
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Data Services and TrilinosData Services and Trilinos
Addressing I/O Challenges for Addressing I/O Challenges for ExascaleExascale ApplicationsApplications

Approved for Public Approved for Public RReleaseelease: SAND2011: SAND2011--XXXXPXXXXP

SC11

Nov, 2011

Ron Oldfield
Sandia National Laboratories

SAND2011-8799C

I/O Challenges for I/O Challenges for ExascaleExascale

• Storage systems are the slowest, most fragile, part of an HPC system

• Current usage models not appropriate for Petascale, much less Exascale

– Checkpoints are a HUGE concern for I/O…currently primary focus of FS

– App workflow uses storage as a communication conduit

• Simulate, store, analyze, store, refine, store, … most of the data is transient

– High-level I/O libraries (e.g., HDF5, netCDF) have high overheads

• Trios Data Services to the rescue!

1. Reduce the “effective” I/O cost through data staging

2. Reduce amount of data written to storage (integrated analysis, data services)

• Nothing comes for free…

– We use additional compute and memory resources

– Data services introduce issues with resilience (we’re addressing this)

2

Trios Data Services Trios Data Services
I/O Software to Reduce I/OI/O Software to Reduce I/O

Approach
– Leverage available compute/service node

resources for I/O caching and data processing

Application-Level I/O Services
– First used for seismic imaging (mid 90s)

– PnetCDF staging service

– CTH real-time analysis

– SQL Proxy (for NGC)

– Interactive sparse-matrix visualization (for NGC)

Nessie (NEtwork Scalable Service InterfacE)
– Framework for developing data services

– Client and server libs, cmake macros, utilities

– Originally developed for lightweight file systems

Client Application
(compute nodes) I/O Service

(compute/service nodes)

Raw
Data

Processed
Data

Lustre File
System

Cache/aggregate
/process

Visualization
Client

3

Some Details on Some Details on NessieNessie

Designed for Bulk Data
Movement on HPC Platforms

• Goals of data-movement protocol

– Low stress on servers (assume order of
magnitude more clients than servers)

– Efficient use of network (avoid copies,
dropped messages, retransmissions, …

• Features of Nessie

– Asynchronous, RPC-like API

– User low-level RDMA transports

• Portals, InfiniBand, Gemini

– Small requests

– Server-directed for bulk data

• Writes: pull from client

• Reads: push to client

4

Client Server

request

request
queue

data
data

buffers

write
request

pinned

server-initiated
client-initiated

ok

A

B

C

D

A

B

C

D

Example: A Simple Transfer ServiceExample: A Simple Transfer Service
Trilinos/packages/trios/examples/Trilinos/packages/trios/examples/xferxfer--serviceservice

• Used to test Nessie API
– xfer_write_encode: client transfers data to

server through RPC args

– xfer_write_rdma: server pulls raw data using
RDMA get

– xfer_read_encode: server transfers data to
client through RPC result

– xfer_read_rdma: server transfers data to client
using RDMA put

• Used for performance evaluation
– Test low-level network protocols

– Test overhead of XDR encoding

– Tests async and sync performance

• Creating the Transfer Service
– Define the XDR data structs and API arguments

– Implement the client stubs

– Implement the server

5

Client Application

Xfer-Service

Transfer ServiceTransfer Service
Implementing the Client StubsImplementing the Client Stubs

• Interface between scientific app
and service

• Steps for client stub
– Initialize the remote method arguments,

in this case, it’s just the length of the
array

– Call the rpc function. The RPC function
includes method arguments (args), and
a pointer to the data available for
RDMA (buf)

• The RPC is asynchronous
– The client checks for completion by

calling nssi_wait(&req);

6

Transfer ServiceTransfer Service
Implementing the ServerImplementing the Server

• Implement server stubs

– Using standard stub args

– For xfer_write_rdma_srvr, the
server pulls data from client

• Implement server executable

– Initialize Nessie

– Register server stubs/callbacks

– Start the server thread(s)

7

Evaluating the Transfer ServiceEvaluating the Transfer Service
InfiniBandInfiniBand InterconnectInterconnect

8

Evaluating the Transfer ServiceEvaluating the Transfer Service
SeaStarSeaStar Interconnect (Portals)Interconnect (Portals)

9

Evaluating the Transfer ServiceEvaluating the Transfer Service
SeaStarSeaStar Interconnect (Portals)Interconnect (Portals)

10

DataData--Service ApplicationsService Applications
Salvo Salvo Seismic Seismic Imaging: The InspirationImaging: The Inspiration

Salvo’s I/O Partition
– Partition of application processors

(used separate MPI Communicator for I/O)

– Used for FFT, I/O cache, and interpolation

– Async I/O allowed overlap of I/O and
computation (pre-process next step)

Results
– +10% nodes led to +30% in performance

– Modeling I/O and compute costs helped find
the right balance of compute and I/O nodes

Contacts: Ron Oldfield, Curtis Ober

{raoldfi,ccober}@sandia.gov

June, 200911ExxonMobil Briefing

Migration
(compute nodes) I/O Partition

(compute nodes)

Frequency
Data

Time traces

I/O
Nodes

FFT

Oldfield, et al. Efficient parallel I/O in seismic imaging.
The International Journal of High Performance Computing
Applications, 12(3), Fall 1998

Scalable I/O ServicesScalable I/O Services
NetCDF I/O Cache NetCDF I/O Cache

NetCDF Caching Service
– Service aggregates/caches data

and pushes data to storage

– Async I/O allows overlap of I/O
and computation

Presented at PDSW’11

Client Application
(compute nodes) NetCDF Service

(compute nodes)

NetCDF
requests

Processed
Data

Lustre File
SystemCache/aggregate

Motivation
– Synchronous I/O libraries require app to wait

until data is on storage device

– Not enough cache on compute nodes to handle
“I/O bursts”

– NetCDF is basis of important I/O libs at Sandia
(Exodus)

12

Scalable I/O ServicesScalable I/O Services
CTH Fragment DetectionCTH Fragment Detection

Motivation
– Fragment detection process takes 30% of time-

step calculation

– Fragment tracking requires data from every time
step (too data intensive for post processing)

– Integrating detection software with CTH is
intrusive on developer

CTH fragment detection service
– Extra compute nodes provide in-line processing

(overlap fragment detection with time step
calculation)

– Only output fragments to storage (reduce I/O)

– Non-intrusive

• Looks like normal I/O (pvspy interface)

• Can be configured out-of-band

Status and Ongoing Work
– Porting to Cielo

– Comparison of in-situ and in-transit

13

...

Client Application

CTH
analysis

code

Fragment
Data

...

...

Client Application

CTH
PVSPY
Client

Fragment-Detection Service

PVSPY
Server

Raw
Data

Fragment
Data

analysis
code

In-Situ Fragment Detection

In-Transit Fragment Detection

DataData--Service ApplicationsService Applications
SQL Service: Remote SQL Service: Remote Access to Data Warehouse Appliances (DWA)Access to Data Warehouse Appliances (DWA)

SQL Service*
– Provides “bridge” between parallel apps

and external DWA

– Runs on Red Storm network nodes

– Titan applications communicate with
service through Portals

– External resources (Netezza)
communicate through standard
interfaces (e.g. ODBC over TCP/IP)

The SQL service enables an HPC
application to access a remote DWA

Service Nodes
(GUI and Database Services)

High-Speed Network High-Speed Network
(Portals)

Compute Nodes
(Titan Analysis Code)

Tech Area 1Anywhere CSRI

Netezza

LexisNexis

ODBC DWA
Other

ODBC DWA

Analyst HPC System (Red Storm) DWA

TCP/IPTCP/IP SQLSQL

* Results of SQL access from parallel statistics code presented at CUG’2009.

Additional Modifications for Multilingual
– Tokenization support on Netezza (goal is to count unique words)

– Developed a custom UTF-8 words splitter for SPU (snippet processing unit)

– Allows parallel tokenization and counting at storage device

Slide 14 of 14

DataData--Services ApplicationServices Application
Interactive Visualization for Multilingual Document ClusteringInteractive Visualization for Multilingual Document Clustering

Compute Nodes
(Trilinos Code)

Service Nodes
(VTK Service)

Similarity
Matrix

Titan
Visualization

Other Gaps to FillOther Gaps to Fill

16

• System software support for data services

– Support for dynamic allocation and reconfiguration

• Data services: balanced workflow, reduce data movement, dynamic deployment

• Smart placement (topologically aware scheduling)

– Integrated support for NVRAM as a memory device

• Programming models

– Standard approaches for integrating sim and analysis

– Standard approaches for programming services (CPU, GPU, FPGA)

• Resilience
– Storage-efficient app resilience is still a problem after 20+ years of research

– Data service resilience: services use memory for transient data, how do we
ensure resilience in such a model? We are working on this… let’s talk again
next year ;0)

Placement Issues for I/O ServicesPlacement Issues for I/O Services

17

Summary and StaffSummary and Staff

• Trios Data Services reduce the impact of I/O on applications
– Reduce the “effective” I/O cost through data staging

– Reduce amount of data written to storage (integrated analysis, data services)

• Nessie provides an effective framework for developing services
– Client and server API, macros for XDR processing, utils for managing svcs

– Supports most HPC interconnects (Seastar, Gemini, InfiniBand)

• Trilinos provides a great research vehicle
– Common repository, testing support, broad distribution

• Trios Data Services Development Team (and current assignment)
– Ron Oldfield: PI, CTH data service, Nessie development

– Todd Kordenbrock: Nessie development, performance analysis

– Gerald Lofstead: PnetCDF/Exodus service, transaction-based resilience

– Craig Ulmer: Data-service APIs for accelerators (GPU, FPGA)

– Ron Minnich: Protocol performance evaluations, Nessie BG/P support

18

Extra SlidesExtra Slides

19

Trilinos I/O Support (Trios)Trilinos I/O Support (Trios)

• New Capability Area in Trilinos
– Copyright assertion granted Oct. 2011

• Objectives
– I/O Support for existing production codes

• Exodus, Nemesis, IOSS

– Vehicle for Open Source I/O R&D

• Trios Data Services

• Benefits of Trilinos
– Well-defined software-engineering framework

– Broad distribution and access for I/O software developers

– Increased opportunity for co-design with application developers
and hardware vendors

20

Trios Status UpdateTrios Status Update

21

I/O Software spans two packages: SEACAS, Trios

Copyright assertion granted!

Trios StatusTrios Status UpdateUpdate

Trios Package
• Libraries

– Support (logger, timer, trace, …)

– Nessie (Portals, InfiniBand, LUC, Gemini)

– CommSplitter (special for Cray XE6)

• Data Services

– Transfer Service (example, tests,
performance)

– PnetCDF Staging Service

– PVSpy Service (CTH in-transit analysis)

• Planned Work
– Exodus staging service (like PnetCDF)

– Transaction-based resilience for services

– Accelerator-based services

SEACAS Package
• I/O Libraries (subpackages)

– EXODUS II

– NEMESIS

– IOSS

• Planned Work
– Eliminate “2-billion entities” problem

– Native support for higher-order vector,
tensor, and quaternion data

– Store model hierarchy/part in the Exodus
data model

– Permit storing of transient data on the
parts and assemblies

– Exodus Support for changing topologies

– Parallel I/O support (netcdf4, PnetCDF)

– C++ and Python support

22

Early Inspiration for Data ServicesEarly Inspiration for Data Services
We did this for Salvo Seismic Imaging (circa 1996)We did this for Salvo Seismic Imaging (circa 1996)

Salvo’s I/O Partition
– Partition of application processors

(used separate MPI Communicator for I/O)

– Used for FFT, I/O cache, and interpolation

– Async I/O allowed overlap of I/O and
computation (pre-process next step)

Results
– +10% nodes led to +30% in performance

– Modeling I/O and compute costs helped find
the right balance of compute and I/O nodes

Contacts: Ron Oldfield, Curtis Ober

{raoldfi,ccober}@sandia.gov

June, 200923ExxonMobil Briefing

Migration
(compute nodes) I/O Partition

(compute nodes)

Frequency
Data

Time traces

I/O
Nodes

FFT

Oldfield, et al. Efficient parallel I/O in seismic imaging.
The International Journal of High Performance Computing
Applications, 12(3), Fall 1998

Evaluating the Transfer ServiceEvaluating the Transfer Service
Gemini InterconnectGemini Interconnect

24

