
Results of Software Threading
Experiments in ASC Codes

November 16, 2011
Sue Kelly for

Richard Drake, Alex Lindblad, and W. Roshan Quadros

Abstract: The number of CPU cores per processor in computer systems continues
to increase and the MPI-everywhere approach will likely not be sustainable. One
approach that might make more efficient use of the processor resources is to

incorporate threads into the programming model. The ASC codes are large and
complex. A massive re-write or re-factoring to use threads is daunting. Several
code teams at Sandia were tasked to introduce threading into some kernel or

subset of their ASC code. The purpose of which was to better understand how to
program threads and the impact of threads on their code. This talk will provide a
summary of the approaches and results for three of the experiments.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-8645C

CODE 1: Add (Some) Threading into ALEGRA

• ALEGRA:

– Operator-split coupled physics (explicit
hydro & implicit magnetics)

– Mostly “old school” C++ and some
FORTRAN; many third party libraries

• Goal: add threading to material loop and
examine performance

• Objectives:

– Gain knowledge about adding threading to ALEGRA

– Bring out performance issues when using threads

– Compare performance on a few machines

Thread an Element Loop with OpenMP

for (itr = elements.begin();
itr != elements.end();
++itr)

{
Element* el = *itr;
// bunch of code…
Update_Material_State(el);

}

int thread_idx;
#pragma omp parallel for private(thread_idx)
for (thread_idx = 0;

thread_idx < num_threads;
++thread_idx)

{
itr = thread_chunk[thread_idx];
itr_end = thread_chunk[thread_idx+1];
for (; itr != itr_end; ++itr)
{

Element* el = *itr;
// bunch of code…
Update_Material_State(el);

}
}

Serial: OpenMP:

• Not shown:
• Thread chunk decomposition

• Issues:
• Private variables
• Accumulation variables
• Data race conditions (!)

Thread an Element Loop with ThreadPool*

• Same: thread chunking, race condition
issues, accumulation variables

• New: Transferring local variables to
threads requires additional coding and
restructuring

for (itr = elements.begin();
itr != elements.end();
++itr)

{
Element* el = *itr;
// bunch of code…
Update_Material_State(el);

}

struct Args {
vector<THashList::iterator> * chunks;
UnsDynamics * reg;
State COMMIT_STATE;
… // other arguments

};

void work_kernel(TPI_Work* work) {
Args* args = (Args*) work->info;
itr = args->chunks[work->rank];
itr_end = args->chunks[work->rank+1];
for (; itr != itr_end; ++itr)
{

Element* el = *itr;
// bunch of code…
Update_Material_State(el);

}
}

{
Args args(chunks, reg, COMMIT_STATE, …);
TPI_Run(work_kernel, &args);

}

Serial: ThreadPool:

*ThreadPool is a pthreads-based
library within the Trilinos library

Timings for
Threaded Material Update Loop

Material Model Types:
• Analytic: Lots of computation
• Table: Tabular lookup and interpolation
• Simple: Very little computation

Muzia is a Cray XE6
with dual socket 8-core
AMD Magny-cour CPUs

Threading an Element
Assembly Loop (A Scatter)

B B B B Pass 1
Barrier
Pass 2G G G G

Decompose into twice
the number of threads*

* Used Zoltan with 1D RCB

for (int phase = 0; phase < 2; ++phase)
{
int thread_idx;

#pragma omp parallel for private(thread_idx)
for (thread_idx = 0;

thread_idx < num_threads;
++thread_idx)

{
int part = 2*thread_idx + phase;
itr = thread_chunk[part];
itr_end = thread_chunk[part+1];
for (; itr != itr_end; ++itr)
{

Element* el = *itr;
Node** nds = el->Nodes();
// read/write node data, read elem data

}
}

}

Force Assembly Loop Performance

RedSky is a Sun cluster
with dual socket/quad core,
Intel Nehalem CPUS

MPI & Threading Combinations
(Barrett & Vaughan)

MiniGhost on RedSky with OPENMP

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

8 16 32 64 128 256 512 1024

Number of Cores

T
im

e

MPI

OPENMP 2

OPENMP 4

OPENMP 8

• Used the “miniapp” called MiniGhost
• Stencil based PDE solver
• Weak scaling with different number of threads per MPI rank

MiniGhost with OPENMP on Muzia

8

9

10

11

12

13

14

15

16

17

18

16 32 64 128 256

Number of Cores

T
im

e

MPI

OPENMP 2

OPENMP 4

OPENMP 8

OPENMP 16

What Next?

• Large risk for production app

– Threading

• How far will tiling get us?

• Developer programming mechanism?

• Top level threading vs loop threading?

• Threading performance?

• Thread correctness checking tools essential !!

– Accelerators

• Need to rewrite (almost) all algorithm implementations

• Explicit memory movement needed?

• However, progress can be made
– Data layout

– Thread safety

- Serial algorithm improvements

- Sustainable performance tests

Code 2:
Threading Options & Performance in

Sierra/Solid Mechanics
• Thread the linear peridynamics material model internal force

algorithm

– Message Passing Interface (MPI)
– Threading Building Blocks (TBB)
– Thread Pool (TPI)
– OpenMP (OMP)

• Strong scaling on a per node basis

• Weak scaling on a per node basis

• Weak scaling on larger, multi-node, problems

• Qualitative evaluation of code complexity
– Implementation
– Maintainability

Peridynamics is available in Sierra/SolidMechanics
for the modeling of material failure

Brittle fracture simulation

Threading Implementations

• Three phase
– Compute dilatation
– Compute element force, store to element, cache for neighbor (reduction)
– Write neighbor forces

• Increase in memory footprint, copy of neighbor forces

• OpenMP
– Easy to augment code - 5 #pragma statements
– Manual vector reduction across threads

• Threading Building Blocks
– 2 new classes, 2 methods each – dilatation and force calculation
– Built in vector reduction operator

• ThreadPool (a pthreads-based library within Trilinos)
– Manual initialize, join, computation of workspan - 1 struct, 5 new methods
– Built in vector reduction operator

Summary of Scaling Results

• Simple rotating plate test problem

• Threaded models can offer up to 25% speedup over strictly mpi
runs on a single node

• For problems that do not contain contact
– Typical solid mechanics problems with contact spend 15-20% of time in

internal force algorithm

• Problem size dependent – the larger the better

• Compiler dependent, gcc 4.4.4 and intel 11.1

Per Node Strong Scaling

Per Node Weak Scaling

Conclusions

• Significant difference in level of effort to implement various
threading models (Kokkos might alleviate this)

• Increased difficulties debugging threaded code

• Threading offers a significant decrease in communication costs
on a per node basis

• Had to choose one, OpenMP
– Standard, widespread
– Similar performance as TPI

• Performance gains on a per node basis can be significant
(problem and compiler dependent)

Unanswered Questions
• How well do these models scale to higher core counts?

• How easy would it be to add threading to more complex internal
force routines?

• We need more scaling data and a determination of where
Sierra/SM would benefit the most from threading.

• How does threading other, more performance critical, areas of
the code (e.g. contact) impact performance?

• What data structure changes are required to use gpus instead of
multi-cores cpus?

Code 3: Adding Threads in CUBIT for
Shared Memory Parallel Mesh Generation

• OpenMP at Local Hot-Spots of Surface & Volume
Meshing

• ThreadPool for Global Parallelism of Surface
Meshing

Common Work Flow in CUBIT

Create/Imp
ort CAD
Model

CAD Repair

Geometry
Decomposition

Mesh Sizing &
Scheme

Mesh
Generation

Boundary
Conditions

Refinement,
Smoothing,
Quality,…

Export Mesh

Imprinting
& Merge

Defeature

sweep

Hot-Spots in Mesh Generation

CAD Repair

Mesh Sizing &
Scheme

Post-meshing:
Refinement,
Smoothing…

CGM
(ACIS…)

Memory
Manager

Graphics
(VKI…)

Mesh
Database

Math
Library

GUI
(QT…)

I/O

Mesh
Quality

(VERDICT)

95% hex
meshes
generated via
sweep
scheme

strider

equal

tri_del

tri_adv
pave

tetmesh

mapper

Performance

Nodes in
Million

Serial
Hot Spot
Time

Serial
Total Time

Parallel
Hot Spot
Time

Parallel
Total Time

1.6 20 31 6 17

2.73 41 61 12 30

3.95 68 95 20 46

4.69 85 120 24 62

6.7 138 474 40 318

OS: Windows 7 (64bit)
Hardware: Quad-core Intel Xeon CPU X5450 @ 3 GHz, 4 GB RAM

Speedup

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8

Hot Spot Speedup

Total Speedup

Number of nodes in million

S
pe

ed
up

OS: Windows 7 (64bit)
Hardware: Quad-core Intel Xeon CPU X5450 @ 3 GHz, 4 GB RAM

Surface Mapper (Serial & Parallel)

i

j

i

j

Old Serial Method New Parallel Method

Mapped Mesh in Parametric Space Mapped Mesh in World Space

Types of Programs

Data Data

Serial Parallel Nested Parallel
(parallel in both i

& j)

Data

Parallel Program on Very Fine Grain

Volumes: 125

Surfaces: 750

Mesh size: 0.25 to 0.075

Nodes: 1.2 to 13.27
million

Speedup in Very Fine Grain Data

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

Number of nodes in million

Build/Import
CAD Model

CAD Repair

Geometry
Decomposition

Mesh Sizing &
Scheme

Mesh
Generation

Boundary
Conditions

Post-meshing:
Refinement,
Smoothing…

Export Mesh

CGM
(ACIS…)

Memory
Manager

Graphics
(VKI…)

Mesh
Database

Math
Library

GUI
(QT…)

I/O

Mesh
Quality

(VERDICT)
Imprinting
& Merge

Defeature

Major Bottlenecks in Threading:
Ordering, Interdependency,& Thread Safety

sweep
map

strider

pave

tri_del

tri_adv

tetmeshequal

Surface meshing
computationally
expensive

Solutions to Bottlenecks

•Ordering
– Use bottom-up instead of depth-first traversal

• Interdependency
– Disable non-critical information reporting

– Use native system memory manager

•Non-thread safety
– Wrap geometry kernel in a thread safe interface using

locks

– Replace global data using local data

– Handle all graphics, GUI, and mesh database access in
master thread, and perform meshing in slave threads

Solution for Ordering

Old Ordering:
Depth-First

New Ordering: Bottom-Up

Volume
Surface
Curve
Vertex

Model

Results

Windows 7, AMD Four Core Machine

Number of Surfaces Type Speed Up
6 Planar 3321 9300 2.8

66 Planar 19279 62989 3.27
182 Mixed* 28048 68068 2.43

Paving
Number of Surfaces Type Serial (quads/sec) Parallel (quads/sec) Speed Up

6 Planar 2459 7092 2.88
66 Planar 15086 48116 3.19

182 Mixed* 5914 13497 2.28
* Mixed = Planar, Periodic, Spline

Tri Meshing
Serial (tris/sec) Parallel (tris/sec)

Future Work

• OpenMP

– Explore other OpenMP clauses and directives

– Parallelize other hot-spots: mesh quality, geometry,
associativity, diagnostics, imprint and merge, CAMAL
smoother, layer-by-layer paving, and import/export
mesh

• ThreadPool

– Improve thread safety

– Enable information reporting

– Remove CUBIT memory manager

– Parallelize other algorithms such as volume meshing

Conclusion

• OpenMP

+ small developer time for a relatively big gain in
speedup

+ good for domain decomposition at hot-spots

+ easy maintenance as serial and parallel share same
code

- requires detecting hot-spots in the algorithm

• ThreadPool

+ fine control on task decomposition (graphics,
meshing, …)

+ no need to understand details of the algorithm

+ good scalability can be achieved

- requires significant refactoring to achieve thread safety

