

PAT-1 Plutonium Air Transportable Package

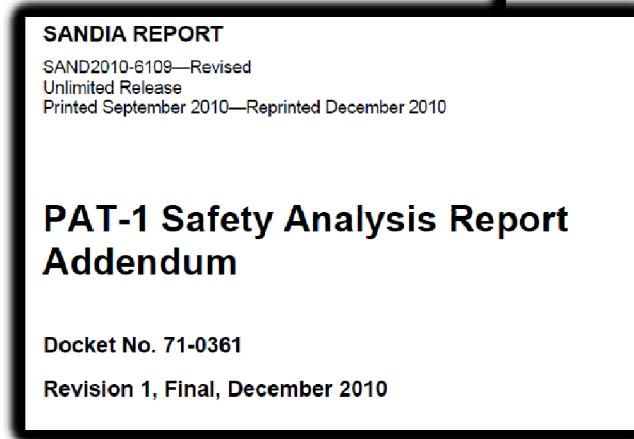
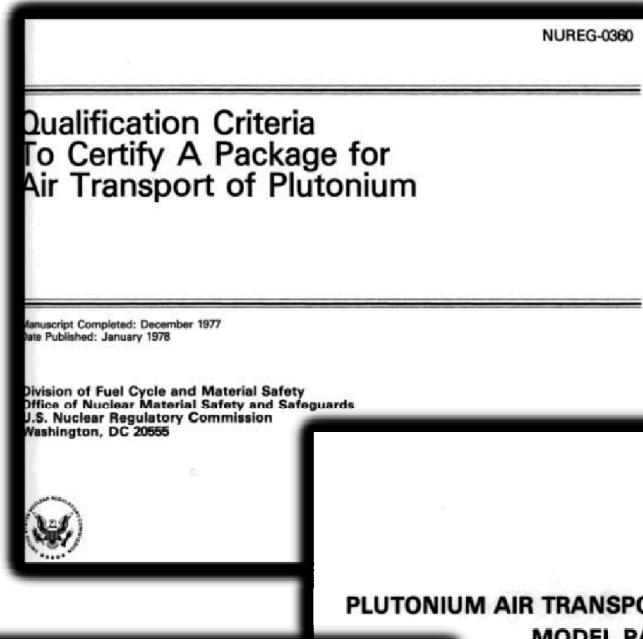
Richard Yoshimura

Wes Chilton

Sandia National Laboratories*

November 29-December 1, 2011

AWE PAT-1 Operations Meeting
Aldermaston, UK

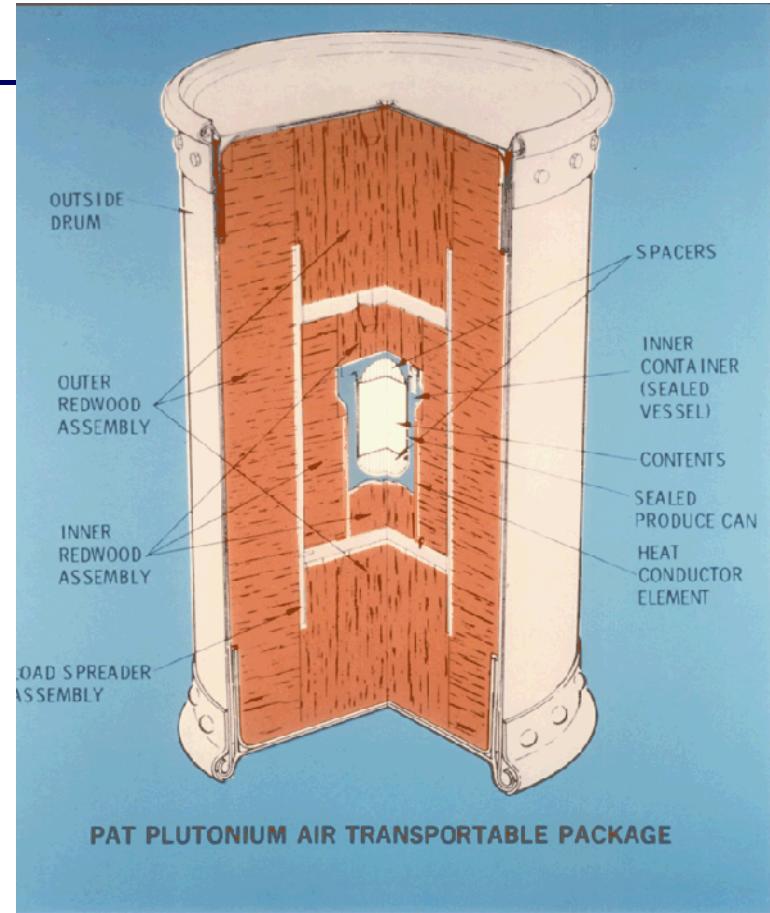


* Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- **Background/History**
- **Package Design**
- **Authorized Contents**
- **Construction Details**
- **Analysis**
- **Operations**
- **Leak Testing**

Background

- Public concern with shipment of hazardous materials through populated areas
- In 1975, US Congress banned the shipment of plutonium by air until a container could be developed that could safely survive the crash of a modern aircraft without losing its contents.
- In 1976, USNRC began to prepare qualification criteria to certify a container for air transport of plutonium. These new criteria required the package to pass a new sequence of tests.
- NRC asked Sandia to work with them to develop a shipping package to meet the criteria.
- Sandia worked closely with NRC on package development program, numerous visits and correspondence.
- Results presented to
 - Advisory Committee on Reactor Safeguards
 - National Academy of Engineering


Package Identification and CoC – PuO₂

- Plutonium Air Transportable Package, Model PAT-1
 - Certificate No. 0361 issued to NRC
 - Package ID number – USA/0361/B(U)F-96 (meets IAEA 1996 regulations)
 - Meets criteria specified in NUREG-0360, *Qualification Criteria to Certify a Package for Air Transport of Plutonium*
 - Meets criteria specified in 10CFR Part 71
 - Original Authorized Contents
 - PuO₂ and daughter products
 - PuO₂ may be mixed with UO₂ and daughter products
 - Maximum 2 kg of PuO₂
 - Maximum decay heat of 25 watts
 - Qualifies as Fissile Class 1
 - First certified in 1978

PAT-1 Air Transportable Package (USA/0361/B(U)F-96)

- Major Components
 - AQ-1 Protective Overpack (454 lb)
 - TB-1 SS Containment Vessel (37 lb)
 - PC-1 SS Product Can (0.3 lb)
 - Contents (maximum) (4.4 lb)
- Gross Weight: ~500 lb
- Dimensions: 24 1/2 in. dia. x 42 1/2 in. height

- Double stainless steel drums
- Grain-orientated redwood
- Load spreader

PAT-1 Package Transport Test Environments

71.71 Normal conditions of transport

71.73 Hypothetical accident conditions

71.74 Accident conditions of air transport of plutonium

- Right angle 129 m/s (422 ft/sec) impact onto an unyielding surface in most damaging orientation
- 2-inch wide steel bar static beam compressive load of 31,800 kg (70,000 lbs) to result in maximum damage
- 227 kg (500 lb) pointed solid probe (right circular cone) dropped from 3 m (10 ft) on most vulnerable point
- 1.8 m (6 ft) structural steel angle (legs 13 cm (5 inch) long, 1.3 cm (½ inch) thick) from height of at least 46 m (150 ft) onto package two times
- One hour JP-4 or JP-5 pool fire test, package cooled naturally or water cooled, most damaging environment
- 0.9 m (3 ft) immersion test for 8 hours

PAT-1 High Speed Impact Test

DOE Program Needs: Air Transport of Pu Metals

- Support critical national security programs
 - Collaborative experiments for stockpile assessments
 - Experiments for enhancing code capabilities
 - Support stockpile certification and life-extension programs
- Material exchanges for experiments
 - Study chemistry, metallography, and properties of Pu samples
 - Enhance codes through knowledge of material responses
- Plutonium metal return

Goal: Develop capability for air shipment of plutonium metal under US and international regulations

TB-1 Temperature/Pressure Profile for Air Transport Fire Environment

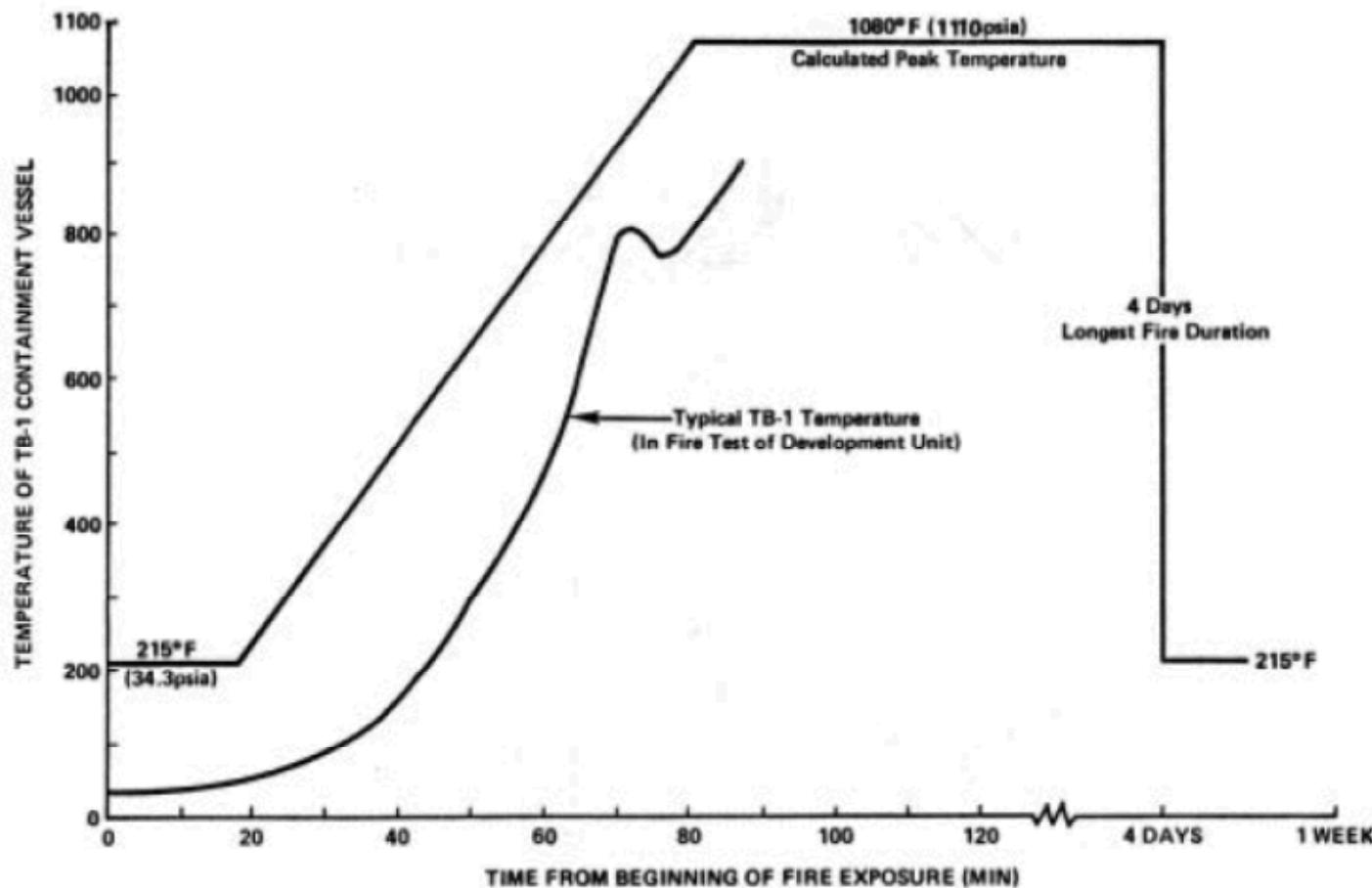


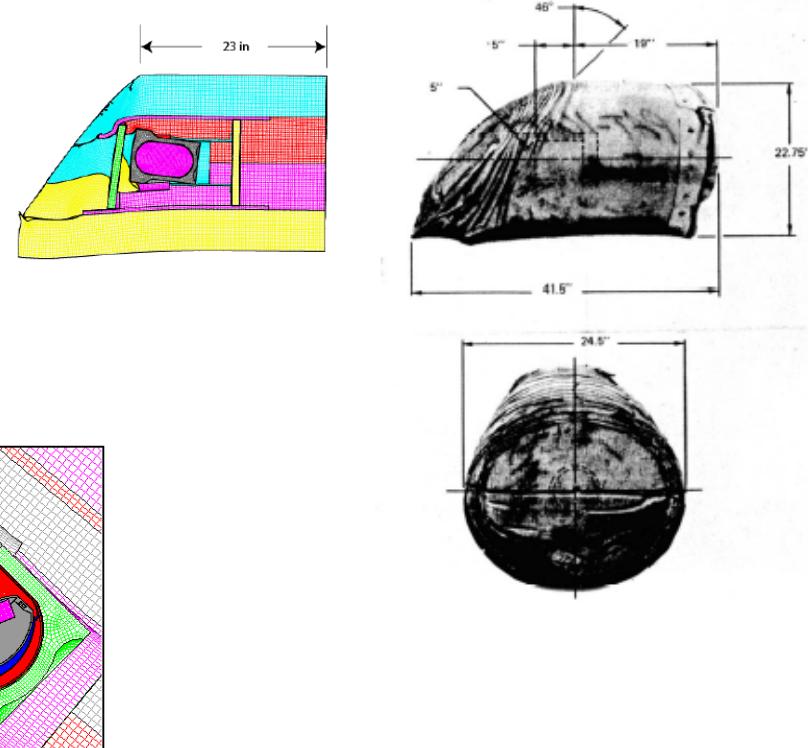
Figure 4.2 Maximum TB-1 Temperature and Pressure Profile During NRC Qualification Criteria Fire Test

(Page 4-6, NUREG-0361 SAR)

Two Major Technical Issues Addressed

- **PuFe Eutectic**
 - TB-1 post fire temperature is 582°C (1080°F), four days
 - Plutonium melting temperature is 639.4°C (1182.9°F)
 - Aluminum melting temperature is 660°C (1221°F)
 - PH13-8Mo melting temperature range is 1404 to 1471°C (2560 to 2680°F)
 - PuFe eutectic theoretically exists as low as 410°C (770°F)
- **Contents Response with TB-1**
 - Internal component impacts must be considered
 - PuO₂ density ranges from 1.62 gm/cc and higher (occupies most of the volume within TB-1)
 - Pu metal density is about 17 gm/cc (results in compact geometry)
 - Maintain 2.1 kg total internal contents weight

Titanium Inner Packing Developed and Evaluations Supported by Several Organizations



- Concept, authorized contents and eutectic evaluation by LANL
- Pressure evaluation by LANL and SNL
- Leak rate and containment analysis by Y-12
- Leak test procedure developed by Leak Testing Specialists
- Criticality and shielding analysis by ORNL
- Structural and thermal analysis by SNL
- External reviews by PCD, Energy Solutions, and SRNL

Structural Evaluation of Titanium Inner Packing by Analysis

- Performed full body evaluation of PAT-1 overpack and containment vessel, example shows comparison with full scale center of gravity over corner test result
- Analyzed inner packing response, same orientation

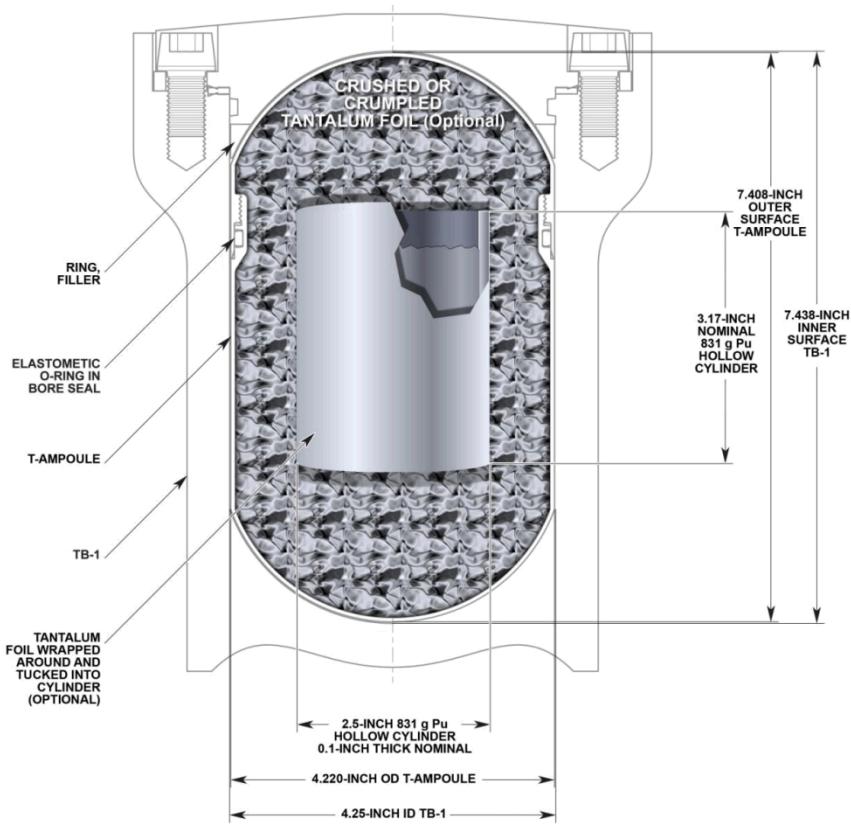
- Used component test-generated “strain locus” (in stress triaxiality vs. equivalent plastic strain space) and an empirically-based analytical failure criterion called “Tearing Parameter” to demonstrate integrity

PAT-1 Certificate of Compliance for Pu Metal

NRC FORM 618 (8-2000) 10 CFR 71		U.S. NUCLEAR REGULATORY COMMISSION			
CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES					
1 a. CERTIFICATE NUMBER 0361	b. REVISION NUMBER 10	c. DOCKET NUMBER 71-0361	d. PACKAGE IDENTIFICATION NUMBER USA/0361/B(U)F-96	PAGE 1	PAGES 6

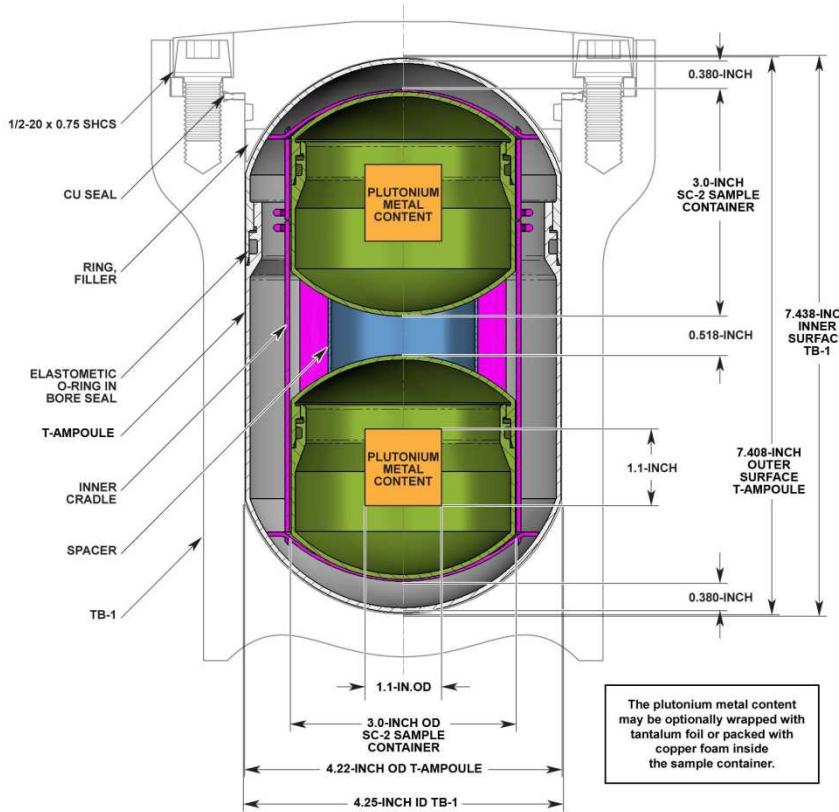
- NRC issued Revision 10 of the CoC for the PAT-1 package on December 23, 2010
- Package Identification Number: USA/0361/B(U)F-96
- Issued to: National Nuclear Security Administration
- Revised CoC adds plutonium metal sealed within a titanium vessel (designated T-Ampoule) inside of the TB-1 containment vessel as authorized contents

Pu Metal Authorized Contents


From Table 1-1 in PAT-1 SAR Addendum, authorized contents include

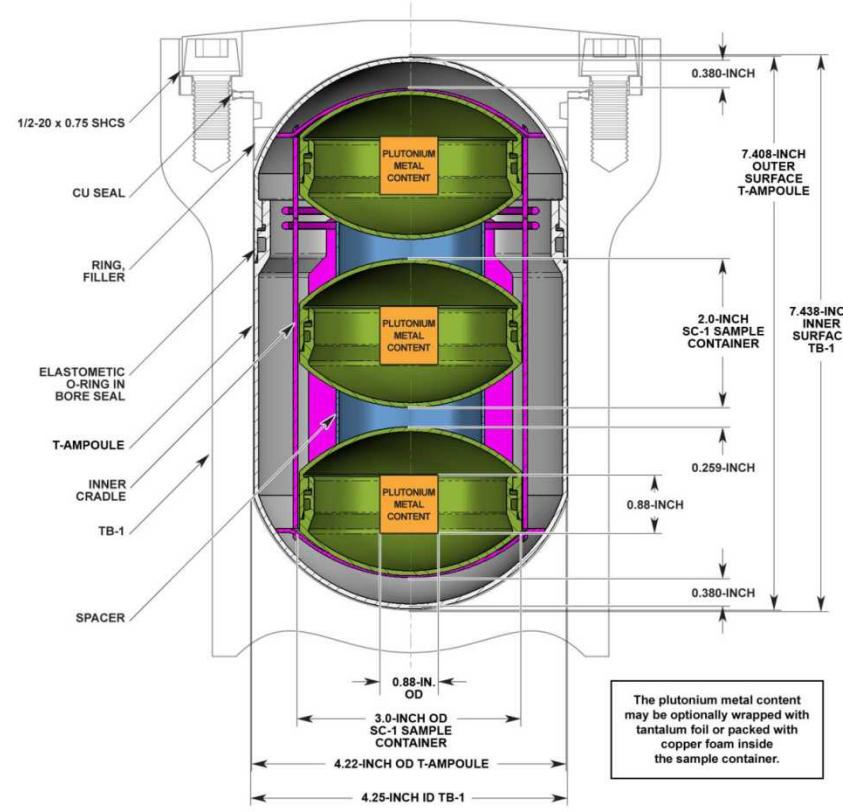
- **Various geometric shapes of Pu metal, including**
 - Circular discs of varying diameters and thicknesses,
 - Rectangular strips of varying lengths, widths, and thicknesses,
 - Cylinders in sizes and masses up to those used in the structural analysis,
 - Random shapes for chemistry analysis, and
 - Composites as specified in Table 1-1
- **Hollow right-circular cylinders of plutonium metal**

T-Ampoule Provides Eutectic Barrier, Ensures Quality of Product, and is Bulk Container



The titanium T-Ampoule provides

- Physical barrier between plutonium metal contents and TB-1 containment vessel
- Eutectic reaction barrier between the plutonium metal and iron TB-1 alloy at elevated temperatures from fire test
- An enclosure to maintain inert cover gas over plutonium metal to minimize oxidation during normal conditions of transport
- Container for shipping bulk material (731 – 831 gm Pu hollow cylinder)


Titanium Sample Containers

Two Sample Container Configuration (SC-2)

338 gm each, 676 gm total

or 60 gm Pu/Be each, 120 gm total

Three Sample Container Configuration (SC-1)

174 gm each, 523 gm total

or 60 gm Pu/Be each, 180 gm total

Summary of New, Consumable, and Replacement Parts Fabricated

Component	Drawing	Fabricated
Ring Filler	2A0262	3
T-Ampoule	2A0261	6
Inner Cradle	2A0385	3
Sample Container-1	2A0268	18
Sample Container-2	2A0265	12

Consumable/replacement parts include copper gaskets, Viton O-rings, aluminum disc, lifting slings, insulation pads, and shipping skids

Manufacture of Titanium Components

T-Ampoule

- Verify material certifications
- Rough machine titanium stock
- Heat treat
- Final machining
- Tiiodize
- Assembly Verification of T-Ampoule with Inner Cradle hardware
- Final QA inspection/acceptance

QA Program for Fabrication of Titanium Hardware and Consumables

- **Corporate SNL AS-PT-PD-04 *Title 10 Code of Federal Regulations Part 71 Packaging and Transportation of Radioactive Material – Quality Assurance Program Plan***
- **Employs Quality Assurance Implementing Procedures (QAIPs) to supplement SNL corporate procedures to meet related elements of Subpart H**
- **Section 9 of the PAT-1 SAR Addendum defines the QA program**
- ***Specifications and Drawings, of the Safety Analysis Report for the Plutonium Air Transportable Package, Model PAT-1* (also in Section 9 of SAR)**

Fabrication of Additional Packages

- **Kansas City Plant National Secure Manufacturing Center was contacted by NNSA for fabrication of additional packages**
- **Fabrication drawings and specifications were reviewed and preliminary cost estimates were developed**
- **Evaluation being performed to determine fleet size**
- **Sandia National Laboratories is supporting the preparation of the PAT-1 procurement specification**
- **The request for quote is in process**

PAT-1 Trainer

Package Description and Loading/Unloading Operations

Information from reports (electronic files) entitled

- *PAT-1 Safety Analysis Report Addendum, Docket No. 71-0361, SAND2010-6109-Revised, Printed September 2010—Reprinted December 2010, Sandia National Laboratories, Unlimited Release*
- *Safety Analysis Report for the Plutonium Air Transportable Package, Model PAT-1, NUREG-0361, U.S. Nuclear Regulatory Commission, February 1978, Unclassified*
- *PARC (Plutonium Accident Resistant Container) Program Research, Design, and Development, NUREG/CR-0030, SAND76-0587, July 1978, Unclassified*
- *PAT-1 Procedure – Copper Gasket Removal from TB-1 Lid*
- *NRC Certificate of Compliance for Radioactive Material Packages, 0361, Revision 10, USA/0361/B(U)F-96, December 23, 2010*
- *AAR Mobility Systems, 463L Air Cargo Pallet HCU-10/C*

Leak Testing

Information from reports (electronic files) prepared by Leak Testing Specialists, Inc., sections entitled

- *TB-1 Containment Vessel Project Report, August 20, 2010*
- *TB-1 Containment Vessel Leak Test Requirements, August 6, 2010*
- *Helium Mass Spectrometer Leak Test Procedure, Bell Jar Technique, including Addendum I and II, August 6, 2011*
- *CALT Pressure Change Leak Test Procedure, August 11, 2011*
- *Pressure Chamber Operability Verification, July 29, 2010*

Summary

- PAT-1 metals certification supports critical national security programs, material exchanges for experiments, and metal return
- Only package that will meet very severe Pu air transport accident requirements in 10 CFR 71.74
 - 422 ft/sec impact
 - 70,000 lb compressive load
 - 500 lb puncture probe (10 ft)
 - Two slash tests (150 ft)
 - One hour fire test
 - 3 ft immersion
- Sandia developed Tearing Parameter used to ensure eutectic barrier integrity

Achieves goal to provide capability for air shipment of plutonium metal under US and international regulations