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Monitoring for Nuclear Explosions
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WORLDWIDE NUCLEAR TESTING:
ATHMOSPHERIC AND UNDERGROUND 1945-2009
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Improve Accurracy and Precision of
Seismic Event Locations
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Tomography

3D Velocity Model &
Model Covariance Matrix

3D Travel Time Model
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& Performance Testing

R&D

OPS



Earth Model Representation
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Variable Resolution in
Geographic and Radial
iIimensions

South Atlantic Mediterranean

P Velocity (km/sec)
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Pseudo Bending
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Um, J. and C. H. Thurber (1987). A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Am., 77, 972-986.
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Ray Tracing with Bender

P Velocity
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Starting Model
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Tomographic Procedure — Event Relocation
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Relocation
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Model Resolution

Diagonal of Resolution Matrix
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SALSA3D
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SALSA3D
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SALSA3D
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Validation Events — Left out of tomography
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Residual (s)

Travel Time Uncertainty — Traditional Approach
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Model Covariance Matrix
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Travel Time Uncertainty
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Model Covariance Matrix Decomposition
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TT Variance (sec?)
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Travel Time Uncertainty
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Travel Time Uncertainty
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Travel Time Uncertainty
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3D Travel Time Lookup Tables

* TT relative to AK135:

« 3D model

« Empirical correction
* TT Uncertainty

* Derivatives
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Summary

The SALSA3D model is designed for improving travel time
prediction.

Data come from a dedicated location database produced
from collecting existing GT events and mining the
database for additional.

Final observations are produced from clustering arrivals
based on ray similarity.

Full Tomographic Procedure:

Ray tracing before each iteration of LSQR,

Adaptive grid refinement using the model resolution matrix,
Relocation of original data using interim model,

Clustering and outlier removal,

Repeat of process from the beginning using the starting
model

Travel time uncertainty calculated using the full model
covariance matrix.

Path dependent uncertainty



Future Work

= Further data quality control

= New phases: pP, PKP, S

= Simultaneous inversion: gravity, surface
waves, etc.

= Calibration of travel time uncertainty

= Operationalization: Lookup tables

= Travel time, uncertainty, empirical corrections,
derivatives



