
1	
  	
  
Sandia	
  Na)onal	
  Laboratories	
  is	
  a	
  mul)	
  program	
  laboratory	
  managed	
  and	
  operated	
  by	
  Sandia	
  Corpora)on,	
  
a	
  wholly	
  owned	
  subsidiary	
  of	
  Lockheed	
  Mar)n	
  Corpora)on,	
  for	
  the	
  U.S.	
  Department	
  of	
  Energy's	
  Na)onal	
  
Nuclear	
  Security	
  Administra)on	
  under	
  contract	
  DE-­‐AC04-­‐94AL85000.	
  	
  
.	
  

A Nonlocal Approach to Modeling 
Crack Nucleation in AA 7075-T651 

ASME 2011 International Mechanical Engineering 
Congress and Exposition 

 
 

David Littlewood 
Sandia National Laboratories 

Multiphysics Simulation Technologies (Org. 1444) 

SAND2011-8781C



2	
  	
  

Fatigue Failure of AA 7075-T651 in EA-6B Aircraft 

EA-6B!

Fatigue damage in EA-6B wing panel 

AA7075-T651 micrograph!
[Anagnostou and Papazian]!

Goal:  Model the incubation, nucleation, and propagation stages of 
microstructurally small fatigue cracks in AA 7075-T651 

Approach:  Focus on microstructure 

Prior work:  Structural Integrity Prognosis System (SIPS) Project 
– Fatigue cracks observed to initiate primarily at cracked Al7Cu2Fe particle inclusions 
– The length of fatigue cracks is not observed to be a function of particle size 
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Why do some inclusions spawn matrix cracks, while 
others do not? 

Particle inclusions in AA 7075-T651!
[Bozek, et al.]!

J.E. Bozek, J.D. Hochhalter, M.G. Veilleux, M. Liu, G. Heber, S.D. Sintay, A.D. Rollett, D.J. Littlewood, A.M. Maniatty, 
H. Weiland, R.J. Christ Jr., J. Payne, G. Welsh, D.G. Harlow, P.A. Wawrzynek, and A.R. Ingraffea.  A geometric 
approach to modeling microstructurally small fatigue crak formation: I. Probabilistic simulation of constituent particle 
cracking in AA 7075-T651.  Modelling and Simulation in materials Science and Engineering 16 (2008). 

IDENTIFY CONTRIBUTING GRAIN-SCALE MECHANISMS 

• Geometric factors 
– Particle shape 

– Lattice orientation of surrounding grain(s) 

• Damage accumulation 
– Accumulation of dislocations facilitate failure mechanisms 

•  Loading 
– Combination of stress and dislocation buildup leads to 

crack nucleation into matrix material  

Apply crystal plasticity material model with 
damage metrics to polycrystal RVE 
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Elastic behavior governed by hyperelastic potential 

Crystal Plasticity Material Model 

Matous, K., and Maniatty, A.  Finite element formulation for modelling large deformations in elasto-viscoplastic 
polycrystals.  International Journal for Numerical Methods in Engineering, 60:2313-2333, 2004. 

Fatemi, A., and Socie, D.F.  A critical plane approach to multiaxial fatigue damage including out-of-phase 
loading.  Fatigue and Fracture of Engineering Materials and Structures.  11:149-165, 1988. 

Plastic response determined by crystallographic slip 

Damage metric is a function of stress and plastic slip 
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Construction of Finite Element Model from Experimental Data 

Mesh in vicinity of inclusion !

J.D. Hochhalter, D.J. Littlewood, R.J. Christ Jr., M.G. Veilleux, J. E. Bozek, A.R. Ingraffea, and A.M. Maniatty.  A 
geometric approach to modeling microstructurally small fatigue crak formation: II. Physically based modeling of 
microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651.  
Modelling and Simulation in materials Science and Engineering 18 (2010). 

Experimental data!

Computational model!

• Experimental data [Northrop-Grumman] 

– Grain boundaries 
– Lattice orientations 
– Particle geometry 

• Computational Model 
– Explicit modeling of cracked particle inclusion 
– Extrusion in third dimension 
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Nonlocal sampling approach in the vicinity of crack tip 

Governing equations not well defined at crack tip, 
Ad-hoc nonlocal approach applied to track damage 

J.D. Hochhalter, D.J. Littlewood, R.J. Christ Jr., M.G. Veilleux, J. E. Bozek, A.R. Ingraffea, and A.M. Maniatty.  A 
geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of 
microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651.  
Modelling and Simulation in materials Science and Engineering 18 (2010). 

• Singularity at crack tip preclude mesh convergence 

• Mitigate mesh dependence by sampling along nonlocal arc centered 
at crack tip 
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Results and Conclusions from SIPS Modeling 

J.D. Hochhalter, D.J. Littlewood, M.G. Veilleux, J. E. Bozek, A.M. Maniatty, A.D. Rollett, and A.R. Ingraffea.  A 
geometric approach to modeling microstructurally small fatigue crack formation: III. Development of a semi-empirical 
model for nucleation.  Modelling and Simulation in materials Science and Engineering 19 (2011). 

Damage metric contours in vicinity 
of cracked particle inclusion!

•  Fatigue cracks nucleate when stress 
exceeds critical value 

• Critical stress value is reduced with 
accumulated plastic slip 
– Accumulation of dislocations facilitate 

failure mechanisms 

Can we improve on nonlocal sampling approach? 
YES, with peridynamics 
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Peridynamics is a mathematical theory that unifies the mechanics of 
continuous media, cracks, and discrete particles. 

WHAT IS PERIDYNAMICS? 

HOW DOES IT WORK? 

S.A. Silling.  Reformulation of elasticity theory for discontinuities and long-range forces.  Journal of the Mechanics and 
Physics of Solids, 48:175-209, 2000. 

Silling, S.A. and Lehoucq, R. B.  Peridynamic Theory of Solid Mechanics.  Advances in Applied Mechanics 44:73-168, 
2010. 

§  Peridynamics is a nonlocal extension of continuum mechanics. 
§  Remains valid in presence of discontinuities, including cracks. 
§  Balance of linear momentum is based on an integral equation: 

Peridynamics 

The point X interacts 
directly with all points 

within its horizon 
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§  Peridynamic bonds connect any two material points that interact directly. 
§  Peridynamic forces are determined by force states acting on bonds. 

 

§  Force states are determined by constitutive laws and are functions of the 
deformations of all points within a neighborhood. 

§  Damage is modeled through the breaking of peridynamic bonds. 
-  Example:  Critical stretch bond breaking law. 

 

DISCRETIZATION OF A PERIDYNAMIC BODY 

Peridynamics 

CONSTITUTIVE LAWS IN PERIDYNAMICS 

A body may be represented by a finite number of 
sphere elements.  
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APPROACH:   NON-ORDINARY STATE-BASED PERIDYNAMICS 

Adaptation of Classical Material Models for Peridynamics 

S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari.  Peridynamic states and constitutive modeling.  
Journal of Elasticity, 88(2):151-184, 2007. 

①  Compute regularized deformation gradient 

②  Classical material model computes stress based on regularized deformation 
gradient 

③  Convert stress to peridynamic force densities 

④  Apply peridynamic hourglass forces as required to stabilize simulation (optional) 

§  Apply existing (local) constitutive models within nonlocal peridynamic framework 
§  Utilize approximate deformation gradient based on positions and deformations of all 

elements in the neighborhood 
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APPROACH:   PENALIZE DEFORMATION THAT DEVIATES FROM REGULARIZED 
                        DEFORMATION GRADIENT 

Suppression of Zero-Energy Modes 

Predicted location of neighbor Hourglass vector 

Hourglass force 

Hourglass vector projected onto bond 
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Verification:  Mesh Independent Plastic Zone 

Coarse 
mesh!

Component of plastic deformation 
gradient in loading direction 

Medium 
mesh!

Fine 
mesh!

Pre-cracked specimen 
loaded in tension 

§ The peridynamic horizon introduces 
a length scale that is independent 
of the mesh size 

§ Decoupling from the mesh size 
enables consistent modeling of 
material response in the vicinity of 
discontinuities 

§ Example:  Mesh independent 
plastic zone in the vicinity of a crack 

NONLOCALITY YIELDS MESH CONVERGENCE AT CRACK TIP 
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Capability Demonstration:  Baseline Model 

Model discretization!

SIMULATION OF AN ELASTIC PARTICLE INCLUSION IN A SINGLE GRAIN 

§  Single hard elastic inclusion embedded in single grain 
§  Tensile loading to 1% strain 
§  Compared simulations with two different grain orientations 
§  Compared simulations with two different particles:  uncracked and cracked. 

Crystal plasticity parameters 
Elastic parameters 

Lattice orientations 
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Effects of Lattice Orientation:  Plastic Slip and Stress 
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MATERIAL RESPONSE IS A FUNCTION OF LATTICE ORIENTATION 
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Uncracked Particle:  Plastic Slip and Stress 
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Cracked Particle:  Plastic Slip, Stress, and Damage 
Orientation A 

Orientation B 

Total slip Tensile stress Fatemi-Socie damage metric 

Total slip Tensile stress Fatemi-Socie damage metric 
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§  Proposed peridynamics as a means to overcome limitations in classical continuum 
mechanics that restrict our ability to model crack nucleation in Al 7075-T651. 
-  Peridynamics remains valid in the direct vicinity of a crack tip. 
-  Peridynamics offers a natural means for crack nucleation and propagation. 

§  Proof-of-concept demonstration of crystal plasticity within peridynamic framework. 

WHAT IS THERE LEFT TO DO? 

Summary 

WHAT HAS BEEN DONE? 

§  Extend peridynamic crystal plasticity to polycrystalline RVE models. 
§  Adaptation / calibration of damage models for use in nonlocal framework. 
§  Link damage models to peridynamic bond-breaking law. 
§  Validate nonlocal crystal plasticity against experimental observations. 

David J. Littlewood.  A nonlocal approach to modeling crack nucleation in AA 7075-T651.  Proceedings of the 
ASME 2011 International Mechanical Engineering Congress and Exposition.  Denver, Colorado, 2011. 
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Extra Slides 
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 WHAT IS THE IMPACT? 

HOW DOES IT RELATE TO THE CLASSICAL THEORY? 

Peridynamics 

§  Assuming u smooth, can re-write in terms of nonlocal stress tensor 

§  Nonlocality 
§  Larger solution space (admits fracture) 
§  Length scales (multiscale material model) 

§   If displacement smooth, convergence to classical elasticity in limit as δ → 0  

( ) x0
H

u(x,t) lim T[x,t] x x T[x ,t] x x dV b(x,t)

P(x,t) b(x,t)

ʹ′
δ→

ʹ′ ʹ′ ʹ′ρ = − − − +

= ∇ ⋅ +

∫&&

Piola-Kirchhoff stress tensor 

( ) x
H

u(x,t) T[x,t] x x T[x ,t] x x dV b(x,t)

(x,t) b(x,t)

ʹ′ʹ′ ʹ′ ʹ′ρ = − − − +

= ∇ ⋅ ν +

∫&&

Peridynamic stress tensor 



20	
  	
  

Verification:  Patch tests 
Uniaxial and hydrostatic compression 

•  Tests constructed such that peridynamics and classical FEM should yield same result 
•  Simulation results verified for numerous material models 

Beam bending 
•  Test peridynamics with neo-Hookean material model against classical beam bending theory 
•  Simulation gives expected bending response and stress distribution 

 
Applied 
rotation!

Fixed 
support!

Increased pure 
bending eventually 
produces circle!

Linear stress 
distribution 
through cross 

section!
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