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Abstract

Magnetically-driven implosions of metal liners containing magnetized and
preheated fuel may enable significant ICF yields to be obtained on pulsed-power
accelerators. Simulations of dense (p=1-5 mg/cc), axially-magnetized (B,=3-30 T), and
preheated (T;=200-500 e¢V) DT fuel, driven by a pulsed-power accelerator similar to the
Z machine (I,,,x=25-60 MA 1n 100-300 ns), indicate Gbar pressures and high yields
(Efs=100s kJ-10s MJ) may be feasible. Reduced heat conduction losses and alpha
particle trapping can be provided by B, flux compression, and the fuel pR ignition
requirement 1s replaced by one for B,R. Preheating the fuel prior to compression permits
access to 1ignition temperatures without large convergence ratios or implosion velocities.
Integrated simulations allow realistic designs for Z experiments (Im.x=27 MA) with fuel
preheat provided by the ZBL laser (E.s=2-6 kJ). Physics 1ssues include laser deposition
timing, evolution of thermal energy and B, field, magneto-RT instability growth,
electrode and laser entrance hole end effects, and anisotropic conductivity and fusion
burn in the B, field. Fusion yields on the order of the absorbed target energy may be
possible on Z+ZBL, and high-gain designs using I,,,,=60 MA are studied.
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““watfMagnetically-driven implosions on Z can be used

to create extreme conditions in the laboratory
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::'Are there more efficient pulsed-power methods
for heating and compressing fusion fuel?

4 advanced concepts

Efficiency %ﬁ

(~1/cost) Foubis- dynahohlraum n~ 0.5 to 3%

ended
(~1/driver size)| hohlraum

risk (~1/maturity)

« Pulsed power can drive many kinds of experiments at high currents and high voltages
« Large currents - large magnetic fields - large pressures - access HED regimes
« The Z machine creates large currents (~27 MA) and is the world’s largest x-ray source

« Lasers have more energy deposition control than Z-pinches, however Z-pinches are cheaper
and more efficient than lasers.

« The upper limits on Z-pinch performance for achieving high energy densities are not known.
There is a lot of room for innovation!
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A number of implosion scenarios using magnetized
fuel have been proposed in recent years

Max Planck / ITEP

Heavy lon *-

Beam

Driver -
2

Basko, Kemp, Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000)
Kemp, Basko, Meyer-ter-Vehn, Nucl. Fusion 43, 16 (2003)

pusher

magnetic field

>
» B

fuel plasma

U. Rochester LLE
FSe

A magnetized ICF implosion yields
higher hot-spot temperatures

Compressed feid

Initial seed
field of 3.57

Direct drive laser implosion of cylinders

...preheat not necessary due to high implosion velocity

Gotchev et al., Rev. Sci. Instr. 80, 043504 (2009)

Los Alamos / Air Force Research Lab
Field Reversed Configuration
Magnetized Target Fusion
Shiva Star generator

Taccetti, Intrator, Wurden et al.,
Rev. Sci, Instr. 74, 4314 (2003)

Degnan et al., IEEE Trans. Plas.
Sci. 36, 80 (2008)
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MagLIF Magnetized Liner Inertial Fusion
Laser preheated magnetized fuel
Backlighting to diagnose implosions (stability)

LASNEX simulations indicate interesting yields“* :

See talks by Slutz, Sinars, McBride, Jennings
[THRS., THRS.,,  THRS.,  TUES.]
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We are working toward the evaluation of a new

Magnetized Liner Inertial Fusion (MagLIF)* concept

Liner (Al or Be) = Initial B,~10-50 T flux is compressed to ~5-15 kT (~50-150 MG)

L4 azimuthal _ .
\7‘ n\ / d::veuﬁew = Inhibits thermal electron conduction losses
= Enhances alpha particle energy deposition
cold DT
gas (fuel) " = Enables low pR¢,, ignition (RB, requirement instead)
axia
;'f“‘:ﬁ““ic = May help stabilize implosion at late times
e
=  During implosion, the fuel is preheated using the
laser | Z-Beamlet laser (<10 kJ needed)
preheated | ] ) L
fuel = Preheating reduces the compression needed to obtain ignition
temperatures to 20-30 on Z
= Preheating reduces the implosion velocity needed to “only”
100 km/s (slow for ICF)
= Stagnation pressure required is few Gbar, not a few 100 Gbar
=  Simulations suggest scientific breakeven may be possible on Z
compressed (fusion yield = energy into fusion fuel); something not yet achieved
axial field

in any laboratory

* Slutz, et. al., Phys. Plasmas 17, 056303 (2009). fh ot
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¢ @ PIC simulations predict no significant current loss

in fin
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al MaglLIF feed due to external B, field
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PREDICTIONS so far: Insignificant 16.20 _3
early-time power loss due to fringe-  ®540
fields. Magnetic insulation of the - —4 :
A-K plasma is not lost due to B,.
. z 15,30
A-K plasma does not redirect much 1500 1 2 3 4

current away from load. In cases

without B, where shorting occurs due to A-K plasma, the case
with 30T B, does not short and late-time losses are suppressed.
Back EMF may enhance late current (dI/dt<0).
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The Z-Beamlet laser will be used to preheat plasma
for initial MagLIF experiments on Z

<

Current I

Window

~4 - 8 mm




HYDRA initialization for standalone
MagLIF preheat ZBL experiments

Diagnostic Port

rho (log10[g/cc]), t (ns) : 0.00000 o 0 1 )

et
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0.3—
&
O 02 Laser Entrance Hole
— 1.3 mm diameter
Laser Parameters
i 2.5kJof 2w
0.1 . 2.5 ns duration (1 TW)
0.1 ns rise/fall time
2 LEH 0.4 mm FWHM (~e(/spot)*2)
f/10 lens (cal chamber)
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his scale is th t MagLIF point desi !'I‘lsNg%doi?al
* this scale is the current MagLIF point design )
Z (Cm) ** expected pointing accuracy on Z is 0.015 cm S




"f:“ HYDRA predictions for MagLIF preheat ZBL
experiments

Teand T (log10[eV]), t (ns) : 051127,  Teand T; (log10[eV]), t(ns):  1.01146 Teand T. (Iog10[eV]) t(ns) 151089
N T PR AN N ST RNl NN N T TN T ST SRET S

0A4'j‘

2.5kl of 2w in 2.5 ns

02—

B G 1TW
_o 0.0— ; ;

P F 1 1

- | |
-0.2— T

: 0.3 0.4 25 30
: ,: t (ns)

2.51394 2.91472

TelandT|(Iog10[eV]) t(n ): 201067 TeandT.(Iog10[eV]) )W

( Teand T; (Iog1‘(‘)[‘é\'/(]5,‘i‘(n‘s):

i vl bl
The laser pulse ends
just as it reaches the

far wall in this example.

The higher energies
and powers typical of
MagLIF will ablate far

wall material (end cap);
we will also try to
measure this, since it
mixes with fuel and
critically impacts

the target design.
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g'_'&
“a"Experiments may measure T,~900 eV and T,~400 eV
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D. S. Montgomery (LANL), SEE POSTER TP9.00106 on THURSDAY

Effect of averaging over inhomogeneity provides
reasonable lower bound on T_ and T,

3% Ne, <Z> =10 Max[ To(r)] =952 eV, T, = 455 eV
- “Fit" T, =920 eV, “Fit" T, =430 eV
400 |
200 : i l i 1
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1.2 ! g | :
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“fast mode” peaks have small blurring

0 N N N N
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fit” values are close to beam-weighted values
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L an® TheT,, field does not close the diagnostic port
or ablate much of the Al wall material
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“~watA complex, multi-block mesh is required in HYDRA

in order to include all the relevant integrated details

Bt (lenc [MA]) , t (nS) :  90.0664 Bt (leng [MA]) , t (nS) :  125.702

* Multiple enhanced and reduced points of connectivity allow ablation zoning on all surfaces

* The laser entrance hole (LEH) can include a thin polyimide window

* Realistic inclusion of laser deposition on the cathode end cap, and mix mitigation strategies

* New boundary conditions to allow both a driving B, field and background B, field to be compressed
* Allows fine resolution of liner to study magneto-Rayleigh-Taylor instability growth r‘h snmfal
* Anisotropic conductivity and fusion burn models for complex magnetic field topology
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““wa'Ldser deposition on the end cap ablates material into

the fuel region, and must be avoided or mitigated
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e
ot The ngheating process significantly alters the
seeded B, field, resulting in a complicated topology
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EPOR _ Integrated point design s} i,
(with notch) AN
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Excellent progress is being made in 2D

integrated MagLIF simulations using HYDRA

rho (log10[g/cc]), t (ns) : 151.151
| ‘ |

B2 (log10[T]), t (ns) :
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This preliminary
and not optimized
design gives a
fusion yield of
~50 kJ/cm
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Excellent progress is being made in 3D
integrated MagLIF simulations using HYDRA
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Summary

Fast, magnetically-driven implosions of liners containing magnetized and preheated fuel
may enable significant ICF yields on pulsed-power accelerators

Integrated 2D & 3D radiation-MHD simulations using the HYDRA code are promising and ongoing

Integrated simulations are required for the most realistic performance expectations:

(1) inclusion of the end cap walls is necessary for liner-wall, laser/T,_,-wall, and B,-wall effects

(2) liner and B, flux compression are complicated by the need for one-sided laser preheat

(3) the LEH must be large enough to sufficiently heat fuel, but small enough to reduce flow losses
(4) the laser strikes the LEH window and launches magnetosonic shocks

(5) the laser preheat creates a high 3 plasma that considerably alters the B field topology

(6) relative timing between laser preheating and implosion requires optimization

(7) must avoid or mitigate any high-Z material end cap ablation by the laser near the fuel region
(8) complex anisotropic conductivity and fusion burn in possible asymmetric environment

(9) 2d and 3d simulations necessary to evaluate magneto-Rayleigh-Taylor instability in liner

)
)
)
)

Fusion yields on the order of the target’s absorbed energy may be possible on
Z + Z-Beamlet with improved design considerations from integrated calculations
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