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Dynamic Experiments

What are you trying to do in this
task?

*Develop experimental techniques and
diagnostics for understanding material
response at high pressures and strain rates

*Obtain high quality experimental data on
materials of interest for development of new
models as well as calibration and
verification of existing models

What makes you think you can
do it?

» Extensive and unique shock physics
capabilities and expertise

*Experience with composites and other
heterogeneous materials

What difference will it make?

« Phenomenology and high-quality data
needed for improved continuum
models for composite materials

« Better temperature measurements will
lead to improved EOSs and
understanding of reaction of
energetics

What / When / To Whom Will You
Deliver?

*Report on full CFRP data set (FY12)
*SAND report available to TCG

*Reflectivity based temperature
diagnostic for DoD use (FY13)

*TRL: 3 (composites), 1 (reflectivity)



Development of dynamic
temperature diagnostics

Goal:
Develop a new technique to measure
temperature during dynamic experiments

Motivation:

« Temperature measurements needed
for improved EOS models and for
understanding reaction of energetics

« Embedded gauges (e.qg.
thermocouples) have poor time
resolution, disturb experiment, require
wire leads, and are difficult to use in
EM environments

» Pyrometry is light-starved at low to
moderate temperatures (<1000 K)

Sub-Task Lead:
Dan Dolan
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Dynamic Behavior of Composite
Materials

Goal:

Obtain shock data to characterize the m@’ E:::::::::
anisotropic response of fiber composite - j;f/ :::::;::::
materials for development of advanced gw ;Z;:::E:!;
EOS and constitutive models TW et
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Hexcel Prepreg Technology Guide
Publication No. FGU 017b
March 2005



90° (shock normal to fiber direction)
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CFE (68% fill, 0 deg fibers)
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« Material behaves differently under through thickness and

fiber direction loading

* The vast majority of models in the dynamic regime assume
Isotropic behavior, especially for shock behavior
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Dynamic response of epoxy
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* Fiber stiffens matrix at low-intermediate pressures (up to ~10 GPa)
» Response appears to become isotropic at higher pressures
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3 Fill volumes between 62 — 68% have ¢

similar dynamic response

CFE (62, 68% fill, 0 deg fibers)
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* 62% fill material shows similar dynamic response

« Samples tested are maximum and minimum manufacturable fill for this
composite

* Testing will not be performed on 65% fill material



* 65% volume fraction characterization will not
be completed

cross-fiber (x45°) to probe more complex
material behavior

* Spa” sample
N
* pressure-shear 0
- validation tests § &i
= ufs
* GFRP
e

2.1 Final report on CFRP Q4 FY12

experimentation




Anisotropic EOS Model Development

Current efforts are focused on polymer matrix
composite anisotropic EOS model

Macroscopic shock response from fiber and matrix

constituent data using micromechanics

Generate model at the macroscopic level to
capture shock in an anisotropic material 55
Using micromechanics to develop G
directional EOS response .
— Previously generated directional EOS response “g

curves based on bulk composite ° 4
— Investigates fiber and matrix EOS decomposition

Validating micromechanics with experiments

— 68% fiber volume transverse and longitudinal 3
— 62% fiber volume transverse and longitudinal

U
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— Specimens for testing — ARL, LJ Holmes
— Glass and Vinyl Ester/Phenolic
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Continued work with LANL on stochastic field analysis

— Working with Todd Williams to verify concept for CTH



Anisotropic EOS Model Development -
Microscopic

Developed microscopic models i,o.-....
for unidirectional materials oeete’e%
— 62%, 65% and 68% FV eetetetee

. . . O
Uniform fiber arrangement in leeetets
matrix Petee®etee
. . . . OSSP C
Using matrix and fiber material R
properties can generate R
composite response RO
Validation performed by Petitees

experiments

MCM model also captures the
directional shock behavior

comparing model results to ,/




Anisotropic EOS Model Development -
Macroscopic

Polar Plot of Normalized Shock Velocity for Unidirectional Composites

 Multi wave material response
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— Strong elastic wave from 0° to ~45° | 2
— Plastic dominated from ~45° to 90° 3 \
* Matches bulk matrix response - X °
« Elastic wave response follows
material rotation/transformation
« MCM coupled EOS captures
rotated bulk composite response
. Validating micromechanics models SR e
with MCM coupled response, Lwm T e

experimental data and literature

 Results of above used to develop
EOS constituent decomposition —
Multicontinuum EOS
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Transverse 68% Results

Particle Velocity - Transverse Shots
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Longitudinal 68% Results

Particle Velocity - Longitudinal Shots
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