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Motivation 

Today, Moore’s law 
implies increasing parallelism 

LLNL Sequoia ~ 1.6 million cores 

NVIDIA S2050 – 1792 cores 

source: wikipedia.org 
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Pseudo-compressible Methods 

G = P − u2

2

P = c2sρ

Artificial Compressibility (AC) 

Lattice-Boltzmann Method (LBM) 

Kinetically Reduced Local  
Navier–Stokes (KRLNS) 

Chorin (1967) 

Ansumali, Karlin, and Ottinger (2005) 
Karlin, et al. (2006) 
Borok, Ansumali, and Karlin (2007) 

Entropically Damped Artificial Compressibility (EDAC) 

local information propagation 
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Compressible Navier–Stokes 
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Standard AC 

isentropic sound propagation 

ds = 0

dρ = Ma2dP −B

�
PrγMa2

A
T + 1

�
ds

to eliminate equation, we must constrain variable! 
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implications of no entropy production 
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EDAC 
selection of          is arbitrary ds = 0

continuity + density 
+ energy 

alternative thermodynamic constraint 

dρ
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Discretization Method 

  MacCormack finite-difference method (AC, EDAC, KRLNS) 
    
    
 Traveling Wave code verification (MMS to isolate discretization error) 
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Lid-Driven Cavity Flow 
Re = 100 Re = 1000 Re = 5000
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analytical solution 

Traveling Taylor–Green Vortex 
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simulation details 

added correction term to KRLNS 
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Traveling Taylor–Green Vortex 
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Traveling Taylor–Green Vortex 
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Conclusions & Future Work 

  Traditional AC methods show pressure fluctuations 

  KRLNS contains error 

  EDAC method shows time-accurate pressure 
   particularly at moderate/low Re 

  Next steps 
   Performance of EDAC method in dual time stepping 

methods 
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Questions? 


