) ' ive methods
Fault-tolerant iterative ML s603c

via selective reliability

Patrick G. Bridges, Kurt B. Ferreira,
Michael A. Heroux, and Mark Hoemmen
bridges@cs.unm.edu,
{kbferre, maherou, mhoemme}@sandia.gov

University of New Mexico and Sandia National Laboratories’

Supercomputing 2011
Seattle, WA
14 Nov. 2011

1 Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia ﬁgggl:al
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Laboratories
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Quotes

“Parity is for farmers.”

— Seymour Cray, on the CDC 6600

“ ..l remarked to Dennis [Richie] that easily half the
code | was writing in Multics was error recovery code.
He said, ‘We left all that stuff out. If there’s an error,
we have this routine called panic, and when it is
called, the machine crashes, and you holler down the
hall, “Hey, reboot it.” * ”

— Tom van Vleck, Multics developer

Sandia
National
Laboratories

Motivation

v

Correct arithmetic & data cost energy

» Redundant storage & computation
» Communicating agreement (checksums, voting)

Extreme-scale parallelism: correctness is costly
» More components, so faults more likely
» Extremely energy-constrained

Consumer applications drive hardware

» Many consumer apps tolerate some faults
» Mobile devices also energy-constrained

Current numerical algorithms overconstrain reliability

» Latent fault tolerance, but. ..
» Certain parts require reliable computation

v

v

v

Sandia
National
Laboratories

Fault terminology

Abnormal
operation

A fault happens inside a function.
It may or may not produce correct
output as a result. g

Fault

"Soft" faults do not interrupt the
program immediately. User code
can detect them via introspection.

Hard
! }

Relative to current
level of abstraction.

A failure is a fault that
"leaks out," so the function
misbehaves from an

', outside perspective.

"Hard" faults interrupt the program.

The program that suffers them
cannot detect them directly.

Transient Sticky

Persistent

’ Dotted outline:
Beyond our
scope

Sandia
National
Laboratories

Reliability models

Model — can reason about code behavior

Current model: Fail-stop Our model: Sandbox
» System tries to detect all » Isolate unreliable
soft faults computation in a box
» Turn all detected soft faults » Reliable code invokes box
into hard faults as a function
» Checkpoint / restart is the » App gets flexibility to
only recovery model define recovery model

Additional desired model features
» Detection: report faults to application
» Transience: “refresh” unreliable data periodically
» Type system embedding: let compiler help you

Sandia
National
Laboratories

Desired properties of a fault-tolerant iterative method

v

Converge eventually

» No matter the fault rate
» Or it detects and indicates failure
» Not true of iterative refinement!

Continuous convergence vs. fault rate

» Convergence degrades gradually as fault rate increases

» Easy to trade between reliability and extra work
Require as little reliable computation as possible
Exploit fault detection if available

» e.g., if no faults detected, can advance aggressively

v

v

v

Sandia
National
Laboratories

Origin of Fault-Tolerant GMRES

Inspired by existing algorithm: Flexible GMRES (FGMRES)
» FGMRES converges eventually
» As long as Krylov subspace keeps growing
» The algorithm tells you otherwise
» FGMRES allows changing preconditioner
» Arbitrarily large changes allowed
» Fault = “changing” preconditioner
» Make “preconditioner” your current solver & preconditioner
» Can reuse software stack
» Likely must adjust algorithmic parameters
» Fault-Tolerant GMRES (FT-GMRES) =

» Flexible GMRES as an inner-outer iteration
» Inner solves run unreliably, outer solver runs reliably
» Expect inner solves to take most of the time

Sandia
National
Laboratories

FT-GMRES can run through faults

» FT-GMRES can run through faults and still converge.
» Standard GMRES, with or without restarting, cannot.

Fault-Tolerant GMRES, restarted GMRES, and nonrestarted GMRES
(deterministic faulty SpMVs in inner solves)

Fault-Tolerant GMRES, restarted GMRES, and nonrestarted GMRES
(deterministic faulty SpMVs in inner solves)

—— FT-GMRES(50,10)
GMRES(50), 10 restart cycles
—*— GMRES(500)
10°
107"
1 2 3 4 8 9 10 11

5 6 7
Outer teration number

FT-GMRES vs. GMRES on
lll_Stokes (an ill-conditioned
discretization of a Stokes PDE).

10°

—+— FT-GMRES(50,10)
GMRES(50), 10 restart cycles

—*— GMRES(500)

107°F

107

10°F

10°

1 2 3 8 9 10 1

5 6 7
Outer iteration number

FT-GMRES vs. GMRES on
mult_dcop_03 (a Xyce circuit
simulation problem).

Sandia
National
Laboratories

Observed gradual degradation of convergence

» Empirical observation: FT-GMRES convergence slows
gradually as fault rate increases.

Fault-Tolerant GMRES: Convergence vs. fault rate,
with faulty SpMVs in the inner solves (deterministic fauits)

—=— FT-GMRES(50,20) with error rate 0.000000
FT-GMRES(50,20) with error rate 0.100000
—e— FT-GMRES(50,20) with error rate 0.300000
FT-GMRES(50,20) with error rate 0.500000

8 10 12
Outer iteration number

FT-GMRES on Ill_Stokes problem,
with different fault rates in inner
solves’ SpMVs.

14 16 18 20 2z

Fault-Tolerant GMRES: Convergence vs. fault rate,
with faulty SpMVs in the inner solves (deterministic fauits)

10°
—— FT-GMRES(50,20) with error rate 0.000000
FT-GMRES(50,20) with error rate 0100000
—e— FT-GMRES(50,20) with error rate 0.300000
FT-GMRES(50,20) with error rate 0.500000
107
107
107
10°
0 2 4 6 14 16 18 20 2

8 0 12
Outer iteration number

FT-GMRES on mult_dcop_03
problem, with different fault rates
in inner solves’ SpMVs.
@ I?Ig?igi:al
Laboratories

Advantages of our approach

Existing approach: Our approach:
» System overconstrains » System lets application
reliability control reliability
» “Fail-stop” model » Tiered reliability
» Checkpoint / restart » “Run through” faults
» App is ignorant of faults, » Application listens for and
but suffers from them responds to faults

See PDF at http://www.sandia.gov/~maherou/

Sandia
National
Laboratories

http://www.sandia.gov/~maherou/

Performance prototype

Collaboration with systems researchers
» Allow ECC memory detect-no-correct faults
Current OS policy kills process; we don’t
Decide memory reliability per-allocation
App can ask system whether faults occurred
Good proxy for all kinds of hardware faults
» User-space fault injection
» FT-GMRES performance prototype (Trilinos)
» Custom Kokkos (“unreliable compute buffers”)
» Minor modifications to Tpetra, Belos, and Ifpack2
» Future: integration with incremental checkpointing
» Refresh “unreliable memory” from reliable backing store

v

v vy

Sandia
National
Laboratories

Future work (1 of 2)

» Near-term: Statistical performance experiments / model

» Determine fault rate at which FT-GMRES pays off
» Explore new hardware’s energy / reliability trade-offs

» Hardware / software co-tuning
» Medium-term: Study FT-GMRES convergence
» Do first inner solves matter more than later ones?

> Inexact Krylov analogy
» Gradually relax reliability?

» Co-tune inner and outer solves’ parameters

» Can we prove better than “eventual convergence”?
» Longer-term

» Better leverage fault detection

» If no fault, inner solves need not restart
» System may not detect all faults. ..

» Mix in algorithmic fault detection

Sandia
National
Laboratories

Future work (2 of 2)

Future projects of larger scope:
» Develop other fault-tolerant algorithms
» Multigrid
» Smoothing? Updates? Coarse-grid solves?
» Domain decomposition

» Use overlap to force convergence despite faults?
» Asynchronous (“chaotic”) iteration ideas?

» Nonlinear iterations
> e.g., preconditioned Newton-Krylov

» Co-tune whole solver stack, based on expected fault rate

Sandia
National
Laboratories

Summary

v

Hardware reliability costs energy
Current algorithms overconstrain reliablility

Algorithm / system codesign approach:

» System exposes on-demand reliability
» Algorithms demand reliability only when needed

Example: Fault-Tolerant GMRES (FT-GMRES)

v

v

v

Sandia
National
Laboratories

Extra slides

Sandia
National
Laboratories

Fault-Tolerant GMRES (FT-GMRES) algorithm

Input: Linear system Ax = b and initial guess xo
fo:=b— Axo, 8 := [[foll2, g1 :==ro/B
forj=1,2,... until convergence do

Inner solve: Solve for z; in q; = Az > The only unreliable part

Vip1 == AZ]'

fori=1,2,...,kdo > Orthogonalize vj; 1
H(l7j) = qi*vj-Hs Vit1 = Vipr — qu(I7/)

end for

H(+1.4) = Vi l2
Update rank-revealing decomposition of H(1:j,1:j)
if H(j + 1,/) is less than some tolerance then
if H(1:j,1:j) not full rank then
Global recovery (rolling back) is required

else
Cannot continue; return after end of this iteration

end if
else

Qi1 = Vi1 /H(+ 1))
end if
yj == argmin [|[H(1:j+1,1:j)y — Bei[= > GMRES projected problem
Xj:=Xo + [z1,22,. .., 2]y > Solve for approximate solution

end for

