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Improved materials required for next generation of 
flywheels to meet future needs.

A 20 MW flywheel energy storage resource 
accurately following a signal

All flywheels have similar issues – the ‘need for speed’ - kills!
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Problem:
• Small changes in the AC grid necessitates rapid and
exact changes for energy leveling.
• problem exacerbated upon introduction of alternative
energies (i.e., solar, wind, etc.).

Flywheels:
• clean, rapid, and efficient method for energy leveling.
• 8 - 16,000 rpm (Mach 2) = 25 kWh
• rugged, reliable complex instruments:

rim composed of 3 components: carbon, glass, glue (resin)

$/kWh

Approach:
• obtain more extractable energy by spinning flywheels faster
• to meet the new demands, improved materials necessary
• weak link studied in this project:

- Rim : transverse failure or ‘hula-hooping’ noted
- focused on using nanocomposite materials
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Energy is stored in the rotor as kinetic energy, or 
more specifically, rotational energy:

ω  = angular velocity, I  = moment of inertia of the 
mass about the center of rotation

Ek = ½ • I • 2

The amount of energy that can be stored is 
dependent on:  

st = tensile stress on the rim, = density, r is the 
radius, ω is the angular velocity of the cylinder. 

st =  • r2 • 2

Goal: to explore nanocomposites as the rim material to 
improve flywheel performance.

Loading (wt %): 4       Al2Si2O5(OH)4:  23% storage, 113% flexural strength,1

3                    Al2O3: 75% tensile strength,2

2                     SiO2:         3% hardness, 57% impact, 65% flex, 88%, tensile strength,3

2                       ZrP: 52% Youngs Modulus, 14% tensile strength, 6% fracture toughness,4

0.4% CNT-2%  ZrP:       41% Youngs Modulus, 55% tensile strength.5

Low load levels of nanoparticle fillers have led to dramatic property changes

Small % changes in the 
flywheel  spin speed leads to

magnified energy storage

16,000 rpm 20,000 rpm
25 kWh                   39 kWh

of extractable energy

25 kWh/100 kW per unit = 21 kg TNT



Overall Objectives: Approach based on defining ‘state-of-
the-art’ system and elucidating nanoparticle filler effects
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Team determined approach and tasks assigned based on expertise

• Increasing transverse strength 
is the pressing issue.

• Incorporation of suggested nanomaterials and/or resins will represent verification of our approach



Test ‘coupons’ reveal a good model system in-place: 
C-fiber/matrix interface weak link

Filament hoop wound glass- and 
carbon-fiber tubes*

3 components of rim:  
i.  carbon-fiber, 

ii.  glass fiber, 
iii. Resin

(a) Standard
(b) Epoxy anhydride
(c) Epoxy anhydride + catalyst
(d) Epoxy amine

*special thanks to AFRL 

Glass Fiber Test Carbon Fiber Test

(a)         (b)        (c)         (d) (a)         (b)        (c)         (d) 

Anhydride resin systems do not show much variation
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TiO2 HYBR-synthesized nanofiller selected based on high 
aspect ratio and large scale production capabilities
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-potential used as diagnostic tool for 
detecting/determining changes on surface 

of nanomaterials

Matrix mechanical properties controlled by intrinsic resin 
properties:  unfunctionalized TiO2 nanomaterials have little impact



Tailored surface chemistry of TiO2 nanomaterials 
demonstrated by -potential measurements.



Summary
Nanomaterials:

• Generated high aspect ratio TiO2 nanomaterials on the large scale: HYBR route,
• Varied functionalized nanoparticles successfully generated (-potential),

Nanomaterials/Resin:

• ‘naked’ nanoparticles at low loadings have little effect on solid resin matrix’s
compression behavior.

Coupons:

• System produced that is in agreement with real world effort (High Quality
Model system!).

• Test of glass- and carbon-fiber in variety of resin matrices.
• The coupons generated, indicate carbon-fiber is weak link.
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Aims (FY11/FY12) for Improved Flywheel Materials

• Synthesize large quantities of high quality nanomaterials
+ naked
+ functionalized
+ alternative shapes/compositions/mixtures

• nanoceramic materials characterization.
+ potential measurements
+ Dispersibility in resin systems
+ stability measurement to improve dispersion.

• Determine general setup with resin variations.
+ SEM of fractured composites
+ interlaminar strength
+ Nanomaterial incorporation changes

• Functionalization of components
+ carbon fiber

- organic
- inorganic

+ nanomaterials
+ shape



Dissemination of results has led to many contacts (esp. from 
last ESS meeting) - not necessarily flywheel researchers 
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