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The Need for Smart Materials and Structures

Definition

A Smart Material exhibits a significant response to a specific stimulus.
SAs may be incorporated into a Smart Structures which sense changes
to the environment and actively respond

Vibration Control

Self-Healing and NDE
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Diverse Mechanically Active Polymers

Photo-Induced Stress Relaxation Deformation Induced Crack Healing
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Outline

* Motivation

* A Specific System
* Photo-Origami

« Summary
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i Photo-Induced Network RearrangemJ’t@

Network Behavior UV Induced Stress Relaxation
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Radical-Rearranging Monomer
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Network Connectivity
Rearrangement

Radicals undergo addition/
fragmentation chain transfer
reactions at C=C sites on the
MDTVE

*  Coupling Radiative Transfer, Photo-Chemistry, Network Rearrangement, and Solid Mechanics

« Utilizing Unique Material Capabilities
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Model Framework ’
Initial Conflguratlon u* t* Irradiated Configuration

Strain Energy Network Evolution
Functional Initial
Altered -

Current Configuration
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Multi-Physics Model Summary ’

First-Order Photochemistry

Radiative Transfer or Maxwell
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Photo-Mechanical Surface Manipulation

Tunable Buckling

, Long, et al. 1JSS 2011
Localized Photo-Induced Creep :

Kloxin, ef al. Adv. Mat. 2011
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Photo-Origami Basics: Bending
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Photo-Origami Basics:
Effects of Initiator Diffusion
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Photo-Origami Basics:
Folding of a Hinge
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Photo-Origami in 2D

Step 1. 20% Step 2. Irradiation Step 3. Flip the Film.
Uniaxial Extension Through 0.75 mm Mask The Stress Relaxation
of an Optically Varies with Depth

Thick Film P B

_ Step 4. Uniaxially Extend
Bottom-Side Up the Film by 7.5% o

\

Step 5. Irradiate 6.3 mm
Zones Spaced 1.5 mm
from the Center
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Photo-Origami in 3D: Programming a Box

Step 1. 20% Step 2. Irradiation
Uniaxial Extension Through 0.75x5 mm
of an Optically Slits Spaced 6 mm
Thick Film in x

Three Affected Regions

Step 5. Release Step 6. Cut Out “Cross”
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Step 3-4. Uniaxially Extend the Film by 20% in
the y direction. Irradiate through 0.75x4 mm Slits

Space 6 mm Apart. IMECE 2011, Soft Materials Mechanics, Santia
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3D: Programming a Box

igami in

Photo-Or

Finite Element Modeling
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Consequences of Different Protocols
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Summary and Future Work

 The intelligent combination of photo, chemical and
mechanical treatments results in an enormous design
space to shape active films

* The use of high fidelity simulations is essential to the
development of complex, 3D photo-origami structures
* Future work involves:
— The combination of photo-induced origami and elastic
instabllities
— The integration of photo-active films to smart composite
structures for sensing applications

IMECE 2011, Soft Materials Mechanics, Sandia
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Thank You! Questions?

Relevant Literature Contributions
* Ryu, J., et al. Photo-Origami. Submitted to Nature Materials
* Long, K.N., et al. 2011. Photo-induced deformation of active polymer

films: Single spot irradiation. International Journal of Solids and
Structures

* Long, K.N., et al. 2010. Light-Induced Stress Relief to Improve Flaw
Tolerance in Network Polymers. Journal of Applied Physics

* Long, K.N., et al. 2009. Photomechanics of Light-Activated Polymers.
Journal of the Mechanics and Physics of Solids

Contact
« knlong@sandia.gov
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sing Elastic Instabilities in Stress
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Photo-Induced Stress Relaxation to Improve Flaw Tolerance

Applied Extension — Phatomechanical Protocols
\ / |  Stretch 1%/min

\ I Hold and Irradiate
Uniform Tradiation \*\* Il Stretch 1%/min (no light)
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Experimental Results
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Strain % to Failure Stress at Failure

* Mean and Standard of Deviation of 12 specimens is shown
 Strain-to-Failure Increased by ~70% (p~108, n=12)
* Nominal Stress-at-Failure Increased by ~30% (p=0.0013, n =12)
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No Irradiation
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