
Advanced partitioning and integration techniques to improve parallel
performance of densely connected neuron simulations

Richard Schiek1, Christina Warrender2, Heidi Thornquist1, Ting Mei1,
Eric Keiter1, Tom Russo1, Eric Rankin1

The goal of this work is to develop computational tools to enable efficient parallel
simulation of networks of detailed neuron models. Algorithmic advances in parallel
partitioning, preconditioning and time integration can significantly improve parallel

Eric Keiter1, Tom Russo1, Eric Rankin1

Sandia National Laboratories, Albuquerque, NM
1Electrical Systems Modeling, 2Cognitive Modeling

Introduction Results
Scaling

partitioning, preconditioning and time integration can significantly improve parallel
performance. This work examines linear, graph and hyper-graph partitioning
schemes, complete and incomplete preconditioning and BDF vs. trapezoidal time
integration techniques.

We have implemented standard Hodgkin-Huxley and cable equations within a
parallel circuit simulator, Xyce (xyce.sandia.gov).

Potential advantages of Xyce:

separation of model topology and solver methods Neuron run times
1000-neuron network

Xyce run times
1000-neuron network

Improvement
from serial to
parallel solvers
(Graph
partitioning)

.

simulator automatically handles parallelization

arbitrary splitting of neurons across processors

Some of these potential advantages come at the expense of optimizations used by
existing neural simulators, so we use Neuron simulations as a control and to
illustrate areas where improvements are needed.

Approach
To simulate systems of graded complexity, we generated random networks of

1

10

100

1000

10000

100000

1 2 4 8 16 32 64

1000-neuron network

10 synapses/neuron

20 synapses/neuron

50 synapses/neuron

10 synapses/neuron; sep
nodes

Accuracy

1

10

100

1000

10000

100000

1 2 4 8 16 32 64

10 synapses/neuron

20 synapses/neuron

Xyce takes larger time steps on average, but is slower for this problem size. Note, however, that
the modeler does not have to manage problem distribution and load balancing.

Switching from serial to parallel solvers pays off when the system size is over around 250,000.

To simulate systems of graded complexity, we generated random networks of
1000 branched neurons connected on average at 10, 20, 50 or 100 synapses per
neuron.

Neural complexity (number of branches) was proportional to the average
#presynaptic connections for each neuron. Example of increasing
connectivity and neural complexity:

Accuracy
Parallel scale up may change the underlying problem. Differences can be due to solver
problems, time integration problems and/or model sensitivities.

Neuron’s solution scheme scales well, but can
lead to different activity patterns for different
numbers of processors. Whether these are
functionally equivalent is a question for the
researcher.

Discussion

Scaling synaptic density as we have done here geometrically increases the
network complexity as synapses are added because neuronal branching is
simultaneously increased. Thus, as the networks get more highly connected, they
also get significantly denser, adding to the numerical complexity.

In other problem domains, solving very large simulations on parallel machines has required use of iterative solvers and appropriate preconditioning methods. Xyce offers a platform for evaluating such

Xyce’s serial and parallel solvers yielded similar
activity for most of the simulation, but diverged near
the end. This could be a numerical instability of the
neuron or synapse model, since the more stable
serial method showed continued activity whereas the
iterative solver failed to find it.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

In other problem domains, solving very large simulations on parallel machines has required use of iterative solvers and appropriate preconditioning methods. Xyce offers a platform for evaluating such
techniques for neural network simulation. While Neuron uses Gaussian elimination to solve the underlying system, we use KLU in serial for small networks and a parallel iterative solver for the larger
simulations (gmres from AztecOO). The use of parallel, iterative solvers can be quite efficient if the system is well posed via preconditioning. We used both simple global, block triangular form (BTF) and
hypergraph partitioning, and found that BTF did better than hypergraph. The Gaussian Elimination used by Neuron works very well but can be limited to topologies in which there is minimal splitting of
neurons across processors. The simulations in Xyce show that new techniques in linear algebra can lead to significant parallel scaling independent of the network topology, with arbitrary splitting of
neurons and synapses across processor boundaries. It is also significant and useful that in Xyce one can try multiple solution techniques to find what works best for the underlying problem.

SAND2011-8576C

