skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fuel age impacts on gaseous fission product capture during separations

Technical Report ·
DOI:https://doi.org/10.2172/1111567· OSTI ID:1111567

As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ – the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel types—pressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)—several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have relatively short half-lives, 12.3 y and 10.7 y, respectively, the dose decreases with the time from when the fuel is removed from the reactor to the time it is processed (herein “fuel age”). One possible strategy for limiting the discharges of these short halflife radionuclides is to allow the fuel to age to take advantage of radioactive decay. Therefore, the doses and required DFs are calculated as a function of fuel age. Here we calculate, given the above constraints and assumptions, the minimum ages for each fuel type that would not require additional effluent controls for the shorter half-life volatile radionuclides based on dose considerations. With respect to 129I doses, we find that the highest dose is calculated with iodine as a fine particulate. The dose scales as the fraction of the total 129I that is particulate. Therefore, we assume for all of our calculations that 100% of the 129I is particulate and allow the user of the results given here to scale our calculated doses to their needs. To summarize the data given in the body and appendices of this report, we find that the principal isotopes of concern are 3H and 129I, the latter requiring the highest DFs. The maximum DF value for 129I is 8000 for the illustrated cases. The required DF for 3H could be as high as 720, depending on the age of the fuel processed. The DF for 85Kr could be up to ~60, depending on fuel age. The DF for 14C is in many cases 1 (no treatment required) but could be as high as 30. The DFs required are within the range of DFs that are reported for the capture technologies that are available for the volatile radionuclides. Achieving the required 129I and 3H DFs is more challenging. Variations in stack design and other design factors may also significantly impact the DF requirements.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1111567
Report Number(s):
PNNL-22550; AF5805000
Country of Publication:
United States
Language:
English