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Abstract

The induction voltage adder RITS-6 is used as a test bed for
research and development of sub-100 ns flash x-ray
radiography of which the self-magnetic pinch (SMP) diode is an
example. The x-ray source properties such as dose, source
spatial distribution, and energy spectrum couple with the
imaging detector sensitivity and blur to form the radiologic
system performance which is also highly dependent on the
imaging geometry. The system performance of some SMP
diode configurations will be presented.



Radiographic Integrated Test Stand (RITS-6)
at Sandia National Laboratories, Albuquerque, NM
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Self-Magnetic Pinch (SMP) Diode ['1-[3I
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Diagnostic Suite

Pulsed Power

« B-dot current monitors (MITL, diode, X-ray : o

etc.) * Fuji image plates is primary imaging

« Voltage monitors in induction cell detector

drivers (Marx, IS, PFLs) « Gamma camera is under development
« \oltage in MITL determined from « Calibrated PIN diodes for dose rate
theoretical formulas as long as load * Two axis rolled edge for spot

(diode) impedance = MITL operating measurement |
impedance * Two side-viewing 0.75 mm pin hole

* Diode voltage estimated from cameras _ .
radiographers equations and/or » Time Resolved Spot Diagnostic (TRSD)

corrected MITL voltage

Optical / Plasma

« Visible / UV spectroscopy
 Optical imaging streak camera
* Optical fiber array

« ICCD cameras




Standard Operating Characteristics

SMP Diode Current and Dose Rate
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X-ray Spot Size — Rolled Edge Method

Edge-Spread Function A
(ESF)

X-ray Spot
Distribution
(two dimensional)

X-ray Intensity

Spot Sizes Metrics

« ESF, AWE Definition [°: 2.5 x (0.25 to 0.75 width)

* Line-Spread Function (LSF--spatial derivative of ESF): 1.4 x FWHM
* PSF (Abel-inversion of LSF assuming circular symmetry or measured
directly with perpendicular rolled edges or apertures): FWHM

Position
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Source Plane Y (mm)

2D Spot Reconstruction RITS Shot 1016

Source Plane X (mm)

FWHM Average = 1.58 mm, stdev = 0.04 mm

08

LE]

3

az2F =

9L

Method: see ref. [6]



Detector Blur Functions

Measured Line Spread Functions for Gamma Camera Scintillators and Image FPlate
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System Blur
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Time-Resolved Spot Diagnostic

Vertical lineout gives instantaneous edge-spread

function TRSD Processed "Image"
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Horizontal lineout gives radiation pulse

(TRSD)

* Linear Array of 84 plastic scintillator
fibers.

* Response time about 2.7 ns, light
response of each fiber detected with
streak camera.

» Can also give time-integrated spot size.
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Stainless Steel Hard Collimator to Achieve Smaller Spot Size
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Hard Collimation Truncates “Wings” of X-ray Source Distribution

FSF and Collimation Transmission
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“Brightness” (dose/spot?) Theoretical Calculation for Stainless Steel Hard
Collimator

Collimated SMP PSF FOM (rad/mm * 2)

Collimator Angle, degrees
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SMP Spot Size with Collimation (curve = calculation, points = experimental)
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Conclusion

The self-magnetic pinch diode is an x-ray source produced by a high-intensity
electron beam incident on a thin high-atomic number bremsstrahlung converter. The
beam focus is produced by charge neutralization of the beam by anode protons
which causes the magnetic field to pinch the electron beam. Subsequent beam
behavior is highly dependent on the anode plasma properties. Current and future
work is being done to characterize this plasma (see Poster #29 by Mark Johnston).

The SMP source has been characterized on the RITS-6 accelerator with a peak
voltage of 7.5 MV with a pulse width of around 45 ns with a dose of > 300 rads
(CaF,) @ 1 m distance. The FWHM of the PSF and LSF is approximately 1.6 mm.
The total radiographic performance should include the effect of detector blur which
is on the order of 0.3 mm depending on the detector material. However the system
blur is dominated by the spot size when the magnification is greater than 1.2.

Hard Source collimation is effective in increasing the source brightness and
measurements are in good agreement with theoretical predictions.

Future work will focus on increasing the effectiveness and reproducibility of the
SMP diode in conjunction with higher density collimator materials as well as
evaluating the dose requirements for transmission through thick objects, a problem
which is highly coupled with the detection efficiency of the imaging system.
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