SAND2011- 8645C

Results of Software Threading
Experiments in ASC Codes

November 16, 2011
Sue Kelly for
Richard Drake, Alex Lindblad, and W. Roshan Quadros

Abstract: The number of CPU cores per processor in computer systems continues
to increase and the MPIl-everywhere approach will likely not be sustainable. One
approach that might make more efficient use of the processor resources is to
incorporate threads into the programming model. The ASC codes are large and
complex. A massive re-write or re-factoring to use threads is daunting. Several
code teams at Sandia were tasked to introduce threading into some kernel or
subset of their ASC code. The purpose of which was to better understand how to
program threads and the impact of threads on their code. This talk will provide a
summary of the approaches and results for three of the experiments.

T VAL =37
VA

tional Nuclear Security Administ

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National National

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, @ Sandia
Nuclear Security Administration under contract DE-AC04-94A185000. Laboratories

=

CODE 1: Add (Some) Threading into ALEGRA

- ALEGRA:
— Operator-split coupled physics (explicit
hydro & implicit magnetics)
— Mostly “old school” C++ and some
FORTRAN; many third party libraries

» Goal: add threading to material loop and
examine performance
» Objectives:
— Gain knowledge about adding threading to ALEGRA
— Bring out performance issues when using threads
— Compare performance on a few machines

Sandia
National
Laboratories

Thread an Element Loop with OpenMP

Serial:

OpenMP:

for (itr = elements.begin();
itr 1= elements.end();
++itr)
{
Element* el = *itr;
// bunch of code...
Update Material_State(el);

}

* Not shown:
e Thread chunk decomposition
* Issues:
* Private variables
* Accumulation variables
 Data race conditions (!)

int thread_idx;

#pragma omp parallel for private(thread_idx)

for (thread_idx = 0;

thread_idx < num_threads;
++thread_idx)

{
itr = thread_chunk[thread idx];
itr_end = thread_chunk[thread_idx+1];
for (; itr I=itr_end; ++itr)

{
Element* el = *itr;
// bunch of code...
Update Material _State(el);

}
}

(&)

Sandia
National
Laboratories

Thread an Element Loop with ThreadPool*

Serial:

for (itr = elements.begin();
itr 1= elements.end();
++itr)
{
Element* el = *itr;
// bunch of code...
Update Material_State(el);

}

» Same: thread chunking, race condition
1ssues, accumulation variables

* New: Transferring local variables to
threads requires additional coding and
restructuring

ThreadPool:

*ThreadPool is a pthreads-based
library within the Trilinos library

struct Args {
vector<THashList::iterator> * chunks;
UnsDynamics * reg;
State COMMIT_STATE;
... Il other arguments

J#

void work_kernel(TP1_Work* work) {
Args* args = (Args*) work->info;
itr = args->chunks[work->rank];
itr_end = args->chunks[work->rank+1];
for (; itr 1= itr_end; ++itr)
{
Element* el = *itr;
/I bunch of code...
Update_Material_State(el);

}
}

{
Args args(chunks, reg, COMMIT_STATE, ...);

TPIl_Run(work_kernel, &args);
}

ia
@_%tﬂignal
Laboratories

Y

Timings for
Threaded Material Update Loop

Material Loop, Weak Scaling (5k), Muzia

—

ﬂ

0.6
(3] Analytic omP
G-© Fiducial
N [(3E] Table oMP
b 0 4 G—o Fiducial
v [3E] simple OMP
§ G-© Fiducial
|_
©
0.2 1
© ©
0.0 32 8 16
Tasks
Material Loop, Weak Scaling (40k), Muzi
6, j j j |
S S}
[3=] Analytic omp
(G-© Fiducial
n 4r [3E] Table OMP
— G-© Fiducial
v [3E] simple oMP
g (3G-© Fiducial
|_
2r = - o]
03 4 8 16
Tasks

5 Material Loop, Strong Scaling, Muzia

[3] Analytic OMP
(-© Fiducial
[3H=] Table OMP
(G-© Fiducial
[H=] Simple OMP
(-© Fiducial

1 4 8 16
Tasks Muzia is a Cray XE6
Material Model Types: with dual socket 8-core

AMD Magny-cour CPUs

Sandia
National
Laboratories

 Analytic: Lots of computation
 Table: Tabular lookup and interpolation
* Simple: Very little computation

Threading an Element
Assembly Loop (A Scatter)

for (int phase = 0; phase < 2; ++phase)
{

int thread_idx;
#pragma omp parallel for private(thread_idx)
for (thread_idx = O;
thread_idx < num_threads;
++thread_idx)

Decompose into twice

the number of threads” {
int part = 2*thread_idx + phase;
itr = thread_chunk[part];
itr_end = thread_chunk[part+1];
for (;itr!=itr_end; ++itr)
{
Element* el = *itr;
Node** nds = el->Nodes();
/l read/write node data, read elem data

___________________________________ Barrier }
}
G G G G Pass?2 }

National
Laboratories

* Used Zoltan with 1D RCB _
@ Sandia

\

Force Assembly Loop Performance

Force Assembly, Muzia

Force Assembly, RedSky

— 3* E

7p] [4£] oMP weak 40k —_

el . . wn

O (-© Fiducial Weak 40k — [FE] OMP Weak 40k

c 3] oMP strong 40k GE) 1.0 G-© Fiducial Weak 40k

— I i i . = 3] oMP Strong 40k

= 2 (G-© Fiducial Strong 40k = -0 Fiducial Strong 40k
[3£] oMP weak 5k [FE] oMP weak 5k
G-© Fiducial Weak 5k 0.5 G-© Fiducial Weak 5k

17 .
007 1 6 8
0 Tasks
1 4 8 K 16 RedSky is a Sun cluster
Tasks with dual socket/quad core,

Intel Nehalem CPUS

Sandia
National
Laboratories

MPI & Threading Combinations
(Barrett & Vaughan)

A

* Used the “miniapp” called MiniGhost

* Stencil based PDE solver
* Weak scaling with different number of threads per MPI rank

MiniGhost with OPENMP on Muzia MiniGhost on RedSky with OPENMP
18 12
17 4 15 /
16 OPENMP 2 1
N—" —+— OPENMP 4
15 —— OPENMP 8
—e— OPENMP 16 105
14 10

Time

13 95 /‘// //
—

P

// —=—MPI
101 8 OPENMP 2
/ —— OPENMP 4
ol 75 —— OPENMP 8
8 7
16 32 64 128 256 8 16 32 64 128 256 512 1024
Number of Cores Number of Cores

Sandia
National
Laboratories

- off

 Large risk for production app

— Threading
* How far will tiling get us?
* Developer programming mechanism?
* Top level threading vs loop threading?
* Threading performance?
* Thread correctness checking tools essential !!

— Accelerators
* Need to rewrite (almost) all algorithm implementations
« Explicit memory movement needed?

 However, progress can be made

— Data layout - Serial algorithm improvements
— Thread safety - Sustainable performance tests @ Sandia

What Next?

National
Laboratories

,'}'

Threading Options & Performance in

Code 2:

Sierra/Solid Mechanics

» Thread the linear peridynamics material model internal force

algorithm

— Message Passing Interface (MPI)
— Threading Building Blocks (TBB)
— Thread Pool (TPI)

— OpenMP

(OMP)

 Strong scaling on a per node basis
* Weak scaling on a per node basis
* Weak scaling on larger, multi-node, problems

 Qualitative evaluation of code complexity
— Implementation
— Maintainability

Brittle fracture simulation

—

Peridynamics is available in Sierra/SolidMechanics
for the modeling of material failure

(&)

Sandia
National
Laboratories

Threading Implementations

 Three phase
— Compute dilatation
— Compute element force, store to element, cache for neighbor (reduction)
— Write neighbor forces

 Increase in memory footprint, copy of neighbor forces

« OpenMP
— Easy to augment code - 5 #pragma statements
— Manual vector reduction across threads

* Threading Building Blocks
— 2 new classes, 2 methods each — dilatation and force calculation
— Built in vector reduction operator

* ThreadPool (a pthreads-based library within Trilinos)

— Manual initialize, join, computation of workspan - 1 struct, 5 new methods

— Built in vector reduction operator
Sandia
National
Laboratories

ral

Summary of Scaling Results

« Simple rotating plate test problem

 Threaded models can offer up to 25% speedup over strictly mpi
runs on a single node

* For problems that do not contain contact
— Typical solid mechanics problems with contact spend 15-20% of time in
internal force algorithm

* Problem size dependent — the larger the better
« Compiler dependent, gcc 4.4.4 and intel 11.1

Sandia
National
Laboratories

Per Node Strong Scaling

Total Run Time - gnu vs intel - 10k

——TPIl-gnu
= TPl-intel
——TBBgnu | |
= TBB-intel
T OMP-gnu
~ OMP-intel | .
—MPIl-gnu
~ MPl-intel

500

Time (seconds)
[y}
L}
L}

£
o
=]

300 : e U —— R o

200

100 i i i i i i

1 o 3 4 5 6 7 g Sandia
Num Processors National _
Laboratories

Per Node Weak Scaling

Total Run Time - gnu vs intel - 5k .. 40k

w N o @
=] (=) S =]
T]

™
[=]

Normalized Time (seconds/1000 elements)

10

——TPl-gnu

_______________ | > TPHintel

——TBB-gnu
—~ TBB-intel

AR ——0OM P—gnu

—~ OMP-intel
——MPI-gnu

....................... ‘O‘M_Pl—intel

Num Processors

(&)

Sandia
National
Laboratories

+ Significant difference in level of effort to implement various
threading models (Kokkos might alleviate this)

Conclusions

* Increased difficulties debugging threaded code

* Threading offers a significant decrease in communication costs
on a per node basis

* Had to choose one, OpenMP
— Standard, widespread
— Similar performance as TPI

* Performance gains on a per node basis can be significant
(problem and compiler dependent)

Sandia
National
Laboratories

'p‘ \
Unanswered Questions

 How well do these models scale to higher core counts?

« How easy would it be to add threading to more complex internal
force routines?

 We need more scaling data and a determination of where
Sierra/SM would benefit the most from threading.

 How does threading other, more performance critical, areas of
the code (e.g. contact) impact performance?

 What data structure changes are required to use gpus instead of
multi-cores cpus?

Sandia
National
Laboratories

V
-~
A 3: Adding Threads in CUBIT for

Shared Memory Parallel Mesh Generation

* OpenMP at Local Hot-Spots of Surface & Volume
Meshing

e ThreadPool for Global Parallelism of Surface
Meshing

Sandia
National
Laboratories

g
}‘ Common Work Flow in CUBIT
. Create/Imp

Export Mesh

. ort CAD
CAD Repair Boundary
. ot
Refinement,
Geometry Smoothing,

NecompositiQy Quality,...

Imprinting
& Merge

WY [
Generation

Defeature

esh Sizing & >
SCheme

(&)

Sandia
National
Laboratories

V
ﬂlot Spots |n Mesh Generation

95% hex

Post-meshing;:
Refinement,

Mesh Sizing &
Scheme

\

Performance

Nodes in Serial Serial Parallel Parallel

Million Hot Spot Total Time |Hot Spot Total Time
Time Time

1.6 20 31 6 17

2.73 41 61 12 30

3.95 68 95 20 46

4.69 85 120 24 62

6.7 138 474 40 318

OS: Windows 7 (64bit)
Hardware: Quad-core Intel Xeon CPU X5450 @ 3 GHz, 4 GB RAM

Sandia
National
Laboratories

4
3
2.5

2 ./?'*.\- ——Hot Spot Speedup
15 -=-Total Speedup

Speedup
o
&)

O I I I]
0 2 4 6 8

Number of nodes in million

OS: Windows 7 (64bit)
Hardware: Quad-core Intel Xeon CPU X5450 @ 3 GHz, 4 VI

National
Laboratories

Surface Mapper (Serial & Parallel)

P »
e == — =) ®

1

1—

Old Serial Method

a
A
|
I
I
| ®
I

|

e -
A A]
| |
| |
| |
| |
| |
1]

Mapped Mesh 1n Par Tmetrlc Space Mapped Mesh 1n World Space
A
|
|
|
|
|

1—

New Parallel M

dndia
National
Laboratories

Types of Programs

Serial Parallel Nested Parallel
(parallel in b tude

National

&) Laboratories

Parallel Program on Very Fine Grain

Volumes: 125
Surfaces: 750
Mesh size: 0.25to0 0.075

Nodes: 1.2 to 13.27
million

Sandia
National
Laboratories

} Speedup in Very Fine Grain Data

1.4

1.2

0.8

0.6

0.4

0.2

4 6 8 10 12 14

Number of nodes in million

Sandia
National
Laboratories

ajor Bottlenecks in Threading:
Ordering, Interdependency,& Thread Safety

Surface meshing

Build/Import]
Doy computationally
oD Model - expensive

RN

: Y Boundary
CADR , -
e Conditions

)

Geometry i NP 0st-meshing?
Decompositigh N i Refinement,

Imprinting

& Merge

—_— e mm mm =

=X 4
* Solutions to Bottlenecks

*Ordering

— Use bottom-up instead of depth-first traversal

Interdependency
— Disable non-critical information reporting
— Use native system memory manager

* Non-thread safety

— Wrap geometry kernel in a thread safe interface using
locks

— Replace global data using local data

— Handle all graphics, GUI, and mesh database access in
master thread, and perform meshing in slave threads

Sandia
National
Laboratories

2
Solution for Ordering

Volume
++ Surface
' Curve
Vertex
——
——
——
——
——
——
——
——

Old Ordert
ring:
Depth-First New Ord
rdering: Botto
; m-Up
@ Lﬁa;&lflriga?tllﬁes

\

Results

Windows 7, AMD Four Core Machine

Tri Meshing
Number of Surfaces | Type @ Serial (tris/sec) Parallel (tris/sec) Speed Up
6 Planar 3321 9300 2.8
66 Planar 19279 62989 3.27
182 Mixed* 28048 68068 2.43
Paving
Number of Surfaces | Type Serial (quads/sec)| Parallel (quads/sec)) Speed Up
6 Planar 2459 7092 2.88
66 Planar 15086 48116 3.19
182 Mixed* 5914 13497 2.28

* Mixed = Planar, Periodic, Spline

(&)

Sandia
National
Laboratories

Future Work

- off

* OpenMP
— Explore other OpenMP clauses and directives

— Parallelize other hot-spots: mesh quality, geometry,
associativity, diagnostics, imprint and merge, CAMAL
smoother, layer-by-layer paving, and import/export
mesh

* ThreadPool
— Improve thread safety
— Enable information reporting
— Remove CUBIT memory manager
— Parallelize other algorithms such as volume meshing

Sandia
National
Laboratories

- off

Conclusion
* OpenMP
+ small developer time for a relatively big gain in
speedup

+ good for domain decomposition at hot-spots

+ easy maintenance as serial and parallel share same
code

- requires detecting hot-spots in the algorithm

* ThreadPool

+ fine control on task decomposition (graphics,
meshing, ...)

+ no need to understand details of the algorithm
+ good scalability can be achieved

- requires significant refactoring to achieve thread tV..

National
Laboratories

