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Last time (January 2011)
Uncertainty Quantification: Parts 1 and 2

* Partl:

— Sampling methods:
* Monte Carlo, Latin Hypercube
* Adaptive Methods: Importance Sampling
— Sensitivity analysis:
* Scatterplots, correlation analysis (simple, partial, rank)
* Variance-based methods
* Surrogate methods

* Part 2:

— Surrogate Methods
* Stochastic Expansion: Polynomial Chaos/Stochastic Collocation
* Gaussian Process Models
— Epistemic/Aleatory Distinction
* History
* Approaches
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} This time (November 2011)

Uncertainty Quantification: Part 3

* Part3:
— Reliability Methods
* Limit state surface
» Optimization approaches (local/global)
— Kelly/Swiler analysis of surrogates
— Next steps
* Reliability methods

e Importance sampling
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“ Safety Factors

* Much of the early work on engineering reliability comes from the civil
engineering field, concerned with reliability of structures

* |nthis lecture, the notation of L = load, R = resistance, we want L <R

* Nominal safety factor: SF =R, ,./L,om Where R, .4 iS Usually a
conservative value (e.g. 2-3 standard deviations below the mean) and
L is also a conservative value (2-3 standard deviations above the mean)

* Problem: the nominal safety factor may not convey the true margin of
safety in a design

nominal

L R

.
rI

Margin, M
— __.,/ |

System Response Required Performance
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=X 4
}’ Probability of Failure

p, = P(failure)= P(R<L)
[, 12 |f, @y

p, = Fef,()dl

00
0

Pr=

In practice, this integration is hard to perform and doesn’t always
have an explicit form, except in some special cases

Sandia
National
Laboratories



=X 4
% Probability of Failure

* Special Case: R¥N(p,, o;), L™N(p,, o)
e DefineZ=R-1L
p, = P(failure) = P(Z <0)

p, = q{o_(.uze — ;)

2 2
VOrt0O, |

P, _1_(D|:(auR —U;)

2 2
\OR+O; |

* There are also modifications which treat multiple loads, or
lognormal distributions (Haldar and Mahadevan)
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J Reliability Analysis

* Assume that the probability of failure is based on a specific

performance criterion which is a function of random variables, denoted
Xi-
* The performance function is described by Z:
Z=8(Xy, X X5, ooy X.)

* The failure surface or limit state is defined as Z=0. It is a boundary
between safe and unsafe regions in a parameter space.

* Now we have a more general form of Pe,.

p, = P(failure) = P(Z <0)
P, =j jfX(xl,xz,...,xn)dxldxz...dxn

g(0<0
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=X 4
2/ Reliability Analysis

Note that the failure integral has the joint probability density function, f,
for the random variables, and the integration is performed over the
failure region

P, =j jfX(xl,xz,...,xn)dxldxz...dxn
g()<0

If the variables are independent, we can replace this with the product of
the individual density functions

In general, this is a multi-dimensional integral and is difficult to evaluate.

People use approximations. If the limit state is a linear function of the
inputs (or is approximated by one), first-order reliability methods (FORM)
are used.

If the nonlinear limit state is approximated by a second-order
representation, second-order reliability methods (SORM) are used.
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7 d
Mean Value Method (FOSM)

e Often called the First-Order Second-Moment (FOSM) method or the Mean
Value FOSM method

* The FOSM method is based on a first-order Taylor series expansion of the
performance function

* |tis evaluated at the mean values of the random variables, and only uses
means and covariances of the random variables

* The mean value method only requires one evaluation of the response function
at the mean values of the inputs, plus n derivative values if one assumes the
variables are independent = n+1 evaluations in the simplest approach
(CHEAP!)

=g(u,)

Z ZCOV(Z J)—(ux)d—g(ux)

2
d
o - z(df ) prts
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7 d
Mean Value Method (FOSM)

Introduce the idea of a safety index 3 (think of this as how far in “normal
space” that your design is away from failure)

p=t
o)

p, =0l pl=1-0[s]

FOSM does not use distribution information when it is available

When g(x) is nonlinear, significant error may be introduced by neglecting
higher order terms in the expansion

The safety index fails to be constant under different problem
formulations

It can be very efficient. When g(x) is linear and the input variables are
normal, the mean value method gives exact results!
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=X 4
=/ Most Probable Point Methods

* Transform the uncertainty propagation problem into
an optimization one: first transform all of the non-
normal random variables into independent, unit
normal variables. Then, find the point on the limit
state surface with minimum distance to the origin.

* The point is called the Most Probable Point (MPP).
The minimum distance, [3, is called the safety index
or reliability index.

e Xis often called the original space, U is the
transformed space.

Sandia
National _
Laboratories



MPP Search Methods

Failure
region
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% Uncertainty Transformations

Want to go from correlated non-normals
to uncorrelated standard normals (u)

Several methods

Rosenblatt
Rackwitz-Fiesler
Chen-Lind
Wu-Wirshing
Nataf

Rosenblatt: First transform a set of
arbitrarily, correlated random variables
X;--X,, to uniform distributions, then
transform to independent normals.

Nataf: First transform to correlated
normals (z), then to independent

normals u. Lis the Cholesky factor of

U, :FX1 (X))
U, = FX2|X1 (X, [x))

U, = FXn|X1,X2,...(Xn | X)5 X 500X, ;)

U, :(D_I(U1)
u, :(D_I(Uz)

u, =(D_1(Un)

D(z,)=F(x,)

the correlation matrix

4

z=Lu

()
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Reliability Index
Approach (RIA)

minimize ul'u

subject to G(u) =2

Find min dist to G level curve
Used for fwd map z -2 p/f
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MPP Search Methods

Performance Measure
Approach (PMA)

minimize *G{ u)

subject to ulu = 3

Find min G at g radius
Used for inv map p/g = z
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Reliability Algorithm Variations:
First-Order Methods

i

'}'

Limit state linearizations

AMV:  9(%) = g(px) + Vaeg(px) (x = pix)
u-space AMV:  G(u) = G(pu) + VG ()" (0 = py)
AMV+: g(x) = g(x") + Vog(x")" (x — x7)
u-space AMV+: G(u) = G(u*) + V,G(u*)" (u —u*)
FORM: no linearization

Integrations

1St_order { p(g E: Z) = "I'{_-ﬁf:df}
p(g > z} = ‘i'{_-ﬁf:mif}

MPP search algorithm
[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

Warm starting
When: AMV+ iteration increment, z/p/p level increment, or design variable change
What: linearization point & assoc. responses (AMV+) and MPP search initial guess
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%' Reliability Algorithm Variations:

Second-Order Methods

2nd-order local limit state approximations
* e.g., x-space AMV2+:
9(x) = g(x") + Vg () (x — x7) + 5 (x - x*) " T2g(x") (x — x°)

)

» Hessians may be full/[FD/Quasi > ‘
« Quasi-Newton Hessians may be BFGS \‘ " .

Failure
region

u* - MPP
2nd-order integrations

FORM
n—1 1 ﬁ
p=2(-0) || —= ,
E v 1 -+ I."jf{-f U1 "
curvature correction ' SORM
Synergistic features:

Hessian data needed for
SORM integration can enable
more rapid MPP convergence

[QN] Hessian data accumulated during
MPP search can enable more accurate
probability estimates
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}' Reliability Algorithm Variations:

Second-Order Methods

Multipoint limit state approximations
* e.g., TPEA, TANA:

n 1—p; n
. . I'E"Qf U : . 1 . : :
g(x) = g(x2) + Z oy (x2) pz- (27" —2i) + Selx) Z(i‘f — 17y
i=1 ! - i=1
33'9'( 1;' / |:T1 1]
i = l1+hn|=— /In|—
P E".ri,-(xgj L'y,2
H

Importance Sampling
Use of importance sampling to calculate prob of failure:

JE

A

A

u :
Failure
region

u* - MPP

FORM

&
U1 >
SORM
BN
=\
G(u) o

*After MPP is identified, sample around MPP to estimate P; more accurately
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Sample Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

L ) . 4 1+ I . B
<t 43 Z levels - 43 p levels -
(k] E [1E:3 4
07 1 o7 s08M ]
£ B x-iu-space AMV® E O x-ju-space AMV?
g per x=lu-space AMVZs, TAMA. & SORM 4 2 03 9 g-ju-zpace AMVZ TAMA, & SORM 1
& osl ¥ 10° Latin hypercube sampies s 08 *+ 10° Latin hypercube samples |
i 1 §
Eosl < p £ o4l ]
3 3
D3R < 03 4
02 p 0z g
e B ik33 -
i iz ule] L oF 1
-1 = = = =) T 2 18 = = - e » =) 0 2
Response Value esponse Value
RIA SQP Function NIP Function CDF p Target z PMA SQP Function NIP Function CDF =z Target p
Approach Evaluations Evaluations  Error Norm  Offset Norm Approach Evaluations Evaluations  Error Norm  Offset Norm
MVFOSM 1 1 0.1548 0.0 MVFOSM 1 1 7.454 0.0
MWVEOSEM 1 1 0.1127 0.0 MVSOSM 1 1 6.823 0.0
x-space AMV 45 45 0.000275 18.28 x-space AMV 45 45 0.9420 0.0
u-space AMV 45 45 0.006408 18.81 u-space AMYV 45 45 0.5828 0.0
x-space AMV? 45 45 0.002063 2,482 x-space AMV?2 45 45 2.730 0.0
u-space AMV? 45 45 0.001410 2.031 u-space AMV? 45 45 2.828 0.0
x-space AMV+ 192 192 0.0 0.0 x-space AMV+ 171 179 0.0 0.0
u-space AMV -+ 207 207 0.0 0.0 u-space AMV+ 205 205 0.0 0.0
x-space AMV®+ 125 131 0.0 0.0 x-space AMV?+ 135 142 0.0 0.0
u-space AMVI4+ 122 130 0.0 0.0 u-space AMV?+ 132 139 0.0 0.0
x-space TANA 245 246 0.0 0.0 x-space TANA 203* 272 0.04259 1.598e-4
u-space TANA 206 278 6.0982e-5 0.08014 u-space TANA 325* 311* 2.208 5.600e-4
FORM 626 176 0.0 0.0 FORM 720 192 0.0 0.0
SORM 660 219 0.0 0.0 SORM 535 191* 2.410 6.522e-4
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Efficient Global Reliability
Analysis (EGRA)

» Address known failure modes of local reliability methods:
— Nonsmooth: fail to converge to an MPP
— Multimodal: only locate one of several MPPs
— Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
« Based on EGO (surrogate-based global opt.), which exploits special features of GPs
— Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
— Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

121
101 GP surrogate -
8 o7t ’
67
4:
] True fn
21
H—vv-v———
0 2 4 6 8 10 12
124 0.06
101 Expected d0.05
] Improvement
8- 40.04
6 J0.03
4{\ H0.02
21 40.01
o+————

0 5 4 & & 10 120 Sandia
From Jones, Schonlau, Welch, 1998 National
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Efficient Global Reliability
Analysis (EGRA)

» Address known failure modes of local reliability methods:
— Nonsmooth: fail to converge to an MPP
— Multimodal: only locate one of several MPPs
— Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
« Based on EGO (surrogate-based global opt.), which exploits special features of GPs
— Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
— Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

10 samples 28 samples

)

Ve exploit

== explore
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Efficient Global Reliability
Analysis (EGRA

Variance

Reliability Function First-Order py Second-Order p; Sampling py
Method Evaluations (% Error) (% Error) (% Error, Avg. Error)
No Approximation 70 0.11797 (277.0%) 0.02516 (-19.6%)

x-space AMV2+ 2 0.11797 (277.0%)  0.02516 (-19.6%) —

u-space AMV2+ 26 011777 [ 277.0%)  0.02516 (-19.6%) —

u-space TANA 131 0.11797 (277.0%) 0.02516 (-19.6%)

LHS solution 10k 0.03117 (0.385%, 2.847%)
LHS solution 100k — — 0.03126 (0.085%, 1.397%)
LHS solution 1M — — 0.03129 ( truth , 0.339%)
x-space EGRA 35.1 0.03134 (0.155%, 0.433%)
u-space EGRA 35.2 0.03133 (0.136%, 0.206%)

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment
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 MAAP data provided by Rick Sherry

Surrogate Exercise

* 7 inputs, PCT output

 Example Data Points:

1.743111057
5.462543971
2.674710746
3.329309419
1.715799521
2.304336794
6.585511973
4.293919875
2.106734623
2.262055459

182799.5467
210542.5794
237825.6961
208744.735

183364.9316
188262.2584
209736.5804
219027.6166
232051.7923
203886.1326

0.955967773
0.923124154
1.020738132
0.883249726
1.04383727

0.984127727
1.041076319
0.904034142
0.992982254
1.018127502

0.988974257
0.992020895
0.951296806
1.021922709
0.963999398
1.048833468
1.024155978
1.010287086
1.000366752
0.968931448

12214102556
7328733829

12324543052
12334040643
12175622386
12200355093
12136328119
11075618901
11325441596
5366045950

1.941626994
2.591832158
0.939464609
1.330167851
1.771614952
3.053181734
2.05280482

2.415474448
4.294646801
3.392389074

0.54275152
1.37827979
1.700512893
0.291383003
0.2660979p2
0.459711989
1.123557699

4040
626.65
2058.8
4040
4040
4040
4040
4040
2332.05
624.85

Bimodal Distribution on PCT
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4‘- Surrogate Exercise

DAKOTA methods not able to match well
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i Surrogate Exercise

Treed Gaussian Process (TGP) does better because it
generates separate GPs in different regions of space:

8 W
|

06
|

Fnfx)

04

02
|

00
|

T T T T
1000 2000 3000 4000
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“ Surrogate Exercise

Overall RMSE error metrics when building on 700
points, predicting on 300:

Poly NN Kriging | Mars TGP

398.88 | 368.86 | 300.92 | 374.85 | 300.00

TGP and kriging very similar...CDFs better with TGP.
Still need to investigate some issues (discuss).

Sandia
National
Laboratories



' '
%
DAKOTA Sensitivity Analysis

* Parameter study, design and analysis of computer experiments, and general
sampling methods (heavy global focus):

Single and multi-parameter studies (grid, vector, centered)
DDACE (grid, sampling, orthogonal arrays, Box-Behnken, CCD)
FSUDACE (Quasi-MC, CVT)

PSUADE (Morris designs)

Monte Carlo, Latin hypercube sampling (with correlation or variance analysis,
including variance-based decomposition)

Mean-value with importance factors
Stochastic expansion (PCE/SC) yielding Sobol indices

* DAKOTA outputs can include correlations, main/total effects, interaction
effects; tabular output can be analyzed with any third-party statistics package

 Determine main effects and key parameter interactions

* In SA, typically no distribution assumption
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% DAKOTA UQ

» Techniques for propagating aleatory uncertainty (variables characterized by
probability distributions) through models:

— Latin hypercube (and other) sampling
— Local reliability methods (mean value, MPP search, FORM, SORM)
— Global reliability methods (EGRA)

— Non-intrusive stochastic expansion methods
(polynomial chaos and stochastic collocation)

— Reliability and importance sampling help with low probability events
 Methods for epistemic uncertainty (variables characterized by intervals or
basic probability assignments):
— Local/global interval estimation
— Local/global Dempster-Shafer evidence theory (belief/plausibility)
— “Second-order” probability via sampling

 DAKOTA can output moments, probability of response thresholds, reliability metrics,
response corresponding to a metric, etc. Sandia
@ National
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Extra Slides
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* Design for reliability is a classic OUU problem,
often called RBDO (reliability-based design
optimization)

* Nice properties in that the reliability formulation
itself generates quantities such as derivatives of
performance function with respect to uncertain
variables

* Variety of approaches (next page)

e Simplest case: think of a “nested” algorithm, with
an optimization outer loop and sampling inner
loop

g
>
Optimization under Uncertainty

Design
Optimization
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RBDO Algorithms

 constain A
+ Constrain RIA z > p/f result RBDO| "t gz RBDO

minimize f
>
+ Constrain PMA p/§ - z result

_ subject to  z
or p<p

Sequential/Surrogate-based RBDO: ’
* Break nesting: iterate between opt & UQ until target is met. ,
Trust-region surrogate-based approach is non-heuristic.
minimize f(do) + Vaf(do)' (d —do) 1st.order i
subject to  8(dg) + V4B(do)  (d — dg) = 3 } (also 2"d-order w/ QN)
d—dy | < AF %
Unilevel RBDO: min 2 f(d,p,y(d, p))
« All at once: apply KKT conditions of daug=(d,u1,- 00, 4
MPP search as equality constraints s.t. 1 Giu,n) =0
* Opt. increases in scale (d,u) Bullowed — B3 > 0 | KKT
* Requires 2nd-order info for lwill IVuGF us,m)| + of VuGfi(um) = 0 | of MPP
derivatives of 1st-order KKT -
Bi = |||
d <d<d
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% Mean Value Method (FOSM)

Some extensions/notation

Z:paﬁ ﬁ,ﬁ_:>Z
_ H,—z Zz,ug—crgﬁcdf,
ﬁcdf T - ” B
& Z:ug_l_ggﬁccdf
Z_
Bt = a p,=®[-pl=1-|]
O,

p = probability of failure
B= reliability index

Z = response level @ Sandia
National
Laboratories



