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Abstract:

In many analyses of wind turbine blades, the effects
of mean stress on the determination of damage in
composite blades are either ignored completely or
they are characterized inadequately. Mandell, et al [1]
have recently presented an updated Goodman diagram
for a fiberglass material that is typical of the materials
used in wind turbine blades. Their formulation uses
the MSU/DOE Fatigue Data Base [2] to develop a
Goodman diagram with detailed information at
thirteen R-values. Using these data, linear, bi-linear
and full Goodman diagrams are constructed using
mean and “95/95” fits to the data. The various
Goodman diagrams are used to predict the failure
stress for coupons tested using the WISPERX
spectrum [3]. Three models are used in the analyses.
The first is the linear Miner’s rule commonly used by
the wind industry to predict failure (service lifetimes).
The second is a nonlinear variation of Miner’s rule
which computes a nonlinear Miner’s Sum based upon
an exponential degradation parameter. The third is a
generalized nonlinear residual strength model that also
relies on an exponential degradation parameter. The
results illustrate that Miner’s rule does not predict
failure very well. When the mean Goodman diagram
is used, the nonlinear models predict failures near the
mean of the experimental data, and when the 95/95
Goodman diagram is used, they predict the lower
bound of the measured data very well.
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1 Introduction

In many analyses of wind turbine blades, the effects
of mean stress on the determination of damage in
composite blades are either ignored completely or
they are characterized inadequately. Mandell, et al [1]
have recently presented an updated characterization of
the fatigue properties for fiberglass materials that are
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typically used in wind turbine blades. Their
formulation uses the MSU/DOE Fatigue Data Base
[2] and a three-parameter model to describe the mean
S-N behavior of the fiberglass at thirteen different R-
values. The R-value for a fatigue cycle is defined as:

R = min , (1)

where o, iS the minimum stress and oyay is the
maximum stress in a fatigue stress cycle (tension is
considered positive and compression is negative).

The results are typically presented as a Goodman
diagram in which the cycles-to-failure are plotted as a
function of mean stress and amplitude along lines of
constant R-values. This diagram is the most detailed
to date, and it includes several loading conditions that
have been poorly represented in earlier studies.

This formulation allows the effects of mean stress on
damage calculations to be evaluated. Using field data
from the Long term Inflow and Structural Test (LIST)
program, Sutherland and Mandell [4] have shown that
the updated Goodman diagram predicts longer service
lifetimes and lower equivalent fatigue loads than
previous analyses. This prediction is a direct result of
the lower damage predicted for the high-mean-stress
fatigue cycles as a result of using the updated
Goodman diagram.

To validate this result in a controlled set of
experiments, the spectral loading data of Wahl et al
[5] is evaluated using the updated Goodman diagram.
These data are from coupons that were tested to
failure using the WISPERX spectrum [3]. Six
formulations for the S-N behavior of fiberglass are
used: the first three use mean fits of the S-N data to
construct a linear, bi-linear and full (13 R-values)
Goodman diagram and the second three using “95/95”
fits to construct similar diagrams (the 95/95 fit implies
that, with a 95 percent level of confidence, the
material will meet or exceed this design value 95



percent of the time). These formulations of the
Goodman diagram are used with Miner’s Rule and
two non-linear residual strength models to predict
the measured lifetime of the coupons.

2 Fatigue Data

The DOE/MSU fatigue database® contains over
8800 test results for over 130 material systems [2].
The database contains information on composite
materials constructed from fiberglass and carbon
fibers in a variety of matrix materials that are
typically used in wind turbine applications.
References 2, 6 and 7 provide a detailed analysis of
data trends and blade substructure applications.

Recent efforts to improve the accuracy of spectrum

loading lifetime predictions for fiberglass
composites have led to the development of a more
complete Goodman diagram than previously
available.

2.1 Constant Amplitude Data

The material under consideration here is a typical
fiberglass laminate that is called DD-16 in the
DOE/MSU Database. This laminate has a
[90/0/+45/0]s configuration with a fiber volume
fraction of 0.36. The 90° and 0° plies are D155
stitched unidirectional fabric, the +45° plies are
DB120 stitched fabric, and the resin is an ortho-
polyester. Mandell et al [2, 5] described the test
methodologies used to obtain the data cited here.
This material has a static tensile strength of 625
MPa and a compressive strength of 400 MPa. The
95/95 strength values are 510 MPa and 357 MPa,
respectively. These strength values were
determined at a strain rate similar to that of the
fatigue tests.

For illustrative purposes, the constant amplitude
data at R = -1, 0.1 and 10 are shown in Fig. 1. A
complete set of the data for all thirteen R-values is
available in Refs. 1 and 2.

2.1.1 Curve Fits
2.1.1.1 Mean Fit

As presented by Mandell et al [1], the constant

amplitude data at 13 R-values were fit with a three-
parameter equation of the following form:

2

The database is available on the SNL website:

http://www.sandia.gov/wind/.
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Figure 1: S-N Curves at Three R-Values for Database
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where o is the maximum applied stress, oo is the
ultimate tensile or compressive strength (obtained at a
strain rate similar to the 10 Hz fatigue tests), N is the
mean number of constant-amplitude cycle to failure,
and a, b, and c are the fitting parameters. The results
in the Table and

of these fits are summarized
illustrated in Fig. 1.



The parameters in these curve fits were selected to
provide the best fit to the experimental data and to
provide a 10° cycle extrapolation stress which was
within ten (10) percent of the extrapolation from a
simple two-parameter power law fit to the fatigue
data having lifetimes greater than 1000 cycles [1].

2.1.1.2 95/95Fit

Using the techniques cited in Ref. 8 and 9 and the
“Standard Practice” cited in Ref. 10, the 95/95
curve fits were also determined for these data. The
95/95 fit implies that, with a 95 percent level of
confidence, the material will meet or exceed this
design value 95 percent of the time.

For these calculations, we use a one-sided tolerance
limit, which has been computed and tabulated for
several distributions by a number of authors.
Typically, these tabulations take the following form:

X=X -y, X, ®

where X and Xx. are the sample average and the
standard deviation, respectively. The parameter ¢y,
is tabulated as a function of the confidence level (1-
o), probability y and the number of data points n.

For fatigue fits, the independent variable is the stress
o and the dependent variable is the logarithm of the
number of cycles to failure N. Thus, the sample
average is the log;o(N) determined from Eq. 2 and the
standard deviation X is given by:
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Thus, the number of cycles to failure for the 95/95 fit
is given by:

IOglO[NQS/QS] = |0910[N] - |0910[No] ' (®)

where log;o[N,] is tabulated for each of the thirteen R-
values in the Table.

As shown in Fig. 1, this technique works well for the
fatigue data. However, this technique does not yield
the 95/95 static strength that is determined from static
strength data, see the dotted lines in the figure. To
rectify this situation, the 95/95 fatigue curve was
“faired” into the measured 95/95 static strength, as
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Table: Parameters for the Thirteen R-Values for
Material DD16 and for Small Strands

R-Value Model 95/95
(Equation 2) (Equation 5)
a b c 10910(No)

1.1 0.06 3 0.05 4.43
1.43 0.06 3 0.15 1.85
2 0.06 4 0.25 2.67
10 0.1 4 0.35 0.87
-2 0.01 4 0.55 0.59
-1 0.02 3 0.62 0.53
-0.5 0.45 0.85 0.25 0.64
0.1 0.42 0.58 0.18 0.70
0.5 0.075 2.5 0.43 0.79
0.7 0.04 2.5 0.45 0.65
0.8 0.035 2.5 0.4 0.79
0.9 0.06 2.5 0.28 1.20
1* 0.21 3 0.14 3.03

*Assumes a frequency of 10 Hz.

shown by the solid lines in the figure [11].

2.1.2 Goodman Diagrams

For the analysis of S-N data, the preferred
characterization is the Goodman diagram. In this
formulation, the cycles-to-failure are plotted as
functions of mean stress and amplitude along lines of
constant R-values. Between R-value lines, the
constant cycles-to-failure plots are typically, but not
always, taken to be straight lines.

Various Goodman diagrams for the DD-16 fiberglass
composite are shown in Figs. 2 and 3. These figures
are presented in increasing level of knowledge about
the S-N behavior of the fiberglass composite material.
Figures 2a and 3a illustrate the “linear” Goodman
diagram. In these two figures, the diagrams are
constructed using the static strength values for the
tensile and compressive intercepts of the constant life
curves with the horizontal axis of the diagram and the
S-N data for the R = -1 (see Fig. 1a) for the intercepts
of the vertical axis. The “bi-linear” Goodman
diagrams, shown in Figs. 2b and 3b, are constructed
by adding the R = 0.1 S-N data (see Fig. 1b) to the
diagram. The “full” Goodman diagrams, shown in
Figs. 2c and 3c, are constructed by adding the data for
the remaining eleven R-values.

2.1.2.1 Mean Goodman Diagrams

The Goodman diagrams shown in Fig. 2 were
constructed using Eq. 2 and the information in the
Table. Figures 2a and 2b, use the mean static
strengths for the intercepts of the constant-life curves
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with the mean stress (horizontal) axis. Fig. 2c departs
from traditional formulations in that the intercept for
tensile mean axis (R = 1) is not the mean static
strength. Rather, the intercept is a range of values
based upon time-to-failure under constant load. These
data were converted to cycles by assuming a
frequency of 10 cycles/second, typical of the cyclic
tests. Nijssen et al [12] have hypothesized a similar
formulation previously.

2.1.2.2 95/95

The Goodman diagrams cited in Fig. 3 were
constructed using Egs. 2 and 6, the information in the
Table, and the fairing of the S-N curves into the 95/95
static strengths. Again, the tensile intercept in Fig. 3c
is a range of values based upon time under load.

2.1.2.3 Comparison

The Goodman diagrams presented in Figs. 2 and 3 are
compared with one another in Figs. 4 and 5.

As shown in Fig. 4, the general shapes of the various
Goodman diagrams are unchanged by conversion
from the mean values to the 95/95 values.

The significant differences in the Goodman
formulations are highlighted in Fig. 5. The area near
the R = -1 axis is very important. This is the region
where the fiberglass composite is in transition
between compressive and tensile failure modes and
many of the stress cycles on a wind turbine blade have
an R-value near —1. The effect of the mode change on
fatigue properties is illustrated by the direct
comparison of the constant life curves for the three
Goodman diagrams. In Fig. 5, the constant life curves
for the three formulations of the Goodman diagram at
10° cycles are compared to one another. Four distinct
regions of comparison are noted: (1) the region of
relatively high compressive mean stress (1< R < oo,
i.e., essentially the region to the left of R = 10); (2) the



region of relatively low compressive stress (—o < R <
-1; i.e., essentially the region between R =10 and R =
1); (3) the region of relatively low tensile stress (-1 <
R < 0; i.e., essentially the region between R = -1 and
R = 0.1); and (4) the region of relatively high tensile
stress (1 < R < 0; i.e., essentially the region to the
right of R = 0.1). In the first and third regions, the
three formulations lie close to one another. Thus,
each of the three formulations will predict
approximately the same damage rate for the stress
cycles in this range. For the fourth region (high
tensile stress) the database formulation is below the
linear and bi-linear formulations. Thus, the database
formulation is more severe (i.e., it produces a shorter
predicted service lifetime) than the other two. And,
finally, for the second region (low compressive
stress), the database formulation is above the linear
and bi-linear formulations. Thus, it is less severe.
Regions 2 and 3 are where the composite is in
transition between compressive and tensile failure
modes.

2.2 WISPERX Spectral Data

Wahl et al [5] have conducted spectral loading tests of
coupons using the WISPERX spectrum [3]. The
WISPERX spectrum is the WISPER spectrum with
the small amplitude fatigue cycles removed. The
WISPERX spectrum, see Fig. 6, consists of over
25,000 peaks-and-valleys (load reversal points) or
slightly over 10* cycles. The original formulation of
the spectrum is in terms of load levels that vary from
0 to 64 with zero at load level 25. When normalized
to the maximum load in the spectrum, the load levels
take the values shown in the figure. The minimum
load level is —0.6923 and, of course, the maximum
load level is 1.0.

Figure 6 illustrates that the WISPERX spectrum is
primarily a tensile spectrum with a relatively small
number of compressive cycles.

3 Damage Models

Typically, the wind industry uses Miner’s rule to
estimate damage under spectral loads. Many other
models for damage estimation have been proposed.
Two, which are investigated here, are the nonlinear
Miner’s Sum proposed by Hwang et al [13] and the
nonlinear residual strength model proposed by Yang
et al [14]. Here, we will refer to the latter model as
the “generalized” nonlinear model. Wahl et al [5]
provides a complete description of these models.

3.1 Miner’s Rule

Miner’s rule defines the damage D, predicted for a
time interval T, as
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where n is the number-of-cycles, N is the number-of-
cycles to failure and o describes the stress level of the
fatigue cycle. For our case, where we will be using
the Goodman diagrams to determine N, o is divided
into two components: the mean stress o, and the
amplitude o of the stress cycle.

Failure occurs when D equals one. The predicted
service lifetime L, is the time T required for the
damage D (T) to accumulate to a value of one.

3.2 Residual Strength Models
3.2.1 Nonlinear Miner’s Sum Model

Miner’s rule may also be used to describe the residual
strength of composites, see the discussion by Wahl et
al [5]. In its general form, the nonlinear Miner’s sum
model has the following form:

| —1.% ﬂv , 7
|:00:|i ' JZl:|:NJ':| "

where [or/o,] is the ratio of the residual strength to
the static strength o, after step i and the exponent v is
the nonlinear degradation parameter. As discussed in
3.1, N; is evaluated at the implied stress state (o, oa)
of n;.

Failure occurs when the current value of the residual
strength (oR); is exceeded by the (i +1) cycle, see the
discussion in 3.2.3.

3.2.2 Generalized Nonlinear Model

A generalized nonlinear residual strength model, also
see the discussion by Wahl et al [5], takes the form:
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where n; is the current number of stress cycles and
(ni.1)* is the number of previous equivalent cycles
determined for the current stress level. The previous
equivalent cycles is the number of cycles which would
give the residual stress ratio [or/c,]; if cycled only at
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If Eq. 8 is rewritten as:
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For this analysis, we have computed the residual
strength sequentially using Egs. 8 through 11 for
each half-cycle of the sequence.

3.2.3 Residual Strength Ratio

As defined by Egs. 7 and 9, the residual strength of
the composite after i steps for both residual strength
models is

(0a)n = {“—} (o), - (12

O,

Failure occurs when the maximum stress of the next
cycle [oi+1]muax €xceeds the current tensile residual
strength or the minimum stress of the next cycle
[oisdmin €Xceeds the current compressive residual
strength:

1 I:(GR)i+1]Tensile ’

or (13)
[O-i’fl ]MIN s - [(GR )i+1 j|(:ompressive

While Eq. 12 is rather obvious, this equation implies
that the residual tensile and compressive strength
are being reduced proportionally, i.e., the ratio of
the residual stress to the static strength is a

p. 7

Maximum Stress Level, MPa

monotonically decreasing function.

4 Damage Predictions

The models cited in Section 3 are used here to predict
the failures of the coupons tested under the WISPERX
load spectrum discussed in Section 2. The
experimental cycles-to-failure, as a function of the
maximum stress in the spectrum, for material DD-16
are shown as the discrete data points in Fig. 7 [5].

4.1 Miner’s Rule

The predictions for Miner’s rule using the three mean-
value Goodman diagrams (see Fig. 2) are shown in
Fig. 7a. The linear Goodman diagram predicts the
longest lifetimes (cycles-to-failure) and the full
Goodman diagram predicts the shortest lifetimes.
Notice that the mean fits do not pass through the mean
of the data: rather, all three formulations predict
service lifetimes that are significantly higher than the
measured lifetime.

600

= Linear Goodman Diagram
= = Bi-Linear Goodman Diagram

500

Full Goodman Diagram

Experimental Data

400

300 |
200 | ]

100
Number of WISPERX Passes: 1 2 10 100 1000

0 L L L L
2 3 4 5 6 7 8

Cycle to Failure

ig. 7a: Failures Predicted Using the Mean Full Goodman

Diagram

600

© - Linear Goodman Diagram
[a
S 500 | = == Bi-Linear Goodman Diagram
—_ Full Goodman Diagram
QL .
2 400 | Experimental Data
|
a
@ 300
“
7] -
IS 200 am
3
E w0t
é Number of WISPERX Passes: 1 2 10 100 1000
S 0 o — + s +
2 3 4 5 6 7 8

Cycle to Failure

Fig. 7b: Failures Predicted Using the 95/95 Full Goodman

Diagram

Fig. 7: Comparison of Experimental Data to Predicted
Failure using Linear Miner’s Rule



o
=3
S

Miner's Rule
= = Miner's Sum 0.95
L

1

=]

S
T

Experimental Data

N

o

S
T

N
=3
1S}

T
'
/.
»
i
| ]
O

=

o

=}
T

Number of WISPERX Passes: 1 2 10 100 1000

Maximum Stress Level, MPa
w
S

o

2 3 4 5 6 7 8

Cycle to Failure

Fig. 8a: Failures Predicted Using the Mean Full
Goodman Diagram

600

Miner's Rule
<+ Miner's Sum 0.95
B Experimental Data

500

400

300

200

100 -

Maximum Stress Level, MPa

Number of WISPERX Passes: 1 2 10 100 1000
0 n n n n n
2 3 4 5 6 7 8

Cycle to Failure

Fig. 8b: Failures Predicted Using the 95/95 Full
Goodman Diagram

Fig. 8: Comparison of Experimental Data to
Predicted Failure using the Miner’s Sum Residual
Strength Models

The predictions for Miner’s rule using the three 95/95
Goodman diagrams (see Fig. 3) are shown in Fig. 7b.
Again, the linear Goodman diagram predicts the
longest lifetimes (cycles-to-failure) and the full
Goodman diagram predicts the shortest lifetimes.
This comparison illustrates that the linear 95/95
Goodman diagram predicts service lifetimes that are
higher than the measured lifetime, and, the full 95/95
Goodman diagram predicts lifetimes near the mean of
the experimental data.

Thus, Miner’s rule does not predict the measured
lifetimes very well. Even the 95/95 Goodman
diagrams are non-conservative in that they predict
longer service lifetimes than those measured in the
tests using the WISPERX load spectrum. At best, the
full 95/95 Goodman diagram predicts the mean of
measured data.

4.2 Residual Strength Models

The two nonlinear residual strength models discussed
above were used to predict the lifetimes of the
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Fig. 9: Comparison of Experimental Data to Predicted
Failure using the Generalized Residual Strength Models

coupons subjected to spectral loading using the

WISPERX spectrum. The predictions of these models

are summarized in Figs. 8 and 9.

4.2.1 Nonlinear Miner’s Sum Model

Note the slopes of the predicted lifetime curves shown
in Fig. 7 are consistent with the data, but they are
shifted to the right of the data. The nonlinear Miner’s
sum model described in Eq. 7 shifts the prediction to

the left. Using a trial-and-error method, a value of v =

0.95 was chosen as the best fit to the experientially
measured lifetime data using the 95/95 Goodman
diagram. The predictions for this residual strength
model are shown in Fig. 8.

As shown in this figure, the lifetime curves predicted

by Miner’s rule with the full Goodman diagrams have
been shifted to the left by approximately a half-decade
These predictions are in very good

predicted lifetimes are near the mean of the data, see
Fig. 8a, when the mean full Goodman diagram is used
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and are at or to-the-left-of the measured lifetimes
when the 95/95 full Goodman diagram is used, see
Fig. 8b.

4.2.2 Generalized Nonlinear Model

The predictions for the generalized nonlinear residual
strength model using the mean and the 95/95 full
Goodman diagrams (see Fig. 3c and 4c) are shown in
Fig. 9. As shown in this figure, for v = 1, the
prediction lies essentially on top of the full-Goodman
Miner’s rule prediction.

Using the value chosen by Wahl et al [5] of v = 0.265,
the predictions are in general agreement with the data.
Namely, the predicted lifetimes are near the mean of
the data when the mean full Goodman diagram is
used, see Fig. 9a, and are at or to-the-left-of when the
95/95 full Goodman diagram is used, see Fig. 9b.
Thus, the generalized nonlinear model with an
exponent of 0.265 is also a good predictor of the
measured lifetime when used with the full Goodman
diagram.
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Fig. 11b: Failures Predicted Using the 95/95 Full
Goodman Diagram

Fig. 11: Residual Strength using the Generalized
Nonlinear Model

Note the steps in the predicted lifetime, at
approximately 425 MPa and 5x10° cycles in Fig. 9a
(the beginning of the plot), and at approximately 400
MPa and 10* cycles in Fig. 9b. These steps are a
direct result of the WISPERX spectrum. As shown in
Fig. 6, this load spectrum contains one very large
tension cycle after approximately 5000 cycles. This
cycle is the cause of failure at both levels of the cited
steps: the predicted failure in Fig. 9a occurs at the
first occurrence of this relatively large cycle, and it
occurs at the second occurrence in Fig. 9b. For this
failure, the residual strength is progressively
decreasing, until it encounters this relatively large
cycle that exceeds the current residual strength of the
composite. If this plot had been constructed with
finer resolution, other, similar steps would be present.

4.2.3 Residual Strength Comparisons

Figures 10 and 11 illustrate the predicted residual
failure strength of the composite using the linear
Miner’s rule and the two nonlinear residual strength
models.



The major difference between the three models is
illustrated in Fig. 11. As shown in this figure, the loss
of residual strength as fatigue cycles accumulate is
very different for the three models. For Miner’s rule,
the composite retains its strength for most of its
lifetime, and, as failure approaches, its residual
strength drops precipitously.  For the nonlinear
Miner’s sum, with v = 0.95, the residual strength
curve maintains the same form, but is shifted to the
left, i.e., it predicts a shorter lifetime. For the
generalized nonlinear residual strength model with v
= 0.265, the residual strength starts decreasing almost
immediately and continues to decrease until failure
occurs.

5 Concluding Remarks

The updated Goodman diagrams presented here have
been developed using the MSU/DOE Fatigue Data
Base [2]. The six diagrams constructed here are based
upon S-N data obtained at thirteen different R-values.
Separate Goodman diagrams were constructed using
both the mean and the 95/95 representations of the
data. The effects of these improved representations of
the behavior of fiberglass composites were illustrated
using coupons tested to failure using the WISPERX
load spectrum. This load spectrum is primarily a
tensile load spectrum. These comparisons illustrate
that when a Miner’s rule damage criterion is used the
mean fits of the data do not predict failure very well,
while the 95/95 fits predict failures near the mean of
measured data. Both a nonlinear Miner’s sum model
and a generalized nonlinear residual strength model,
when used with the 95/95 full Goodman diagram,
predict the lower bound of the measured data very
well, and when used with the mean full Goodman
diagram, predict the mean lifetime very well.
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