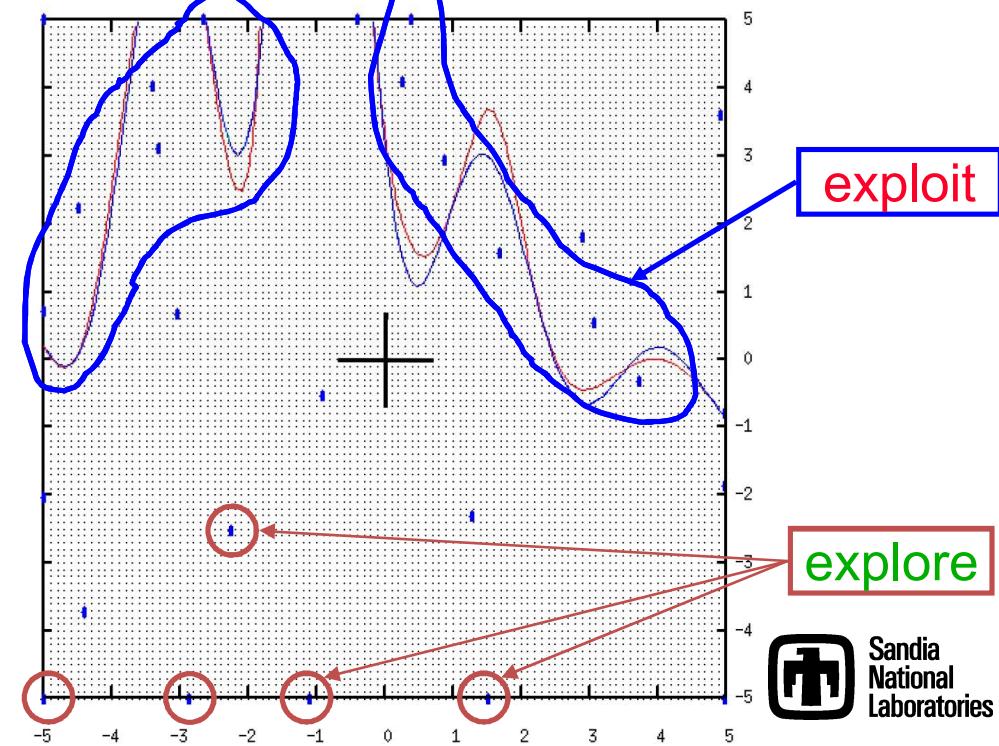
# Efficient Global Reliability Analysis (EGRA)

- Address known failure modes of local reliability methods:
  - Nonsmooth: fail to converge to an MPP
  - Multimodal: only locate one of several MPPs
  - Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
- Based on EGO (surrogate-based global opt.), which exploits special features of GPs
  - Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
  - Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

10 samples

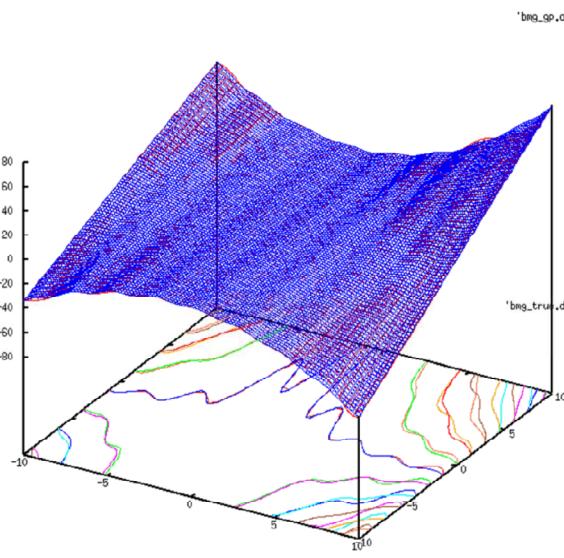
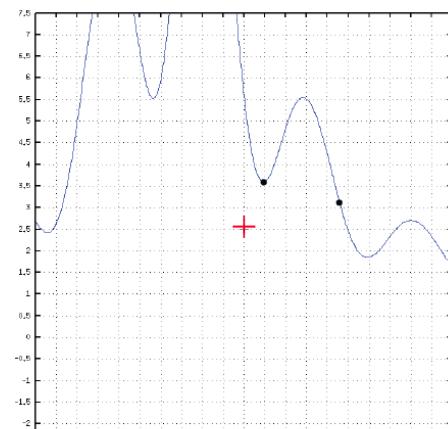


28 samples

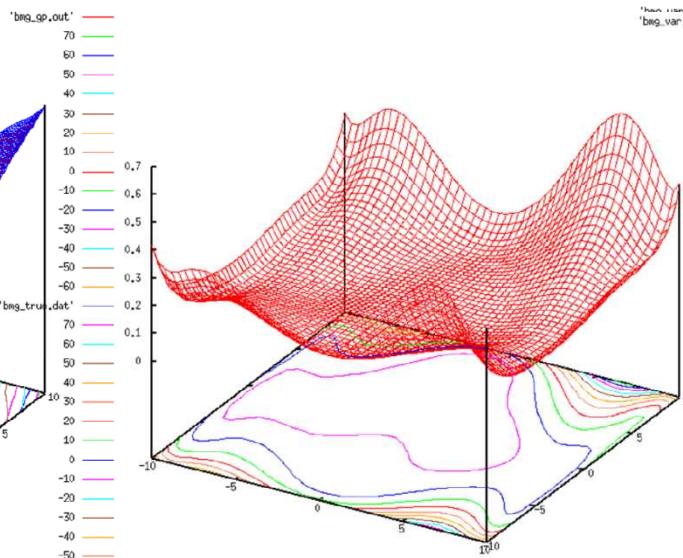


# Efficient Global Reliability Analysis (EGRA)

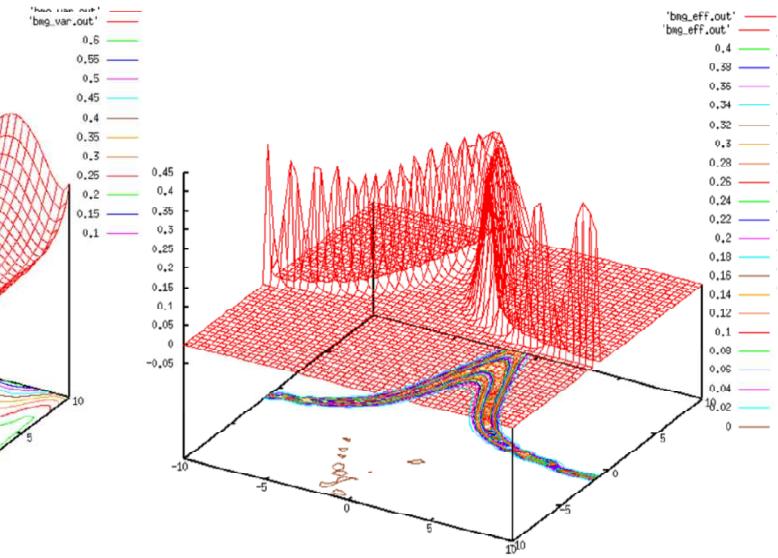
Mean



Variance



Expected Feasibility



| Reliability Method        | Function Evaluations | First-Order $p_f$ (% Error) | Second-Order $p_f$ (% Error) | Sampling $p_f$ (% Error, Avg. Error) |
|---------------------------|----------------------|-----------------------------|------------------------------|--------------------------------------|
| No Approximation          | 70                   | 0.11797 (277.0%)            | 0.02516 (-19.6%)             | —                                    |
| x-space AMV <sup>2+</sup> | 26                   | 0.11797 (277.0%)            | 0.02516 (-19.6%)             | —                                    |
| u-space AMV <sup>2+</sup> | 26                   | 0.11777 (277.0%)            | 0.02516 (-19.6%)             | —                                    |
| u-space TANA              | 131                  | 0.11797 (277.0%)            | 0.02516 (-19.6%)             | —                                    |
| LHS solution              | 10k                  | —                           | —                            | 0.03117 (0.385%, 2.847%)             |
| LHS solution              | 100k                 | —                           | —                            | 0.03126 (0.085%, 1.397%)             |
| LHS solution              | 1M                   | —                           | —                            | 0.03129 ( truth , 0.339%)            |
| x-space EGRA              | 35.1                 | —                           | —                            | 0.03134 (0.155%, 0.433%)             |
| u-space EGRA              | 35.2                 | —                           | —                            | 0.03133 (0.136%, 0.296%)             |

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment



# References

- Haldar, A. and S. Mahadevan. *Probability, Reliability, and Statistical Methods in Engineering Design* (Chapters 7-8). Wiley, 2000.
- Eldred, M.S. and Bichon, B.J., "Second-Order Reliability Formulations in DAKOTA/UQ," paper AIAA-2006-1828 in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (8th AIAA Non-Deterministic Approaches Conference), Newport, Rhode Island, May 1 - 4, 2006.
- Eldred, M.S., Agarwal, H., Perez, V.M., Wojtkiewicz, S.F., Jr., and Renaud, J.E. "Investigation of Reliability Method Formulations in DAKOTA/UQ," *Structure & Infrastructure Engineering: Maintenance, Management, Life-Cycle Design & Performance*, Vol. 3, No. 3, Sept. 2007, pp. 199-213.
- Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., and McFarland, J.M., "Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions," *AIAA Journal*, Vol. 46, No. 10, October 2008, pp. 2459-2468.
- Li, J., Li, J. and D. Xiu. "An Efficient Surrogate-based Method for Computing Rare Failure Probability" *Journal of Computational Physics*, 2011.
- RIAC (Reliability Information Analysis Center): DoD site with useful information, guides on failure rates, accepted practices, etc.: <http://www.theriac.org/>



# Surrogate Exercise

- MAAP data provided by Rick Sherry
- 7 inputs, PCT output
- Example Data Points:

|             |             |             |             |             |             |             |         |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------|
| 1.743111057 | 182799.5467 | 0.955967773 | 0.988974257 | 12214102556 | 1.941626994 | 0.542751523 | 4040    |
| 5.462543971 | 210542.5794 | 0.923124154 | 0.992020895 | 7328733829  | 2.591832158 | 1.378279799 | 626.65  |
| 2.674710746 | 237825.6961 | 1.020738132 | 0.951296806 | 12324543052 | 0.939464609 | 1.700512893 | 2058.8  |
| 3.329309419 | 208744.735  | 0.883249726 | 1.021922709 | 12334040643 | 1.330167851 | 0.291383003 | 4040    |
| 1.715799521 | 183364.9316 | 1.04383727  | 0.963999398 | 12175622386 | 1.771614952 | 0.266097902 | 4040    |
| 2.304336794 | 188262.2584 | 0.984127727 | 1.048833468 | 12200355093 | 3.053181734 | 0.459711939 | 4040    |
| 6.585511973 | 209736.5804 | 1.041076319 | 1.024155978 | 12136328119 | 2.05280482  | 1.123557699 | 4040    |
| 4.293919875 | 219027.6166 | 0.904034142 | 1.010287086 | 11075618901 | 2.415474448 | 0.687599633 | 4040    |
| 2.106734623 | 232051.7923 | 0.992982254 | 1.000366752 | 11325441596 | 4.294646801 | 1.293444688 | 2332.05 |
| 2.262055459 | 203886.1326 | 1.018127502 | 0.968931448 | 5366045950  | 3.392389074 | 0.926106795 | 624.85  |

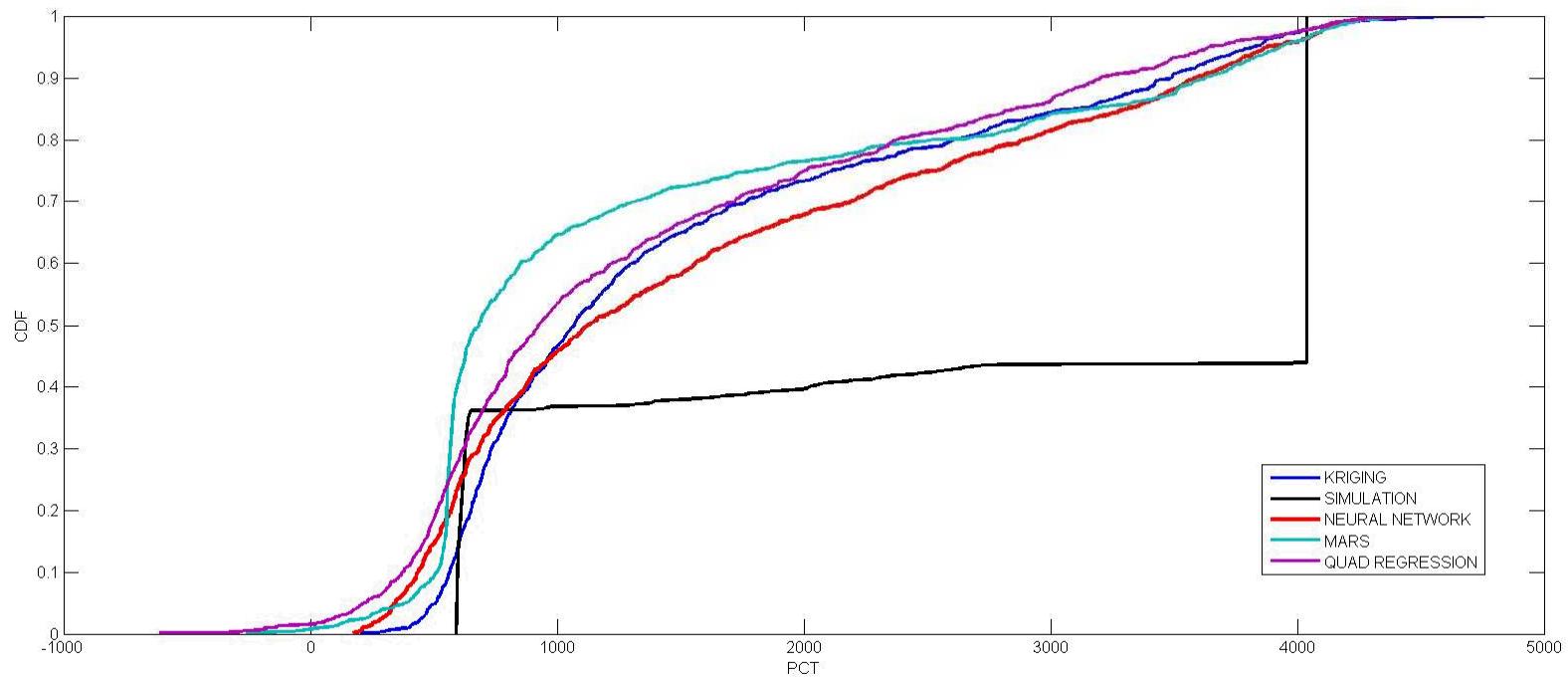


Bimodal Distribution on PCT



# Surrogate Exercise

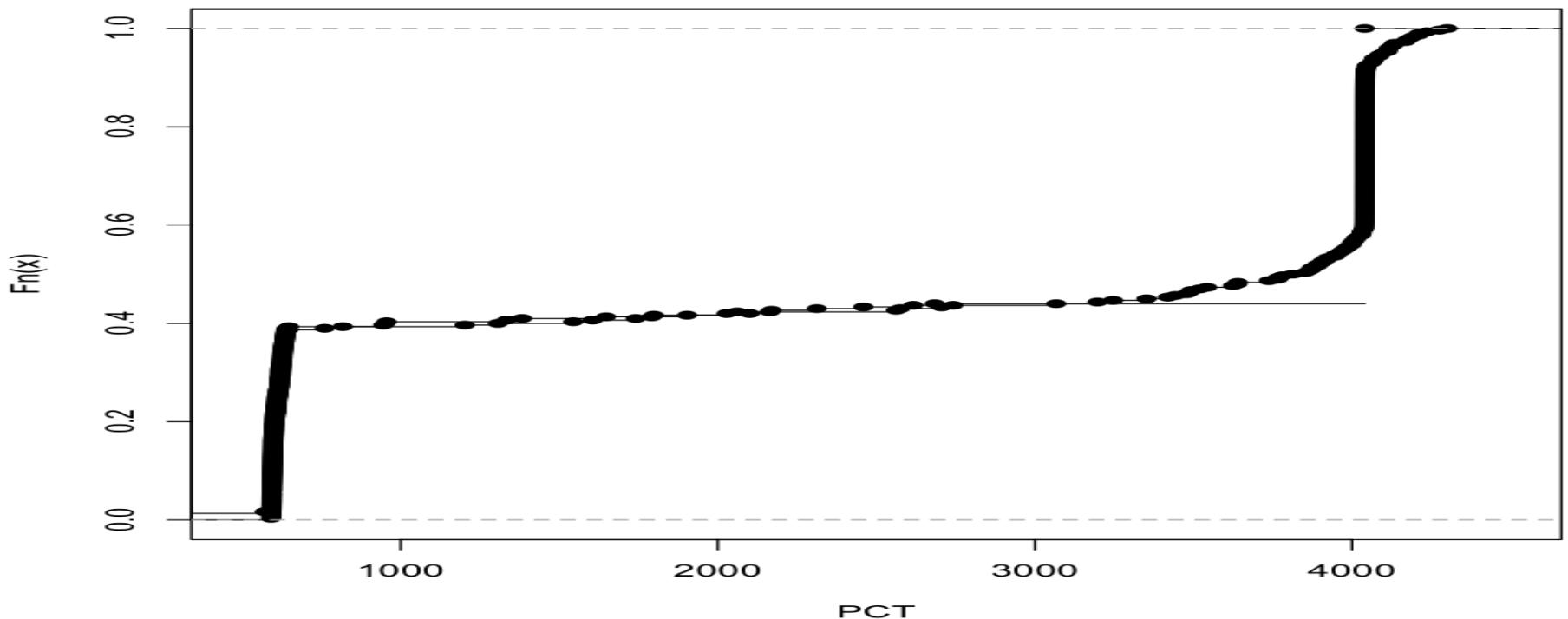
DAKOTA methods not able to match well

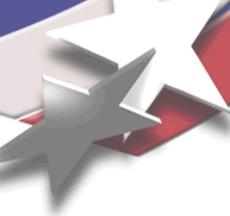




# Surrogate Exercise

Treed Gaussian Process (TGP) does better because it generates separate GPs in different regions of space:





# Surrogate Exercise

Overall RMSE error metrics when building on 700 points, predicting on 300:

| Poly   | NN     | Kriging | Mars   | TGP    |
|--------|--------|---------|--------|--------|
| 398.88 | 368.86 | 300.92  | 374.85 | 300.00 |

TGP and kriging very similar...CDFs better with TGP.  
Still need to investigate some issues (discuss).



# DAKOTA Sensitivity Analysis

- Parameter study, design and analysis of computer experiments, and general sampling methods (**heavy global focus**):
  - Single and multi-parameter studies (grid, vector, centered)
  - DDACE (grid, sampling, orthogonal arrays, Box-Behnken, CCD)
  - FSUDACE (Quasi-MC, CVT)
  - PSUADE (Morris designs)
  - Monte Carlo, Latin hypercube sampling (with correlation or variance analysis, including variance-based decomposition)
  - Mean-value with importance factors
  - Stochastic expansion (PCE/SC) yielding Sobol indices
- DAKOTA outputs can include correlations, main/total effects, interaction effects; tabular output can be analyzed with any third-party statistics package
- Determine main effects and key parameter *interactions*
- In SA, typically no distribution assumption



# DAKOTA UQ

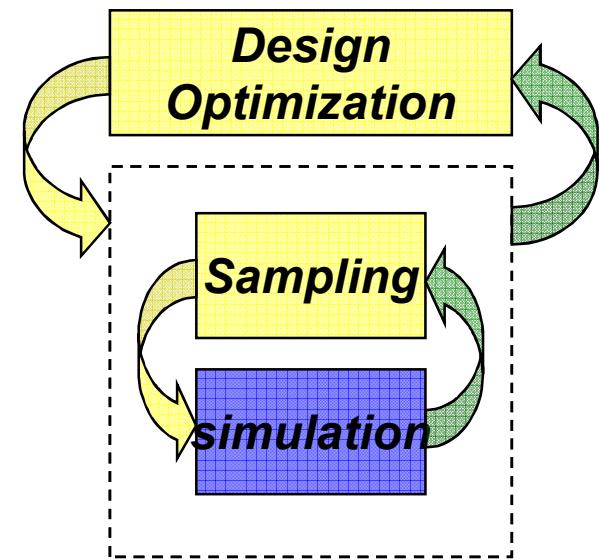
- Techniques for propagating **aleatory uncertainty** (variables characterized by probability distributions) through models:
  - Latin hypercube (and other) sampling
  - Local reliability methods (mean value, MPP search, FORM, SORM)
  - Global reliability methods (EGRA)
  - Non-intrusive stochastic expansion methods (polynomial chaos and stochastic collocation)
  - *Reliability and importance sampling help with low probability events*
- Methods for **epistemic uncertainty** (variables characterized by intervals or basic probability assignments):
  - Local/global interval estimation
  - Local/global Dempster-Shafer evidence theory (belief/plausibility)
  - “Second-order” probability via sampling
- DAKOTA can output moments, probability of response thresholds, reliability metrics, response corresponding to a metric, etc.



# Extra Slides

# Optimization under Uncertainty

- Design for reliability is a classic OUU problem, often called RBDO (reliability-based design optimization)
- Nice properties in that the reliability formulation itself generates quantities such as derivatives of performance function with respect to uncertain variables
- Variety of approaches (next page)
- Simplest case: think of a “nested” algorithm, with an optimization outer loop and sampling inner loop



# RBDO Algorithms

## Bi-level RBDO

- Constrain RIA  $z \rightarrow p/\beta$  result
- Constrain PMA  $p/\beta \rightarrow z$  result

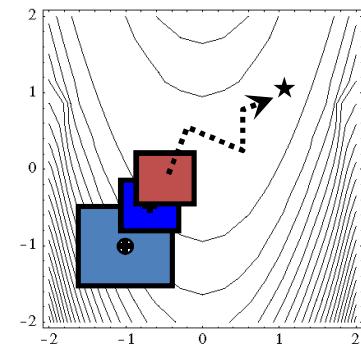
$$\left. \begin{array}{ll} \text{RIA} & \text{minimize } f \\ \text{RBDO} & \text{subject to } \beta \geq \bar{\beta} \\ & \text{or } p \leq \bar{p} \end{array} \right\}$$

$$\left. \begin{array}{ll} \text{PMA} & \text{minimize } f \\ \text{RBDO} & \text{subject to } z \geq \bar{z} \end{array} \right\}$$

## Sequential/Surrogate-based RBDO:

- Break nesting: iterate between opt & UQ until target is met.
- Trust-region surrogate-based approach is non-heuristic.

$$\left. \begin{array}{l} \text{minimize } f(\mathbf{d}_0) + \nabla_d f(\mathbf{d}_0)^T (\mathbf{d} - \mathbf{d}_0) \\ \text{subject to } \beta(\mathbf{d}_0) + \nabla_d \beta(\mathbf{d}_0)^T (\mathbf{d} - \mathbf{d}_0) \geq \bar{\beta} \\ \quad \| \mathbf{d} - \mathbf{d}_0 \|_{\infty} \leq \Delta^k \end{array} \right\} \begin{array}{l} \text{1st-order} \\ \text{(also 2nd-order w/ QN)} \end{array}$$



## Unilevel RBDO:

- All at once: apply KKT conditions of MPP search as equality constraints
  - Opt. increases in scale ( $\mathbf{d}, \mathbf{u}$ )
  - Requires 2nd-order info for derivatives of 1st-order KKT

$$\left. \begin{array}{ll} \min_{\mathbf{d}_{aug}=(\mathbf{d}, \mathbf{u}_1, \dots, \mathbf{u}_{N_{hard}})} & : f(\mathbf{d}, \mathbf{p}, \mathbf{y}(\mathbf{d}, \mathbf{p})) \\ \text{s. t.} & : G_i^R(\mathbf{u}_i, \eta) = 0 \\ & \beta_{allowed} - \beta_i \geq 0 \\ & \|\mathbf{u}_i\| \|\nabla_{\mathbf{u}} G_i^R(\mathbf{u}_i, \eta)\| + \mathbf{u}_i^T \nabla_{\mathbf{u}} G_i^R(\mathbf{u}_i, \eta) = 0 \\ & \beta_i = \|\mathbf{u}_i\| \\ & \mathbf{d}^l \leq \mathbf{d} \leq \mathbf{d}^u \end{array} \right\} \begin{array}{l} \text{KKT} \\ \text{of MPP} \end{array}$$



# Mean Value Method (FOSM)

Some extensions/notation

$$\bar{z} \Rightarrow p, \beta$$

$$\beta_{cdf} = \frac{\mu_g - \bar{z}}{\sigma_g},$$

$$\beta_{ccdf} = \frac{\bar{z} - \mu_g}{\sigma_g}$$

$$\bar{p}, \bar{\beta} \Rightarrow z$$

$$z = \mu_g - \sigma_g \bar{\beta}_{cdf},$$

$$z = \mu_g + \sigma_g \bar{\beta}_{ccdf}$$

$$p_f = \Phi[-\beta] = 1 - \Phi[\beta]$$

$p$  = probability of failure

$\beta$  = reliability index

$z$  = response level