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Transistor count

Motivation

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Today, Moore’s law
implies increasing parallelism

LLNL Sequoia ~ 1.6 million cores




Pseudo-compressible Methods

Artificial Compressibility (AC)

Chorin (1967) p_ 1 o local information propagation
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Lattice-Boltzmann Method (LBM)
P =cip

Entropically Damped Artificial Compressibility (EDAC)
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Compressible Navier-Stokes
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p Dt
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P T 41) = = V2T + & . entropy
( a7 )Dt 2 Re VT (energy)
PryMa®
dp = Ma2dP — B (%T + 1) ds
thermo. state
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/ Ma  Mach number S  entropy 7Y ratio spec. heats \
Re Reynolds number p density A = pac,Th
Pr  Prandtl number u  velocity
T' temperature P pressure
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Standard AC

to eliminate equation, we must constrain variable!

ds =0

isentropic sound propagation
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implications of no entropy production
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EDAC

selection of ds = 0 is arbitrary

Dp ,DP B Ma?%y
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alternative thermodynamic constraint
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Discretization Method

MacCormack finite-difference method (AC, EDAC, KRLNS) O(Az?, At?)

Traveling Wave code verification (MMS to isolate discretization error)
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Traveling Taylor-Green Vortex

simulation details /
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Traveling Taylor-Green Vortex

dp PrB
- - - 2
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limits density/divergence fluctuations
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Traveling Taylor-Green Vortex
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Conclusions & Future Work

Traditional AC methods show pressure fluctuations

KRLNS contains error

EDAC method shows time-accurate pressure
particularly at moderate/low Re

Next steps

Performance of EDAC method in dual time stepping
methods
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Questions?
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