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I/O Challenges for I/O Challenges for ExascaleExascale

• Storage systems are the slowest, most fragile, part of an HPC system

• Current usage models not appropriate for Petascale, much less Exascale

– Checkpoints are a HUGE concern for I/O…currently primary focus of FS

– App workflow uses storage as a communication conduit

• Simulate, store, analyze, store, refine, store, … most of the data is transient

– High-level I/O libraries (e.g., HDF5, netCDF) have high overheads

• Trios Data Services to the rescue!

1. Reduce the “effective” I/O cost through data staging

2. Reduce amount of data written to storage (integrated analysis, data services)

• Nothing comes for free…

– We use additional compute and memory resources

– Data services introduce issues with resilience (we’re addressing this)
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Trios Data Services Trios Data Services 
I/O Software to Reduce I/OI/O Software to Reduce I/O

Approach
– Leverage available compute/service node 

resources for I/O caching and data processing

Application-Level I/O Services
– First used for seismic imaging (mid 90s)

– PnetCDF staging service

– CTH real-time analysis

– SQL Proxy (for NGC)

– Interactive sparse-matrix visualization (for NGC)

Nessie (NEtwork Scalable Service InterfacE)
– Framework for developing data services

– Client and server libs, cmake macros, utilities 

– Originally developed for lightweight file systems
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Some Details on Some Details on NessieNessie

Designed for Bulk Data 
Movement on HPC Platforms

• Goals of data-movement protocol

– Low stress on servers (assume order of 
magnitude more clients than servers)

– Efficient use of network (avoid copies, 
dropped messages, retransmissions, …

• Features of Nessie

– Asynchronous, RPC-like API

– User low-level RDMA transports

• Portals, InfiniBand, Gemini

– Small requests

– Server-directed for bulk data

• Writes: pull from client

• Reads: push to client
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Example: A Simple Transfer ServiceExample: A Simple Transfer Service
Trilinos/packages/trios/examples/Trilinos/packages/trios/examples/xferxfer--serviceservice

• Used to test Nessie API
– xfer_write_encode: client transfers data to 

server through RPC args

– xfer_write_rdma: server pulls raw data using 
RDMA get

– xfer_read_encode: server transfers data to 
client through RPC result

– xfer_read_rdma: server transfers data to client 
using RDMA put

• Used for performance evaluation
– Test low-level network protocols

– Test overhead of XDR encoding

– Tests async and sync performance

• Creating the Transfer Service
– Define the XDR data structs and API arguments

– Implement the client stubs

– Implement the server
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Transfer ServiceTransfer Service
Implementing the Client StubsImplementing the Client Stubs

• Interface between scientific app 
and service

• Steps for client stub
– Initialize the remote method arguments, 

in this case, it’s just the length of the 
array

– Call the rpc function.  The RPC function 
includes method arguments (args), and 
a pointer to the data available for 
RDMA (buf)

• The RPC is asynchronous
– The client checks for completion by 

calling nssi_wait(&req);
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Transfer ServiceTransfer Service
Implementing the ServerImplementing the Server

• Implement server stubs

– Using standard stub args

– For xfer_write_rdma_srvr, the 
server pulls data from client

• Implement server executable

– Initialize Nessie

– Register server stubs/callbacks

– Start the server thread(s)
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Evaluating the Transfer ServiceEvaluating the Transfer Service
InfiniBandInfiniBand InterconnectInterconnect
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Evaluating the Transfer ServiceEvaluating the Transfer Service
SeaStarSeaStar Interconnect (Portals)Interconnect (Portals)
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Evaluating the Transfer ServiceEvaluating the Transfer Service
SeaStarSeaStar Interconnect (Portals)Interconnect (Portals)
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DataData--Service ApplicationsService Applications
Salvo Salvo Seismic Seismic Imaging: The InspirationImaging: The Inspiration

Salvo’s I/O Partition
– Partition of application processors              

(used separate MPI Communicator for I/O)

– Used for FFT, I/O cache, and interpolation

– Async I/O allowed overlap of I/O and 
computation (pre-process next step)

Results
– +10% nodes led to +30% in performance

– Modeling I/O and compute costs helped find 
the right balance of compute and I/O nodes

Contacts: Ron Oldfield, Curtis Ober 

{raoldfi,ccober}@sandia.gov

June, 200911ExxonMobil Briefing
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Oldfield, et al. Efficient parallel I/O in seismic imaging. 
The International Journal of High Performance Computing 
Applications, 12(3), Fall 1998



Scalable I/O ServicesScalable I/O Services
NetCDF I/O Cache NetCDF I/O Cache 

NetCDF Caching Service
– Service aggregates/caches data 

and pushes data to storage

– Async I/O allows overlap of I/O 
and computation

Presented at PDSW’11

Client Application
(compute nodes) NetCDF Service

(compute nodes)

NetCDF 
requests

Processed 
Data

Lustre File 
SystemCache/aggregate

Motivation
– Synchronous I/O libraries require app to wait 

until data is on storage device

– Not enough cache on compute nodes to handle 
“I/O bursts”

– NetCDF is basis of important I/O libs at Sandia 
(Exodus)
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Scalable I/O ServicesScalable I/O Services
CTH Fragment DetectionCTH Fragment Detection

Motivation
– Fragment detection process takes 30% of time-

step calculation 

– Fragment tracking requires data from every time 
step (too data intensive for post processing)

– Integrating detection software with CTH is 
intrusive on developer

CTH fragment detection service
– Extra compute nodes provide in-line processing 

(overlap fragment detection with time step 
calculation)

– Only output fragments to storage (reduce I/O)

– Non-intrusive

• Looks like normal I/O (pvspy interface)

• Can be configured out-of-band

Status and Ongoing Work
– Porting to Cielo

– Comparison of in-situ and in-transit
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DataData--Service ApplicationsService Applications
SQL Service: Remote SQL Service: Remote Access to Data Warehouse Appliances (DWA)Access to Data Warehouse Appliances (DWA)

SQL Service*
– Provides “bridge” between parallel apps 

and external DWA

– Runs on Red Storm network nodes

– Titan applications communicate with 
service through Portals

– External resources (Netezza) 
communicate through standard 
interfaces (e.g. ODBC over TCP/IP)

The SQL service enables an HPC 
application to access a remote DWA 

Service Nodes
(GUI and Database Services)

High-Speed Network High-Speed Network 
(Portals)

Compute Nodes
(Titan Analysis Code)

Tech Area 1Anywhere CSRI

Netezza

LexisNexis

ODBC DWA
Other

ODBC DWA

Analyst HPC System (Red Storm) DWA

TCP/IPTCP/IP SQLSQL

* Results of SQL access from parallel statistics code presented at CUG’2009.

Additional Modifications for Multilingual
– Tokenization support on Netezza (goal is to count unique words)

– Developed a custom UTF-8 words splitter for SPU (snippet processing unit)

– Allows parallel tokenization and counting at storage device 

Slide 14 of 14



DataData--Services ApplicationServices Application
Interactive Visualization for Multilingual Document ClusteringInteractive Visualization for Multilingual Document Clustering
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Other Gaps to FillOther Gaps to Fill
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• System software support for data services

– Support for dynamic allocation and reconfiguration

• Data services: balanced workflow, reduce data movement, dynamic deployment

• Smart placement (topologically aware scheduling)

– Integrated support for NVRAM as a memory device

• Programming models 

– Standard approaches for integrating sim and analysis 

– Standard approaches for programming services (CPU, GPU, FPGA)

• Resilience
– Storage-efficient app resilience is still a problem after 20+ years of research 

– Data service resilience: services use memory for transient data, how do we 
ensure resilience in such a model?  We are working on this… let’s talk again 
next year ;0) 



Placement Issues for I/O ServicesPlacement Issues for I/O Services
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Summary and StaffSummary and Staff

• Trios Data Services reduce the impact of I/O on applications
– Reduce the “effective” I/O cost through data staging

– Reduce amount of data written to storage (integrated analysis, data services)

• Nessie provides an effective framework for developing services
– Client and server API, macros for XDR processing, utils for managing svcs

– Supports most HPC interconnects (Seastar, Gemini, InfiniBand)

• Trilinos provides a great research vehicle
– Common repository, testing support, broad distribution

• Trios Data Services Development Team (and current assignment)
– Ron Oldfield: PI, CTH data service, Nessie development

– Todd Kordenbrock: Nessie development, performance analysis

– Gerald Lofstead: PnetCDF/Exodus service, transaction-based resilience

– Craig Ulmer: Data-service APIs for accelerators (GPU, FPGA)

– Ron Minnich: Protocol performance evaluations, Nessie BG/P support
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Extra SlidesExtra Slides
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Trilinos I/O Support (Trios)Trilinos I/O Support (Trios)

• New Capability Area in Trilinos
– Copyright assertion granted Oct. 2011

• Objectives
– I/O Support for existing production codes

• Exodus, Nemesis, IOSS

– Vehicle for Open Source I/O R&D

• Trios Data Services

• Benefits of Trilinos
– Well-defined software-engineering framework

– Broad distribution and access for I/O software developers

– Increased opportunity for co-design with application developers 
and hardware vendors
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Trios Status UpdateTrios Status Update
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I/O Software spans two packages: SEACAS, Trios

Copyright assertion granted! 



Trios StatusTrios Status UpdateUpdate

Trios Package
• Libraries

– Support (logger, timer, trace, …)

– Nessie (Portals, InfiniBand, LUC, Gemini)

– CommSplitter (special for Cray XE6)

• Data Services

– Transfer Service (example, tests, 
performance)

– PnetCDF Staging Service

– PVSpy Service (CTH in-transit analysis)

• Planned Work
– Exodus staging service (like PnetCDF)

– Transaction-based resilience for services

– Accelerator-based services

SEACAS Package
• I/O Libraries (subpackages)

– EXODUS II

– NEMESIS

– IOSS

• Planned Work
– Eliminate “2-billion entities” problem

– Native support for higher-order vector, 
tensor, and quaternion data

– Store model hierarchy/part in the Exodus 
data model

– Permit storing of transient data on the 
parts and assemblies

– Exodus Support for changing topologies

– Parallel I/O support (netcdf4, PnetCDF)

– C++ and Python support
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Early Inspiration for Data ServicesEarly Inspiration for Data Services
We did this for Salvo Seismic Imaging (circa 1996)We did this for Salvo Seismic Imaging (circa 1996)

Salvo’s I/O Partition
– Partition of application processors              

(used separate MPI Communicator for I/O)

– Used for FFT, I/O cache, and interpolation

– Async I/O allowed overlap of I/O and 
computation (pre-process next step)

Results
– +10% nodes led to +30% in performance

– Modeling I/O and compute costs helped find 
the right balance of compute and I/O nodes

Contacts: Ron Oldfield, Curtis Ober 

{raoldfi,ccober}@sandia.gov

June, 200923ExxonMobil Briefing
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Oldfield, et al. Efficient parallel I/O in seismic imaging. 
The International Journal of High Performance Computing 
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Evaluating the Transfer ServiceEvaluating the Transfer Service
Gemini InterconnectGemini Interconnect
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