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Exploring Extreme States of Matter with Pulsed Power
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Compression Path Changes the Implosion Dynamics

Electrical Conductivity vs Pressure for Beryllium
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Diamond Turned Beryllium Liner

Liner Dimensions

m Liner Height:
1.0cm

m Outer Radius:
0.29mm

m Aspect Ratio:
4
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Magnetohydrodynamic Drive Pulse Shaping

n
t 1 -~
CLN " -
T, —-—-—-—;f--_
r C_l "o :
2o |
Z i
Xo Xs X

Given an isentrope P, (Cy,) defined between reference state Py and
final pressure Py, the shockup distance, s, is determined from the
rise time 7, and the range of Lagrangian sound speeds C;,:

xs = 7rCnCro/ (Cen — Cro)

The isentropic pressure drive P, (t,) is then determined from:

tn ~ tr = Xs [Cuw (Pn) = Cin (Pn)]/ [Cun (Pw) Cin (Pn)]



Shaped Current Pulse Determined From Beryllium EOS

Shaped and Unshaped Current Pulse Comparison
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Radial VISAR diagnostic
measures inner surface
velocity

MITL and stack B-dot probe
current measurement

Load current VISAR to
detect current loss
Z-Beamlet backlighter with
two-frame 6.151 keV
monochromatic imaging
Fuji BAS-TR2025 image
plate detector with ~ 15um
spatial resolution after
magnification

Diagnostic Suite for Solid Liner Experiment

Spherical Crystal




Liner Experiment Radiographs
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Liner Experiment Radiographs
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Liner Experiment Radiographs
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Liner Experiment Radiographs
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Liner Experiment Radiographs

22208, 2=3052.1ns
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Liner Experiment Radiographs

22210, t2=3053.2ns
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Abel Inverted Density Profiles Validate Simulation

ALEGRA 2D liner densities vs. R
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m Density profiles are Abel inverted from axially averaged and
normalized intensity profile

m Mean opacity is estimated from known initial line mass of the
target and the measured total attenuation

m MHD simulation is driven with VISAR unfolded load current

and initialized with measured surface roughness
(i) i e FVA IS
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Structure of Imploding Liner at Multi-Megabar Pressures

22210 abel inversion t2 + 2D Alegra results
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3D Multiphysics Alegra Simulation of Liner

m 360° Rad-MHD simulation {=3068 ns
using 30,000 cores on Cielo
supercomputer

m Inner surface of liner remains
solid and is unperturbed by
Magneto-Rayleigh-Taylor
instability

m Structure of MRT instability
is inherently 3D and couples
into field diffusion rate

density iso-surface 1.e3 kg/m**3 t=3068 ns

m For more results on MRT
instability in magnetically
imploded cylinders, see
McBride talk (UO8.00011)
in ICF and Magneto-Inertial ) B
Fusion session Thursday () 9 NYSA




Direct Comparison of Experiment to Synthetic Diagnostics

ALEGRA 3D; 360 deg cylinder 22210_zbl_t2 measured radiograph
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Lagrangian Surface Fitting Analysis

Conservation of mass and momentum:

Dp
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Transform into 1D Lagrangian cylindrical coordinates:

dm = 2nl,prdr

o o (ruy)
E = 27TLZ am
ou, oP
= —2nlro—
ot 2 om
& @ NISA



Lagrangian Surface Fitting Analysis
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Solve semi-discrete equations on mass grid:
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Comparison of Surface Fitting Analysis to Previous Data

Cylindrical Be liner ICE Pressure vs. Density
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m Radial velocity diagnostics

will greatly reduce
uncertainties and remove
the opacity constraint of
radiographic diagnosis

Pulse shaping allows for the
study of instability growth in
previously inaccessible areas
of the EOS

Explore stagnation time
mixing of liner interface with
a gas or liquid fill

Future Applications of Solid Liner Implosions
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Conclusions

m Presented a new cylindrical ICE platform that has achieved the
highest pressure results to date on the refurbished Z-machine,
quasi-isentropically compressing beryllium to =~ 6.0 Mbar

m Demonstrated that surface fitting analysis in conjunction with
multi-frame monochromatic radiography and reproducible
pulse shaping allows for the inference of the pressure state
inside a ramp compressed sample

m Utilized massively parallel 3D multiphysics simulation to
understand the structure and dynamics of solid liner
implosions

m Future experiments with radial VISAR measurement are
possible at pressures greater than 10 Mbar



