
Uncertainty Quantification: Part 3
Laura P. Swiler

Sandia National Laboratories
P.O. Box 5800, Albuquerque, NM

87185-1318
lpswile@sandia.gov, 505-844-8093

Presentation at the RISMC (Risk-Informed Safety Margin Characterization) Meeting
Light Water Reactor Program, DOE

Nov. 8-10, 2011
Albuquerque, NM

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear 
Security Administration under contract DE-AC04-94AL85000. 

SAND 2011-XXXX

SAND2011-8502C

mailto:lpswile@sandia.gov


Last time (January 2011)
Uncertainty Quantification:  Parts 1 and 2

• Part 1:
– Sampling methods: 

• Monte Carlo, Latin Hypercube

• Adaptive Methods:  Importance Sampling

– Sensitivity analysis: 

• Scatterplots, correlation analysis (simple, partial, rank)

• Variance-based methods

• Surrogate methods

• Part 2: 
– Surrogate Methods

• Stochastic Expansion:  Polynomial Chaos/Stochastic Collocation

• Gaussian Process Models

– Epistemic/Aleatory Distinction

• History 

• Approaches
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This time (November 2011)
Uncertainty Quantification:  Part 3

• Part 3:
– Reliability Methods

• Limit state surface

• Optimization approaches (local/global)

– Kelly/Swiler analysis of surrogates

– Next steps

• Reliability methods

• Importance sampling
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Safety Factors
• Much of the early work on engineering reliability comes from the civil 

engineering field, concerned with reliability of structures

• In this lecture, the notation of L = load, R = resistance, we want L < R

• Nominal safety factor:  SF = Rnom/Lnom, where Rnominal is usually a 
conservative value (e.g. 2-3 standard deviations below the mean) and 
Lnominal is also a conservative value (2-3 standard deviations above the mean)

• Problem:  the nominal safety factor may not convey the true margin of 
safety in a design
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Probability of Failure

In practice, this integration is hard to perform and doesn’t always 
have an explicit form, except in some special cases
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Probability of Failure
• Special Case:  R~N(R, R) , L~N(L, L)

• Define Z = R – L

• There are also modifications which treat multiple loads, or 
lognormal distributions (Haldar and Mahadevan)
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Reliability Analysis

• Assume that the probability of failure is based on a specific 
performance criterion which is a function of random variables, denoted 
Xi.

• The performance function is described by Z: 

Z = g(X1, X2, X3 , …, Xn)

• The failure surface or limit state is defined as Z = 0.  It is a boundary 
between safe and unsafe regions in a parameter space.  

• Now we have a more general form of Pfailure
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Reliability Analysis

• Note that the failure integral has the joint probability density function, f, 
for the random variables, and the integration is performed over the 
failure region

• If the variables are independent, we can replace this with the product of 
the individual density functions

• In general, this is a multi-dimensional integral and is difficult to evaluate.  

• People use approximations.  If the limit state is a linear function of the 
inputs (or is approximated by one), first-order reliability methods (FORM) 
are used. 

• If the nonlinear limit state is approximated by a second-order 
representation, second-order reliability methods (SORM) are used.
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Mean Value Method (FOSM)
• Often called the First-Order Second-Moment (FOSM) method or the Mean 

Value FOSM method

• The FOSM method is based on a first-order Taylor series expansion of the 
performance function

• It is evaluated at the mean values of the random variables, and only uses 
means and covariances of the random variables

• The mean value method only requires one evaluation of the response function 
at the mean values of the inputs, plus n derivative values if one assumes the 
variables are independent  n+1 evaluations in the simplest approach 
(CHEAP!)
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Mean Value Method (FOSM)

• Introduce the idea of a safety index  (think of this as how far in “normal 
space” that your design is away from failure)

• FOSM does not use distribution information when it is available

• When g(x) is nonlinear, significant error may be introduced by neglecting 
higher order terms in the expansion

• The safety index fails to be constant under different problem 
formulations

• It can be very efficient.  When g(x) is linear and the input variables are 
normal, the mean value method gives exact results!  
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Most Probable Point Methods

• Transform the uncertainty propagation problem into 
an optimization one:  first transform all of the non-
normal random variables into independent, unit 
normal variables.  Then, find the point on the limit 
state surface with minimum distance to the origin.  

• The point is called the Most Probable Point (MPP).  
The minimum distance, , is called the safety index 
or reliability index.

• X is often called the original space, U is the 
transformed space.



MPP Search Methods

G(u)

Failure
region



Uncertainty Transformations

• Want to go from correlated non-normals
to uncorrelated standard normals (u)

• Several methods
– Rosenblatt

– Rackwitz-Fiesler

– Chen-Lind

– Wu-Wirshing

– Nataf

• Rosenblatt:  First transform a set of 
arbitrarily, correlated random variables 
X1…Xn to uniform distributions, then 
transform to independent normals.

• Nataf:  First transform to correlated 
normals (z), then to independent 
normals u.  L is the Cholesky factor of 
the correlation matrix
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MPP Search Methods

Reliability Index 
Approach (RIA)

Find min dist to G level curve
Used for fwd map z  p/

Performance Measure
Approach (PMA)

Find min G at  radius
Used for inv map p/ z



Reliability Algorithm Variations:
First-Order Methods

AMV:
u-space AMV:

AMV+:
u-space AMV+:

FORM:  no linearization

Limit state linearizations

Integrations

1st-order:

Warm starting

When: AMV+ iteration increment, z/p/ level increment, or design variable change

What: linearization point & assoc. responses (AMV+) and MPP search initial guess

MPP search algorithm

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)



2nd-order local limit state approximations
• e.g., x-space AMV2+:

• Hessians may be full/FD/Quasi
• Quasi-Newton Hessians may be BFGS

G(u)

Failure
region

2nd-order integrations

curvature correction

Synergistic features:

Hessian data needed for 
SORM integration can enable
more rapid MPP convergence

[QN] Hessian data accumulated during 
MPP search can enable more accurate 
probability estimates

Reliability Algorithm Variations:
Second-Order Methods



G(u)

Failure
region

Multipoint limit state approximations
• e.g., TPEA, TANA:

Reliability Algorithm Variations:
Second-Order Methods

Importance Sampling
Use of importance sampling to calculate prob of failure: 

•After MPP is identified, sample around MPP to estimate Pf more accurately



Reliability Algorithm Variations:
Sample Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

43 z levels 43 p levels



Efficient Global Reliability 
Analysis (EGRA)

True fn

GP surrogate

Expected
Improvement

From Jones, Schonlau, Welch, 1998

• Address known failure modes of local reliability methods:
– Nonsmooth: fail to converge to an MPP
– Multimodal: only locate one of several MPPs
– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs
– Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)



Efficient Global Reliability 
Analysis (EGRA)

• Address known failure modes of local reliability methods:
– Nonsmooth: fail to converge to an MPP
– Multimodal: only locate one of several MPPs
– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs
– Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

10 samples 28 samples

explore

exploit



Efficient Global Reliability 
Analysis (EGRA)

Mean Variance Expected Feasibility

+

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment
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Surrogate Exercise

• MAAP data provided by Rick Sherry

• 7 inputs, PCT output

• Example Data Points:
1.743111057 182799.5467 0.955967773 0.988974257 12214102556 1.941626994 0.542751523 4040

5.462543971 210542.5794 0.923124154 0.992020895 7328733829 2.591832158 1.378279799 626.65

2.674710746 237825.6961 1.020738132 0.951296806 12324543052 0.939464609 1.700512893 2058.8

3.329309419 208744.735 0.883249726 1.021922709 12334040643 1.330167851 0.291383003 4040

1.715799521 183364.9316 1.04383727 0.963999398 12175622386 1.771614952 0.266097902 4040

2.304336794 188262.2584 0.984127727 1.048833468 12200355093 3.053181734 0.459711989 4040

6.585511973 209736.5804 1.041076319 1.024155978 12136328119 2.05280482 1.123557699 4040

4.293919875 219027.6166 0.904034142 1.010287086 11075618901 2.415474448 0.687599633 4040

2.106734623 232051.7923 0.992982254 1.000366752 11325441596 4.294646801 1.293444688 2332.05

2.262055459 203886.1326 1.018127502 0.968931448 5366045950 3.392389074 0.926106795 624.85
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Surrogate Exercise

DAKOTA methods not able to match well
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Surrogate Exercise

Treed Gaussian Process (TGP) does better because it 
generates separate GPs in different regions of space:
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Surrogate Exercise

Overall RMSE error metrics when building on 700 
points, predicting on 300: 

TGP and kriging very similar…CDFs better with TGP. 

Still need to investigate some issues (discuss).
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Poly NN Kriging Mars TGP 

398.88 368.86 300.92 374.85 300.00



DAKOTA Sensitivity Analysis

• Parameter study, design and analysis of computer experiments, and general 
sampling methods (heavy global focus):

– Single and multi-parameter studies (grid, vector, centered)

– DDACE (grid, sampling, orthogonal arrays, Box-Behnken, CCD)

– FSUDACE (Quasi-MC, CVT)

– PSUADE (Morris designs)

– Monte Carlo, Latin hypercube sampling (with correlation or variance analysis, 
including variance-based decomposition)

– Mean-value with importance factors

– Stochastic expansion (PCE/SC) yielding Sobol indices

• DAKOTA outputs can include correlations, main/total effects, interaction 
effects; tabular output can be analyzed with any third-party statistics package

• Determine main effects and key parameter interactions

• In SA, typically no distribution assumption



DAKOTA UQ

• Techniques for propagating aleatory uncertainty (variables characterized by 
probability distributions) through models:

– Latin hypercube (and other) sampling

– Local reliability methods (mean value, MPP search, FORM, SORM)

– Global reliability methods (EGRA)

– Non-intrusive stochastic expansion methods
(polynomial chaos and stochastic collocation)

– Reliability and importance sampling help with low probability events

• Methods for epistemic uncertainty (variables characterized by intervals or 
basic probability assignments):

– Local/global interval estimation

– Local/global Dempster-Shafer evidence theory (belief/plausibility)

– “Second-order” probability via sampling

• DAKOTA can output  moments, probability of response thresholds, reliability metrics, 
response corresponding to a metric, etc.



Extra Slides
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Optimization under Uncertainty

• Design for reliability is a classic OUU problem, 
often called RBDO (reliability-based design 
optimization)

• Nice properties in that the reliability formulation 
itself generates quantities such as derivatives of 
performance function with respect to uncertain 
variables

• Variety of approaches (next page) 

• Simplest case:  think of a “nested” algorithm, with 
an optimization outer loop and sampling inner 
loop

Design
Optimization

Sampling

simulation



RBDO Algorithms

Bi-level RBDO
• Constrain RIA z  p/ result

• Constrain PMA p/  z result

RIA
RBDO

PMA
RBDO

KKT
of MPP

Unilevel RBDO:
• All at once: apply KKT conditions of 

MPP search as equality constraints
• Opt. increases in scale (d,u)
• Requires 2nd-order info for 

derivatives of 1st-order KKT

1st-order 
(also 2nd-order w/ QN)

Sequential/Surrogate-based RBDO:
• Break nesting: iterate between opt & UQ until target is met.

Trust-region surrogate-based approach is non-heuristic.



Mean Value Method (FOSM)

Some extensions/notation
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p = probability of failure
= reliability index
z = response level


