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Outline and Objectives
s—Demonstrate performance test method for —

evaluating compatibility of pressure vessel with
gaseous hydrogen

e Determine failure characteristics of
commercial pressure vessels

- Do the pressure vessels leak-before-burst when
cycled with gaseous hydrogen?

e Compare full-scale testing for steel (type 1)
pressure vessels for gaseous hydrogen with
engineering design methods

- Fracture mechanics-based design
- Stress-life design

e Described method proposed in CSA standard

Sandia
National
Laboratories



Fracture and fatigue resistance of steels is
degraded by exposure to hydrogen

” N

Motivation:

innovative applications are
expanding design space beyond
engineering experience

>10,000 refueling cycles are
i anticipated for hydrogen-

Hydrogen-induced failure of powered industrial trucks
transport cylinder
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Pressure cycle designed for
accelerated testing

Consider 350 bar gaseous hydrogen fuel system
e Nominal pressure of 35 MPa
o Allow 25% over-pressure during rapid filling
e Minimum system pressure of ~3 MPa

Pressure cycle for testing
« maximum P =43.5 MPa
e 2-minute hold at maximum P
e rapid depressurization to 3 MPa
e 30-second hold at minimum P
e pressurization time ~ 2 min

4 to 5 minute cycle time
(~300 cycles per day)
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Closed-loop gas-handling system capable of
simultaneously pressurizing 10 pressure vessels

Pressure vessels in

secondary containment
behind blast door %

Accumulators
(behind compressor)

Pressure cycle

High-volume diaphragm compressor @ﬁaggial
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Free volume within vessels reduced
to facilitate pressure cycling

Bladder used to isolate PV
surface from filler material
Epoxy and steel used as filler
Volume reduction 90-95%

Gas quality inspected
periodically
typical analysis
* oxygen <2 ppm
* hydrocarbons <5 ppm
« water <5 ppm

Sectioned pressure vessel showing vessel, bladder,
steel ball bearings and epoxy
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Pressure vessels consistent with design rules
for transportable gas cylinders

Two pressure vessel designs from different
manufacturers

 Nominal hoop stress at P = 43.5 MPa
- T1 design: ~340 MPa
- T2 design: ~305 MPa

Steel for both pressure vessels designs: 4130X
e Quench and tempered, 1 wt% Cr - 0.25 wt% Mo
o UTS for transport applications: 700 to 900 MPa

- T1 design: ~750 MPa
- T2 design: ~850 MPa

Typical design rule: maximum wall stress <40% of UTS
T1 design: 300 MPa
T2 design: 340 MPa
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Engineered defects used to initiate failures

machined
defect

\

Engineered defect
(10 per vessel)

inside surface

N/

thick
ICKness machined defect

Elliptical engineered defect

Aspect ratio = 1/3 (depth/length) V-notch in profile

Nominal root

Depth of engineered defects radius 0.05mm
 Typically all 10 defects similar for a given vessel (actual ~0.12mm)

» Smallest defects ~2% of wall thickness
 Largest defects ~10% of wall thickness
» For one vessel, aspect ratios were 1/2 and 1/12
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Outline and Objectives

e Determine failure characteristics of
commercial pressure vessels

- Do the pressure vessels leak-before-burst when
cycled with gaseous hydrogen?
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Large engineered defects initiated cracking and

hydrogen-assisted failure

Summary of hydrogen pressure cycling and defect sizes

Pressure Nominal defect Pressure cycles
vessel depth (%)
0 (55,700)
3&4 (27,800)
4 (42,800)
T1 2&5 (42,800)
T2
3 14,300
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Commercial pressure vessels exceed
lifetime target of 11,250 cycles by >3x

» Each pressure vessel with
engineered defects
contains 10 nominally
equivalent defects

e Arrows indicate pressure
vessels that did not fail

e In failed vessels, all
defects initiate a crack

X
X
X

o All failures (4) are leak
before burst

T1-07XQ)
T1-10
T1-08
T2-04
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All observed failures are

R o R

 All failures occur during
pressure ramp

o At failure, pressure vessel
“slowly” leaks gas into
secondary containment

o After failure, vessels
can be pressurized to
~10 MPa without
leakage

e Through-wall crack
cannot be detected
visually
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Through-wall cracks extend from “critical”
engineered defect

24 T1-07
I
9
5
E

v

engineered defect

o T1-10
a4
I
9
5
E

v
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Cracks extend from all engineered defects

Non-through-wall (growing)

cracks have semicircular profile
Through-wall crack /\

« Smaller engineered defect
o Greater number of cycles
= more crack extension

~o_—

Same size engineered defect
(same vessel) @ S
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Outline and Objectives

e Compare full-scale testing for steel (type 1)
pressure vessels for gaseous hydrogen with
engineering design methods

- Fracture mechanics-based design
- Stress-life design
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Fatigue life qualification by fracture
mechanics (crack growth methodology)

ASME BPVC VIII.3 KD-10 (KD-4)

critical crack depth for rapid crack extension
under sustained or rising load, a.

N

Q
o

Crack length, a

cycles for
0.25 x critical crack depth

vy .
05N N,
Number of cycles, N

Assumptions:

e a, = 0.8 x thickness

e semicircular propagating cracks

e use data’ for R =0.1 and /= 0.1 Hz

cycles to critical
crack depth, N,

Stress intensity
at a/t = 0.8

T1: 55 MPa m'/2
T2: 64 MPa m'/2

'K ;= 59 MPa m'/2

T 4130X steel measured in
gaseous H, at pressure of 45 MPa
Nibur et al. (PVP2010-25827)
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Fatigue crack in gaseous hydrogen is an order
of magnitude greater than in air

Fatigue crack growth rates measured in gaseous hydrogen
at pressure of 45 MPa
e 3 heats of 4130X steel from pressure vessels

« (unlike fracture resistance, fatigue crack growth in ferritic
steels appears to be relatively insensitive to hydrogen pressure)
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Fracture mechanics is overly conservative when
defects are not initially growing

« Curves are predictions
based on crack growth only
(of semicircular flaw)

e Arrows indicate vessels that
did not fail

 Failures use measured
dimensions (others assume
nominal dimensions)

» Fatigue life calculation is
conservative by factor of
4 or more

e For small initial defects,
effective safety factor
approaches 10
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Fatigue life methods offer framework for
incorporating crack initiation

Basquin relation
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e |[dealized S-N curves based on

- Materials properties:
S, (UTS) and §;

- Geometry and loading:
K.and S,

Effect of mean stress:

« Sm
Sf = Sf 1— AM]
Effect of notch:

S
sN=/
f Kf
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Effect of hydrogen on S-N curve and fatigue

limit is unknown

Data for Cr-Mo steels in
tension-compression fatigue
suggests

S¢(Hy) = Sy(air)f

Implication: at low stress
hydrogen does not affect
fatigue crack initiation

Conservative assumption
based on notched tensioni.
in gaseous hydrogen:

S.(H,) ~ 0.9S,

u

20

1 Ref. Wada et al. ICHS 2005

i Ref. Steinman et al. Welding J Res Supp 44 (1965)
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Fatigue of pressure vessels with engineered
defects compare favorably with predictions

Materials properties:
S, =750 MPa
S,= 350 MPa (est.)

Geometry and loading:

K.=1.77 (Neuber est.)
S =260 MPa (K, = 1.25)

Fatigue notch sensitivity (K

Kf:f(Kt’ p’ Su)

o = notch root radius
K, estimated from FEA
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Sandia
National
Laboratories



22

Outline and Objectives

e Described method proposed in CSA standard
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Draft CSA Standard for Compressed Hydrogen
Powered Industrial Truck On-Board Fuel Storage
and Handling Components (HPIT1)

Performance requirements

» Leak-before-break requirements (31.1)
- type 1, 2 and 3: ASME VIIl.3 KD-141 using K,
- type 4: ISO 15869 Annex B.8

« Two performance options:

- Fatigue life verification by testing (31.3)
OR

- Fatigue life qualification by analysis (30.5)
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Draft CSA Standard for Compressed Hydrogen
Powered Industrial Truck On-Board Fuel Storage

and Handling Components (HPIT1)

 Fatigue life verification by testing (31.3)
Requirement: 3X maximum fill cycles specified by manufacturer

- Pressure cycling with gaseous hydrogen
- Artificial defect: depth > NDE; aspect ratio >3:1 (length:depth)

- 10 to 125% service pressure

 Fatigue life qualification by analysis (30.5)
Requirement: maximum fill cycles determined from ASME VIII.3 KD-3
- Design pressure = 125% service pressure (25 or 35 MPa service)
- DOT 3AA 4130X or ASME SA-372 (Cr-Mo) steels
- S, <890 MPa
- Wall stress (hoop stress) < 0.4 S,
- Surface roughness: R, < 6.4 pymand R, < 20 pm
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Fatigue life qualification by analysis

Proposed requirements for
type 1 steel pressure vessels in
gaseous hydrogen service

e S, < 890 MPa
» hoop stress < 0.4 S, = 356 MPa

From ASME VIII.3 KD-3
e assume: K, = 1.25

e T1 design
«S =260 MPa & S, = 250 MPa

Engineering Significance of these
requirements

- Stress intensity < ~400 MPa
- Stress amplitude < ~250 MPa
- Design life > 40,000 cycles
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ASME design curve: carbon and low alloy steels with UTS = 620 MPa
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Summary

Vessels being used for hydrogen storage have been subjected to
more than 55,000 pressure cycles with gaseous hydrogen at a
peak pressure of 43.5 MPa

Engineered defects with depth >6% of the wall thickness
initiated failure after 8,000 and 15,000 cycles

Leak-before-burst was observed for all failures

Fatigue crack growth assessment is very conservative for
idealized defects

- Cycles to failure due to engineered defects is >4 times design
calculation using ASME VIII.3

- Crack initiation dominates the cycle life even with internal defects

Fatigue life curves based on testing in air are being considered
for design of hydrogen pressure vessels (CSA HPIT1)
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