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Quotes

“Parity is for farmers.”

– Seymour Cray, on the CDC 6600

“. . . I remarked to Dennis [Richie] that easily half the
code I was writing in Multics was error recovery code.
He said, ‘We left all that stuff out. If there’s an error,
we have this routine called panic, and when it is
called, the machine crashes, and you holler down the
hall, “Hey, reboot it.” ’ ”

– Tom van Vleck, Multics developer



Motivation

I Correct arithmetic & data cost energy
I Redundant storage & computation
I Communicating agreement (checksums, voting)

I Extreme-scale parallelism: correctness is costly
I More components, so faults more likely
I Extremely energy-constrained

I Consumer applications drive hardware
I Many consumer apps tolerate some faults
I Mobile devices also energy-constrained

I Current numerical algorithms overconstrain reliability
I Latent fault tolerance, but. . .
I Certain parts require reliable computation



Fault terminology

Fault

Soft Hard

Transient Sticky Persistent

Abnormal
operation

Failure

Relative to current 
level of abstraction.

A fault happens inside a function.
It may or may not produce correct

output as a result.

A failure is a fault that 
"leaks out," so the function

misbehaves from an
outside perspective.

"Soft" faults do not interrupt the 
program immediately.  User code 
can detect them via introspection. "Hard" faults interrupt the program.

The program that suffers them
cannot detect them directly.

Dotted outline: 
Beyond our 

scope

Key:



Reliability models

Model → can reason about code behavior

Current model: Fail-stop
I System tries to detect all

soft faults
I Turn all detected soft faults

into hard faults
I Checkpoint / restart is the

only recovery model

Our model: Sandbox
I Isolate unreliable

computation in a box
I Reliable code invokes box

as a function
I App gets flexibility to

define recovery model

Additional desired model features
I Detection: report faults to application
I Transience: “refresh” unreliable data periodically
I Type system embedding: let compiler help you



Desired properties of a fault-tolerant iterative method

I Converge eventually
I No matter the fault rate
I Or it detects and indicates failure
I Not true of iterative refinement!

I Continuous convergence vs. fault rate
I Convergence degrades gradually as fault rate increases
I Easy to trade between reliability and extra work

I Require as little reliable computation as possible
I Exploit fault detection if available

I e.g., if no faults detected, can advance aggressively



Origin of Fault-Tolerant GMRES

Inspired by existing algorithm: Flexible GMRES (FGMRES)
I FGMRES converges eventually

I As long as Krylov subspace keeps growing
I The algorithm tells you otherwise

I FGMRES allows changing preconditioner
I Arbitrarily large changes allowed
I Fault = “changing” preconditioner

I Make “preconditioner” your current solver & preconditioner
I Can reuse software stack
I Likely must adjust algorithmic parameters

I Fault-Tolerant GMRES (FT-GMRES) =
I Flexible GMRES as an inner-outer iteration
I Inner solves run unreliably, outer solver runs reliably
I Expect inner solves to take most of the time



FT-GMRES can run through faults

I FT-GMRES can run through faults and still converge.
I Standard GMRES, with or without restarting, cannot.
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FT-GMRES vs. GMRES on
Ill_Stokes (an ill-conditioned
discretization of a Stokes PDE).
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FT-GMRES vs. GMRES on
mult_dcop_03 (a Xyce circuit
simulation problem).



Observed gradual degradation of convergence

I Empirical observation: FT-GMRES convergence slows
gradually as fault rate increases.
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FT-GMRES on Ill_Stokes problem,
with different fault rates in inner
solves’ SpMVs.
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problem, with different fault rates
in inner solves’ SpMVs.



Advantages of our approach

Existing approach:
I System overconstrains

reliability
I “Fail-stop” model
I Checkpoint / restart
I App is ignorant of faults,

but suffers from them

Our approach:
I System lets application

control reliability
I Tiered reliability
I “Run through” faults
I Application listens for and

responds to faults

See PDF at http://www.sandia.gov/~maherou/

http://www.sandia.gov/~maherou/


Performance prototype

Collaboration with systems researchers
I Allow ECC memory detect-no-correct faults

I Current OS policy kills process; we don’t
I Decide memory reliability per-allocation
I App can ask system whether faults occurred
I Good proxy for all kinds of hardware faults

I User-space fault injection
I FT-GMRES performance prototype (Trilinos)

I Custom Kokkos (“unreliable compute buffers”)
I Minor modifications to Tpetra, Belos, and Ifpack2

I Future: integration with incremental checkpointing
I Refresh “unreliable memory” from reliable backing store



Future work (1 of 2)

I Near-term: Statistical performance experiments / model
I Determine fault rate at which FT-GMRES pays off
I Explore new hardware’s energy / reliability trade-offs

I Hardware / software co-tuning
I Medium-term: Study FT-GMRES convergence

I Do first inner solves matter more than later ones?
I Inexact Krylov analogy
I Gradually relax reliability?

I Co-tune inner and outer solves’ parameters
I Can we prove better than “eventual convergence”?

I Longer-term
I Better leverage fault detection

I If no fault, inner solves need not restart
I System may not detect all faults. . .

I Mix in algorithmic fault detection



Future work (2 of 2)

Future projects of larger scope:
I Develop other fault-tolerant algorithms

I Multigrid
I Smoothing? Updates? Coarse-grid solves?

I Domain decomposition
I Use overlap to force convergence despite faults?
I Asynchronous (“chaotic”) iteration ideas?

I Nonlinear iterations
I e.g., preconditioned Newton-Krylov

I Co-tune whole solver stack, based on expected fault rate



Summary

I Hardware reliability costs energy
I Current algorithms overconstrain reliablility
I Algorithm / system codesign approach:

I System exposes on-demand reliability
I Algorithms demand reliability only when needed

I Example: Fault-Tolerant GMRES (FT-GMRES)



Extra slides



Fault-Tolerant GMRES (FT-GMRES) algorithm
Input: Linear system Ax = b and initial guess x0

r0 := b − Ax0, β := ‖r0‖2, q1 := r0/β
for j = 1, 2, . . . until convergence do

Inner solve: Solve for zj in qj = Azj . The only unreliable part
vj+1 := Azj

for i = 1, 2, . . . , k do . Orthogonalize vj+1

H(i, j) := q∗
i vj+1, vj+1 := vj+1 − qiH(i, j)

end for
H(j + 1, j) := ‖vj+1‖2

Update rank-revealing decomposition of H(1:j, 1:j)
if H(j + 1, j) is less than some tolerance then

if H(1:j, 1:j) not full rank then
Global recovery (rolling back) is required

else
Cannot continue; return after end of this iteration

end if
else

qj+1 := vj+1/H(j + 1, j)
end if
yj := argminy ‖H(1:j + 1, 1:j)y − βe1‖2 . GMRES projected problem
xj := x0 + [z1, z2, . . . , zj ]yj . Solve for approximate solution

end for


