

# Corrosion in Supercritical Carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

---

Reactor Concepts RD&D

Dr. Kumar Sridharan  
University of Wisconsin-Madison

Sue Lesica, Federal POC  
Jeremy Busby, Technical POC



Final Report for Project:

# **Corrosion in Supercritical Carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues**

**Funded By:** U.S. Department of Energy in cooperation with Battelle Energy Alliance, LLC under their Prime Contract No. DE-AC07-05ID14517 (US Department of Energy, Nuclear Energy University Program)

**Project Investigators:** Dr. Kumar Sridharan (Principal Investigator), Dr. Mark Anderson, Dr. Todd Allen (University of Wisconsin-Madison)

**Project Contact:** Dr. Kumar Sridharan  
*kumar@engr.wisc.edu*

**Date:** December 10<sup>th</sup>, 2013

## Preface

This body of work reports research that was carried out in the Department of Engineering Physics at the University of Wisconsin – Madison under the direction and supervision of Dr. Todd R. Allen, Dr. Kumar Sridharan, and Dr. Mark H. Anderson. The work described in this report was undertaken by graduate students Jacob Jelinek and his predecessor, Paul Roman, under Funding Opportunity Announcement (FOA) DE-FOA-0000998 and RPA Identification Number RPA-10-318, Project Number 10-872, and Contract Number 102081 for the United States Department of Energy’s Office of Nuclear Energy (DOE-NE).

Part of the work contained herein has been published, and at the time of completing this project, some work was undergoing publication efforts. The publications were as follows:

1. Jelinek, J.J., Sridharan, K., Allen, T.R., Anderson, M., Firouzdor, V., and Cao, G. (2012). “*Corrosion Behavior of Alloys in High Temperature Supercritical Carbon Dioxide*”, NACE International.
2. Roman, P., Jelinek, J., Sridharan, K. Allen, T.R., Anderson, M., and Cao, G. (2013). “*Corrosion Study of Alloys in High Temperature, High Pressure Supercritical Carbon Dioxide for Brayton Cycle Applications*”, NACE International.
3. Roman, P., Sridharan, K., Allen, T.R., Anderson, M., He, L., and Leng, B. (2013). “*Effect of Aluminum and Yttrium PVD Coatings and Surface Modification by Shot Peening on Oxidation-Corrosion Resistance*”, Surface and Coatings Technology, to be published.
4. He, L., Sridharan, K., Allen, T.R., Anderson, M., Leng, B., and Roman, P. (2013). “*Corrosion Behavior of Alumina-Forming Austenitic Steels in Supercritical Carbon Dioxide*”, Corrosion Science, to be published.
5. Leng, B., Sridharan, K., Allen, T.R., Anderson, M., He, L., and Roman, P. (2013). “*Corrosion Behavior of 316L and 347SS in Supercritical Carbon Dioxide of Different Purity*”, Corrosion Science, to be published.

## Executive Summary

The supercritical CO<sub>2</sub> Brayton cycle is gaining importance for power conversion in the Generation IV Fast Reactor system because of its high power conversion efficiencies. When used in conjunction with a Sodium Fast Reactor for example, the supercritical CO<sub>2</sub> cycle offers additional safety advantages, by eliminating potential sodium-water interactions that may occur in a steam cycle. In power conversion systems for Generation IV Fast Reactors, supercritical CO<sub>2</sub> temperatures could be in the range of 300°C to 650°C or higher, depending on the specific component in the system. Materials corrosion particularly at the higher temperatures will be an important issue. Therefore, the corrosion performance limits for materials at various temperatures in supercritical CO<sub>2</sub> must be established. Additionally, it is also important to gain a fundamental understanding of mechanisms of materials corrosion in this environment that can guide the selection of alloys for supercritical CO<sub>2</sub> Brayton cycle applications and aid the development of models for long-term corrosion prediction.

In this project, the corrosion behavior of various candidate alloys was investigated in supercritical CO<sub>2</sub> at temperatures ranging from 450°C to 650°C for exposure durations of up to 1000 hours (in some cases up to 1500 hours). Most tests were performed at a pressure of 20MPa, although select tests were also performed at 8.27MPa to investigate the role of pressure on corrosion. Alloys investigated included ferritic steels NF616 (Grade T92) and HCM12A (Grade T122), and austenitic alloys IN800H, 347 stainless steel, and three grades of AFA alloys (alumina forming austenitics). AFA alloys, that contain small amounts of aluminum to promote alumina surface layer formation, were developed at Oak Ridge National Laboratory (ORNL) for high temperature oxidation resistance. Tests were performed in research grade (very high purity) and industrial grade CO<sub>2</sub>. Three types of surface treatments, namely, deposition of thin films (~500nm) of aluminum and yttrium, and shot peening were also investigated with the goal of enhancing corrosion resistance.

Evaluation of corrosion was performed using weight change measurements, scanning electron microscopy in conjunction with energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), and for select samples by transmission electron microscopy (TEM). These results are discussed in great detail in the report and in technical papers that have been written or being written on this work. In general ferritic steels exhibited the least corrosion resistance and at best suitable for the lower temperature regime of the temperature range investigated. AFA alloys exhibited better corrosion resistance and in general suitable for the intermediate temperature range, although there was a notable difference in the performance of the three AFA alloys tested. 347 stainless steel and alloy 800H were superior to the other alloys tested with alloy 800H exhibiting the best corrosion resistance. All three surface treatments resulted in notable improvements in corrosion resistance and warrant further investigation. Surprisingly, in many cases the alloys exhibited lower corrosion in industrial grade CO<sub>2</sub> compared to research grade CO<sub>2</sub>. We are tentatively attributing this improvement to the presence of small quantities of hydrocarbons in industrial grade CO<sub>2</sub> but this observation too warrants further investigation. In all evaluations of weight change and oxide thickness measurements statistical variations as well as other physical effects such as oxide layer spallation and carbon film deposition have been taken into account.

The findings of this research are being disseminated quite extensively in scientific journals, and conferences including National Association of Corrosion Engineers (NACE) Conference and National Supercritical CO<sub>2</sub> Power Cycle Conference. The project has also spawned collaborations with the supercritical CO<sub>2</sub> Brayton Cycle research programs at Sandia National Laboratories and Argonne National Laboratory, and U.S. industries working in this area. The project has provided a rich scientific environment for training and educating students. Over the three-year term of the project, two Master's Thesis degrees were awarded on this subject, and at least five undergraduate students were actively involved in various phases of this project. Three post-doctoral research associates were also involved in this project.

We thank the U.S. Department of Energy – NEUP program for providing the funding for this project.

## Table of Contents

|                                                            |     |
|------------------------------------------------------------|-----|
| PREFACE .....                                              | II  |
| EXECUTIVE SUMMARY .....                                    | III |
| TABLE OF CONTENTS .....                                    | V   |
| TABLE OF TABLES .....                                      | VII |
| TABLE OF FIGURES .....                                     | X   |
| 1. Literature Review .....                                 | 1   |
| 1.1 HIGH TEMPERATURE CORROSION OF ALLOYS.....              | 1   |
| 1.2 SUPERCRITICAL CARBON DIOXIDE .....                     | 6   |
| 1.2.1 Brayton Cycle Application .....                      | 6   |
| 1.2.2 Concentrating Solar Power (CSP) Application .....    | 8   |
| 1.3 CARBURIZATION AND METAL DUSTING .....                  | 9   |
| 1.4 HIGH TEMPERATURE OXIDATION- TEST METHODS & MODELS..... | 10  |
| 3. Test Setup and Procedure .....                          | 12  |
| 3.1. THERMOGRAVIMETRY .....                                | 12  |
| 3.1.1. Test Setup and Shakedown .....                      | 12  |
| 3.1.2 Gas Source.....                                      | 21  |
| 3.1.3 Autoclave.....                                       | 24  |
| 3.1.4. Sample Mounting Hardware .....                      | 28  |
| 3.1.5 Automation .....                                     | 30  |
| 3.1.6. Mass Spectrometer.....                              | 33  |
| 3.1.7. Test Procedure .....                                | 39  |
| 3.2. METALLIC COATINGS.....                                | 40  |
| 3.2.6. Sputterer.....                                      | 41  |
| 3.2.7. Coating Procedure.....                              | 42  |
| 3.3. SHOT PEENING .....                                    | 43  |
| 3.3.6. Peen Machine.....                                   | 44  |
| 3.3.7. Mounting Hardware.....                              | 45  |
| 3.3.8. Peening Procedure .....                             | 46  |
| 4. Test Materials and Sample Preparation .....             | 48  |
| 4.1. TESTED ALLOYS.....                                    | 48  |
| 4.2. SAMPLE GEOMETRY .....                                 | 53  |
| 4.3. SURFACE FINISH FOR THERMOGRAVIMETRY .....             | 54  |
| 4.4. SURFACE FINISH FOR TREATMENTS .....                   | 55  |
| 5. Reaction Kinetics and Surface Morphology.....           | 55  |

|        |                                                                         |     |
|--------|-------------------------------------------------------------------------|-----|
| 5.1.   | OXIDATION RATE EQUATIONS .....                                          | 55  |
| 5.2.   | EFFECT OF PRESSURE – EXPERIMENT 2 .....                                 | 61  |
| 5.3.   | EFFECT OF TEMPERATURE – EXPERIMENTS 3 THROUGH 5 .....                   | 66  |
| 5.3.1  | Temperature Dependence and Activation Energy.....                       | 123 |
| 5.4.   | EFFECT OF GAS PURITY – EXPERIMENTS 6 THROUGH 8 .....                    | 130 |
| 5.5.   | EFFECT OF SURFACE TREATMENT – EXPERIMENT 9 .....                        | 149 |
| 5.5.1. | Single Element Al Coating on 9-12%Cr Ferritic-Martensitics.....         | 149 |
| 5.5.2. | Single Element Y Coating on 9-12%Cr Ferritic-Martensitics.....          | 161 |
| 5.5.3. | Shot Peening on 9-12%Cr Ferritic-Martensitics.....                      | 167 |
| 5.5.4. | Comparison of Surface Treatments on 9-12%Cr Ferritic-Martensitics ..... | 178 |
| 5.5.   | ANALYSIS OF INTERFERENCE COLORS .....                                   | 180 |
| 5.6.   | STATISTICAL ANALYSIS TECHNIQUES .....                                   | 182 |
| 5.6.1. | Monitoring Individual Weight Gains using Control Charts .....           | 182 |
| 5.6.2. | Effect of Individuals on Average Weight Gain .....                      | 185 |
| 6.     | Summary.....                                                            | 189 |
| 6.1.   | Results and Conclusions .....                                           | 189 |
| 6.2.   | Future Work .....                                                       | 191 |
| 7.     | References .....                                                        | 193 |
| 8.     | Appendices .....                                                        | 200 |
| 8.1.   | INTERFERENCE COLORS.....                                                | 201 |
| 8.2.   | AVERAGE WEIGHT GAINS WITH 95% CONFIDENCE LIMITS.....                    | 207 |
| 8.3.   | RAW DATA TABLES .....                                                   | 210 |

## Table of Tables

|                                                                                                               |     |
|---------------------------------------------------------------------------------------------------------------|-----|
| Table 1: List of amu Peaks for Different Gaseous Species .....                                                | 36  |
| Table 2: PVD Sputtering Parameters for Al and Y Coatings .....                                                | 43  |
| Table 3: Shot Media and Pricing .....                                                                         | 44  |
| Table 4: Shot Peen Parameters for Determining Intensity/Saturation Curve .....                                | 48  |
| Table 5: Test Matrix.....                                                                                     | 50  |
| Table 6: Pretreatment of Tested Alloys .....                                                                  | 51  |
| Table 7: Elemental Composition (wt %) of Tested Alloys.....                                                   | 52  |
| Table 8: Calculated Rate Constants of Alloys at 450°C, 550°C, and 650°C in RG-CO <sub>2</sub> ....            | 128 |
| Table 9: Assessment of Oxide Morphological Features in Different CO <sub>2</sub> Grades .....                 | 144 |
| Table 10: Measured Properties of Applied Coatings .....                                                       | 166 |
| Table 11: Measured Hardness of Unpeened and Shot Peened Samples.....                                          | 177 |
| Table 12: Expt. #3- #5 Avg. Weight Gain Values using Research Grade CO <sub>2</sub> (mg/cm <sup>2</sup> )...  | 207 |
| Table 13: Expt. #6 Avg. Weight Gain Values using Industrial Grade CO <sub>2</sub> (mg/cm <sup>2</sup> ) ..... | 208 |
| Table 14: Expt. #9 Avg. Weight Gain Values using Research Grade CO <sub>2</sub> (mg/cm <sup>2</sup> ) .....   | 209 |
| Table 15: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, Coupon Arrangement.....                        | 210 |
| Table 16: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, HCM12A .....                                   | 211 |
| Table 17: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, HCM12A .....                                   | 212 |
| Table 18: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, NF616 .....                                    | 213 |
| Table 19: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, NF616 .....                                    | 214 |
| Table 20: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, 347SS .....                                    | 215 |
| Table 21: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, 347SS .....                                    | 216 |
| Table 22: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, AFA-OC6 .....                                  | 217 |
| Table 23: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, AFA-OC6 .....                                  | 218 |
| Table 24: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, AFA-OC7 .....                                  | 219 |
| Table 25: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, AFA-OC7 .....                                  | 220 |
| Table 26: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, AFA-OC10 .....                                 | 221 |
| Table 27: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, AFA-OC10 .....                                 | 222 |
| Table 28: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, IN800H .....                                   | 223 |
| Table 29: Raw Data, Expt. #3, RG-CO <sub>2</sub> /450°C/20MPa, IN800H .....                                   | 224 |
| Table 30: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, Coupon Arrangement.....                        | 225 |
| Table 31: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, 347SS .....                                    | 226 |
| Table 32: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, 347SS .....                                    | 227 |
| Table 33: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, AFA-OC6 .....                                  | 228 |
| Table 34: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, AFA-OC6 .....                                  | 229 |
| Table 35: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, AFA-OC7 .....                                  | 230 |
| Table 36: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, AFA-OC7 .....                                  | 231 |
| Table 37: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, AFA-OC10 .....                                 | 232 |

|                                                                                        |     |
|----------------------------------------------------------------------------------------|-----|
| Table 38: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, AFA-OC10 .....          | 233 |
| Table 39: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, IN800H .....            | 234 |
| Table 40: Raw Data, Expt. #4, RG-CO <sub>2</sub> /550°C/20MPa, IN800H .....            | 235 |
| Table 41: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, Coupon Arrangement..... | 236 |
| Table 42: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, 347SS .....             | 237 |
| Table 43: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, 347SS .....             | 238 |
| Table 44: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, AFA-OC6 .....           | 239 |
| Table 45: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, AFA-OC6 .....           | 240 |
| Table 46: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, AFA-OC7 .....           | 241 |
| Table 47: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, AFA-OC7 .....           | 242 |
| Table 48: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, AFA-OC10 .....          | 243 |
| Table 49: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, AFA-OC10 .....          | 244 |
| Table 50: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, IN800H .....            | 245 |
| Table 51: Raw Data, Expt. #5, RG-CO <sub>2</sub> /650°C/20MPa, IN800H .....            | 246 |
| Table 52: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, Coupon Arrangement..... | 247 |
| Table 53: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, HCM12A.....             | 248 |
| Table 54: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, HCM12A.....             | 249 |
| Table 55: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, NF616 .....             | 250 |
| Table 56: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, NF616 .....             | 251 |
| Table 57: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, 347SS .....             | 252 |
| Table 58: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, 347SS .....             | 253 |
| Table 59: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, AFA-OC6.....            | 254 |
| Table 60: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, AFA-OC6.....            | 255 |
| Table 61: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, AFA-OC7.....            | 256 |
| Table 62: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, AFA-OC7.....            | 257 |
| Table 63: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, AFA-OC10.....           | 258 |
| Table 64: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, AFA-OC10.....           | 259 |
| Table 65: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, IN800H .....            | 260 |
| Table 66: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, IN800H .....            | 261 |
| Table 67: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, 316L .....              | 262 |
| Table 68: Raw Data, Expt. #6, IG-CO <sub>2</sub> /550°C/20MPa, 316L .....              | 263 |
| Table 69: Raw Data, Expt. #7, RG-CO <sub>2</sub> /650°C/20MPa, Coupon Arrangement..... | 264 |
| Table 70: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, 316L .....              | 265 |
| Table 71: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, 316L .....              | 266 |
| Table 72: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, Haynes 230.....         | 267 |
| Table 73: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, Haynes 230.....         | 268 |
| Table 74: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, 347SS .....             | 269 |
| Table 75: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, 347SS .....             | 270 |
| Table 76: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, IN800H .....            | 271 |

|                                                                                              |     |
|----------------------------------------------------------------------------------------------|-----|
| Table 77: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, IN800H .....                  | 272 |
| Table 78: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, AFA-OC6.....                  | 273 |
| Table 79: Raw Data, Expt. #7, IG-CO <sub>2</sub> /650°C/20MPa, AFA-OC6.....                  | 274 |
| Table 80: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, Coupon Arrangement.....      | 275 |
| Table 81: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, IN740H .....                 | 276 |
| Table 82: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, IN740H .....                 | 277 |
| Table 83: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, IN800H .....                 | 278 |
| Table 84: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, IN800H .....                 | 279 |
| Table 85: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, 316L .....                   | 280 |
| Table 86: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, 316L .....                   | 281 |
| Table 87: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, Haynes 230 .....             | 282 |
| Table 88: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, Haynes 230 .....             | 283 |
| Table 89: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, AFA-OC6.....                 | 284 |
| Table 90: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, AFA-OC6.....                 | 285 |
| Table 91: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, 347SS .....                  | 286 |
| Table 92: Raw Data, Expt. #8, BDG-CO <sub>2</sub> /650°C/20MPa, 347SS .....                  | 287 |
| Table 93: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, Coupon Arrangement.....       | 288 |
| Table 94: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, HCM12A Al-Coated.....         | 289 |
| Table 95: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, HCM12A Al-Coated.....         | 290 |
| Table 96: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, NF616 Al-Coated.....          | 291 |
| Table 97: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, NF616 Al-Coated.....          | 292 |
| Table 98: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, HCM12A Y-Coated.....          | 293 |
| Table 99: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, HCM12A Y-Coated.....          | 294 |
| Table 100: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, NF616 Y-Coated.....          | 295 |
| Table 101: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, NF616 Y-Coated.....          | 296 |
| Table 102: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, HCM12A Shot Peened .....     | 297 |
| Table 103: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, HCM12A Shot Peened .....     | 298 |
| Table 104: Raw Data, Expt. #9, RG-CO <sub>2</sub> /550°C/20MPa, NF616 Shot Peened .....      | 299 |
| Table 105: Raw Data, Experiment #9, RG-CO <sub>2</sub> /550°C/20MPa, NF616 Shot Peened ..... | 300 |

## Table of Figures

|                                                                                                                                               |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| <i>Fig. 1:</i> Timeline of Phenomena .....                                                                                                    | 5  |
| <i>Fig. 2:</i> Photograph of SCCO <sub>2</sub> Equipment and Experimental Test Setup .....                                                    | 14 |
| <i>Fig. 3:</i> Process Flow Diagram of SCCO <sub>2</sub> Experimental Test Setup.....                                                         | 14 |
| <i>Fig. 4:</i> Example of a temperature ramp up trend to 650°C.....                                                                           | 17 |
| <i>Fig. 5:</i> Example of a pressure ramp up trend to 650°C .....                                                                             | 17 |
| <i>Fig. 6:</i> Example of a temperature cool down trend from 650°C .....                                                                      | 18 |
| <i>Fig. 7:</i> Pressure profiles during temperature cool down from 650°C.....                                                                 | 18 |
| <i>Fig. 8:</i> Temperature stability trend for 450°C .....                                                                                    | 19 |
| <i>Fig. 9:</i> Temperature stability trend for 550°C .....                                                                                    | 20 |
| <i>Fig. 10:</i> Temperature stability trend for 650°C .....                                                                                   | 20 |
| <i>Fig. 11:</i> Photograph of Gas Supply Cylinders, Scale, and Process Control .....                                                          | 22 |
| <i>Fig. 12:</i> Photograph of Bottle Section Pressure Transducer and 3-Way Process Valve .....                                                | 23 |
| <i>Fig. 13:</i> Photograph of ChromTech Supercritical CO <sub>2</sub> Pump .....                                                              | 24 |
| <i>Fig. 14:</i> Photograph of IN625 Pipe, Grayloc Hub and Clamps, Amptek Heater Tape, and Kawool Insulation.....                              | 25 |
| <i>Fig. 15:</i> Diagram of the Autoclave Showing Thermocouple Placement and Heating Zones                                                     | 27 |
| <i>Fig. 16:</i> Photograph of Gas Cooler (Heat Exchanger).....                                                                                | 28 |
| <i>Fig. 17:</i> Different Views of Test Sample Holder.....                                                                                    | 29 |
| <i>Fig. 18:</i> Image of Alumina Spacer.....                                                                                                  | 30 |
| <i>Fig. 19:</i> National Instruments hardware with temperature, sensors, heater control, DC power supply triggering, and valve signaling..... | 31 |
| <i>Fig. 20:</i> Photographs of the Automated Entrance and Exit Valves .....                                                                   | 32 |
| <i>Fig. 21:</i> Photograph of Pressure Regulation Setup.....                                                                                  | 34 |
| <i>Fig. 22:</i> Photograph of Pfeiffer Vacuum Thermostar MS .....                                                                             | 35 |
| <i>Fig. 23:</i> Mass Spectra of Different Species from NIST .....                                                                             | 36 |
| <i>Fig. 24:</i> Measured Gas Composition of RG-CO <sub>2</sub> at Outlet .....                                                                | 37 |
| <i>Fig. 25:</i> Mass Spectra of BDG-CO <sub>2</sub> at Inlet (from Cylinder).....                                                             | 38 |
| <i>Fig. 26:</i> Mass Spectra of IG-CO <sub>2</sub> at Inlet (from Cylinder) .....                                                             | 38 |
| <i>Fig. 27:</i> Sequence for Coupon Removal.....                                                                                              | 40 |
| <i>Fig. 28:</i> Photograph of RF/DC Multi-Cathode PVD Sputterer .....                                                                         | 41 |
| <i>Fig. 29:</i> Photograph of Sample Mounting, Chamber, and Coating Deposition.....                                                           | 42 |
| <i>Fig. 30:</i> Schematic of Shot Peening Process and Hardware.....                                                                           | 45 |
| <i>Fig. 31:</i> Mounting of (a) Almen Strips and (b) Coupons for Shot Peening.....                                                            | 45 |
| <i>Fig. 32:</i> Typical Intensity/Saturation Curve Determination .....                                                                        | 46 |
| <i>Fig. 33:</i> Shot Peen Intensity/Saturation Curve .....                                                                                    | 47 |
| <i>Fig. 34:</i> Drawing for Test Coupon.....                                                                                                  | 53 |
| <i>Fig. 35:</i> Schematic of Polishing.....                                                                                                   | 54 |

|                                                                                                                                                                                                                                 |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <i>Fig. 36: Typical Oxidation Curves [4].....</i>                                                                                                                                                                               | 56 |
| <i>Fig. 37: Example of an S-Shaped Oxidation Curve by Cox and Johnston [51] .....</i>                                                                                                                                           | 57 |
| <i>Fig. 38: Schematic Representation of Oxidation Regimes [16] .....</i>                                                                                                                                                        | 58 |
| <i>Fig. 39: Another Schematic Representation of Oxidation Regimes [52] .....</i>                                                                                                                                                | 59 |
| <i>Fig. 40: Weight Gains at Different Pressures after 400 hours at 450°C in RG-CO<sub>2</sub>.....</i>                                                                                                                          | 61 |
| <i>Fig. 41: Experiment 01 SEM 10000x images of (a) 347SS and (b) AFA-OC6 showing what looks like the early stages of oxide formation.....</i>                                                                                   | 63 |
| <i>Fig. 42: SEM micrographs of NF616 exposed to 450°C for 400 hours at (a) 8.274 MPa and (b) 20 MPa.....</i>                                                                                                                    | 64 |
| <i>Fig. 43: SEM micrographs of HCM12A exposed to 450°C for 400 hours at (a) 8.274 MPa and (b) 20 MPa .....</i>                                                                                                                  | 64 |
| <i>Fig. 44: SEM cross section 8000x micrographs of (a) NF616 after Experiment 1 exposure, (b) NF616 after Experiment 02 exposure, (c) HCM12A after Experiment 01 exposure, and (d) HCM12A after Experiment 2 exposure .....</i> | 65 |
| <i>Fig. 45: Weight Gain Curves of Tested Alloys at 450°C, 20MPa.....</i>                                                                                                                                                        | 67 |
| <i>Fig. 46: Weight Gain Curves of Tested Alloys at 550°C, 20MPa.....</i>                                                                                                                                                        | 67 |
| <i>Fig. 47: Weight Gain Curves of Tested Alloys at 650°C. ....</i>                                                                                                                                                              | 68 |
| <i>Fig. 48: Weight Gain Curves of 9-12%Cr Ferritic-Martensitics at 450°C. ....</i>                                                                                                                                              | 68 |
| <i>Fig. 49: Weight Gain Curves of IN800H at 450°C, 550°C, and 650°C. ....</i>                                                                                                                                                   | 69 |
| <i>Fig. 50: Weight Gain Curves of 347SS at 450°C, 550°C, and 650°C.....</i>                                                                                                                                                     | 69 |
| <i>Fig. 51: Weight Gain Curves of AFA-OC6 at 450°C, 550°C, and 650°C. ....</i>                                                                                                                                                  | 70 |
| <i>Fig. 52: Weight Gain Curves of AFA-OC7 at 450°C, 550°C, and 650°C. ....</i>                                                                                                                                                  | 70 |
| <i>Fig. 53: Weight Gain Curves of AFA-OC10 at 450°C, 550°C, and 650°C. ....</i>                                                                                                                                                 | 71 |
| <i>Fig. 54: SEM image of NF616 after exposure to 450°C and 20 MPa for 800 hours .....</i>                                                                                                                                       | 72 |
| <i>Fig. 55: SEM image of NF616 after exposure to 450°C and 20 MPa for 800 hours .....</i>                                                                                                                                       | 72 |
| <i>Fig. 56: Experiment 3 SEM images of (A) NF616, and (B) HCM12A displaying possible carbon deposits .....</i>                                                                                                                  | 73 |
| <i>Fig. 57: NF616 SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow .....</i>                                         | 74 |
| <i>Fig. 58: HCM12A SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow .....</i>                                        | 74 |
| <i>Fig. 59: Experiment 3 500x SEM images showing (A) 347SS after 600 hours, (B) 347SS after 1200 hours, (C) IN 800H after 600 hours, and (D) IN 800H after 1200 hours.....</i>                                                  | 76 |
| <i>Fig. 60: EDS maps of 347SS indicating a correlation between increased oxide growth and increased carbon .....</i>                                                                                                            | 76 |
| <i>Fig. 61: EDS point analysis of an oxide island on 347SS indicating observed peaks and compositional analysis in weight percent.....</i>                                                                                      | 77 |

|                                                                                                                                                                                                                                                  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <i>Fig. 62: Experiment 3 500x SEM images showing (A) AFA-OC6 after 600 hours, (B) AFA-OC6 after 1200 hours, (C) AFA-OC7 after 600 hours, (D) AFA-OC7 after 1200 hours, (E) AFA-OC10 after 600 hours, and (F) AFA-OC10 after 1200 hours .....</i> | 79 |
| <i>Fig. 63: EDS maps taken of AFA-OC7 indicating correlation between strong carbide formers (e.g. Nb) and islands of increased oxidation .....</i>                                                                                               | 80 |
| <i>Fig. 64: EDS maps taken of AFA-OC10 after exposure to Experiment 3 conditions indicating islands of increased oxidation are mainly Mn .....</i>                                                                                               | 80 |
| <i>Fig. 65: Image of 347SS after 1000 hours exposure to SC-CO<sub>2</sub> at 450°C and 20 MPa.....</i>                                                                                                                                           | 82 |
| <i>Fig. 66: Optical microscope images of 347ss with (A) etched using Beraha's Reagent, and (B) exposed to Experiment 3 test conditions for 1000 hours .....</i>                                                                                  | 83 |
| <i>Fig. 67: Optical microscope images of IN 800H with (A) exposed to Experiment 3 test conditions for 1000 hours, and (B) etched using Beraha's Reagent .....</i>                                                                                | 84 |
| <i>Fig. 68: Optical microscope images of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 3 condition.....</i>                                                                                                 | 85 |
| <i>Fig. 69: Experiment 3 EDS map of AFA-OC7 displaying increased oxidation above concentrated Nb .....</i>                                                                                                                                       | 86 |
| <i>Fig. 70: EDS cross-section maps of (A) 347ss, (B) AFA-OC6, (C) AFA-OC7, and (D) AFA-OC10 after 1000 hours exposure to Experiment 3 conditions showing very thin oxide layers.....</i>                                                         | 87 |
| <i>Fig. 71: EDS cross-section maps of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 03 conditions showing Nb distribution.....</i>                                                                          | 88 |
| <i>Fig. 72: SEM images of NF616 (left) and HCM12A (right) showing signs of material loss (spallation) .....</i>                                                                                                                                  | 89 |
| <i>Fig. 73: NF616 SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow .....</i>                                                          | 90 |
| <i>Fig. 74: HCM12A SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow .....</i>                                                         | 91 |
| <i>Fig. 75: Experiment 4 500x SEM images showing (A) 347SS after 200 hours, (B) 347SS after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours.....</i>                                                                   | 92 |
| <i>Fig. 76: Experiment 4 5000x SEM images showing (A) 347ss after 200 hours, (B) 347SS after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours.....</i>                                                                  | 93 |
| <i>Fig. 77: Optical microscope image of 347SS exposed to Experiment 4 test conditions for 1000 hours .....</i>                                                                                                                                   | 93 |
| <i>Fig. 78: Optical microscope image of IN 800H exposed to Experiment 4 test conditions for 1000 hours .....</i>                                                                                                                                 | 94 |
| <i>Fig. 79: Experiment 4 500x SEM images showing (A) AFA-OC6 after 200 hours, (B) AFA-OC6 after 1000 hours, (C) AFA-OC7 after 200 hours, (D) AFA-OC7 after 1000 hours, (E) AFA-OC10 after 200 hours, and (F) AFA-OC10 after 1000 hours .....</i> | 95 |

|                                                                                                                                                                                                                                                                                                                              |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <i>Fig. 80: Experiment 4 5000x SEM images showing (A) AFA-OC6 after 200 hours, (B) AFA-OC6 after 1000 hours, (C) AFA-OC7 after 200 hours, (D) AFA-OC7 after 1000 hours, (E) AFA-OC10 after 200 hours, and (F) AFA-OC10 after 1000 hours .....</i>                                                                            | 96  |
| <i>Fig. 81: Optical microscope images of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 4 conditions .....</i>                                                                                                                                                                           | 97  |
| <i>Fig. 82: EDS maps taken of AFA-OC6 after exposure to Experiment 4 conditions indicating islands of increased oxidation correlate to areas of niobium and carbon .....</i>                                                                                                                                                 | 99  |
| <i>Fig. 83: EDS maps taken of AFA-OC7 after exposure to Experiment 4 conditions indicating islands of increased oxidation correlate to areas of niobium and carbon .....</i>                                                                                                                                                 | 99  |
| <i>Fig. 84: EDS point analysis of (top) AFA-OC6, and (bottom) AFA-OC7 after exposure to Experiment 4 conditions .....</i>                                                                                                                                                                                                    | 100 |
| <i>Fig. 85: EDS maps taken of AFA-OC10 after exposure to Experiment 4 conditions indicating islands of increased oxidation are mainly Mn .....</i>                                                                                                                                                                           | 100 |
| <i>Fig. 86: EDS point analysis of AFA-OC10 after exposure to Experiment 4 conditions indicating (top) oxide islands with high concentrations of Nb, and (bottom) oxide islands with high concentrations of Mn .....</i>                                                                                                      | 101 |
| <i>Fig. 87: EDS maps of AFA-OC7 after 1000 hours exposure to Experiment 4 conditions indicating defined oxide layer and apparent increased surface oxidation above Nb concentrations .....</i>                                                                                                                               | 102 |
| <i>Fig. 88: EDS region of interest analysis of AFA-OC7 after 1000 hours exposure to Experiment 4 conditions .....</i>                                                                                                                                                                                                        | 103 |
| <i>Fig. 89: SEM image of as-received AFA-OC7 etched with aqua regia revealing niobium carbide precipitation to grain boundaries .....</i>                                                                                                                                                                                    | 104 |
| <i>Fig. 90: Experiment 5 500x SEM image of NF616 showing general structure of the outer oxide layer consisting of iron oxide .....</i>                                                                                                                                                                                       | 106 |
| <i>Fig. 91: Experiment 5 5000x SEM image of HCM12A showing areas of chromium oxide formation in addition to the typical iron oxide .....</i>                                                                                                                                                                                 | 106 |
| <i>Fig. 92: Experiment 5 500x SEM images showing (A) 347ss after 200 hours, (B) 347ss after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours .....</i>                                                                                                                                              | 107 |
| <i>Fig. 93: Experiment 5 1000x SEM image of 347ss showing areas of chromia breaking free from the sample surface .....</i>                                                                                                                                                                                                   | 108 |
| <i>Fig. 94: Experiment 5 5000x SEM images showing (A) 347ss after 200 hours, (B) 347ss after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours .....</i>                                                                                                                                             | 108 |
| <i>Fig. 95: 347SS after exposure to Experiment 5 conditions: (A) SEM image showing oxide spallation site with (B) EDS analysis performed on the overturned oxide layer that had broken free of the surface indicating increased carbon present at the interface, and (C) EDS analysis of the newly exposed surface .....</i> | 110 |

|                                                                                                                                                                                                                                                  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <i>Fig. 96: Experiment 5 500x SEM images showing (A) AFA-OC6 after 200 hours, (B) AFA-OC6 after 1000 hours, (C) AFA-OC7 after 200 hours, (D) AFA-OC7 after 1000 hours, (E) AFA-OC10 after 200 hours, and (F) AFA-OC10 after 1000 hours .....</i> | 112 |
| <i>Fig. 97: Optical microscope images of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 5 conditions .....</i>                                                                                               | 113 |
| <i>Fig. 98: EDS maps taken of AFA-OC6 after exposure to Experiment 5 conditions identify heavily oxidized areas as mostly iron oxide with some indication of increased carbon .....</i>                                                          | 115 |
| <i>Fig. 99: EDS maps taken of AFA-OC10 after exposure to Experiment 5 conditions find heavily oxidized areas contain manganese in addition to iron as well as some indication of increased carbon .....</i>                                      | 115 |
| <i>Fig. 100: EDS maps of IN 800H exposed to Experiment 5 conditions displaying protective outer chromia layer .....</i>                                                                                                                          | 117 |
| <i>Fig. 101: EDS maps of cross-sectioned titanium particle protruding to the surface of IN 800H after exposure to Experiment 5 conditions .....</i>                                                                                              | 117 |
| <i>Fig. 102: (A) SEM image of as-received IN 800H etched with aqua regia revealing (B) titanium carbide and (C) titanium nitride precipitates .....</i>                                                                                          | 118 |
| <i>Fig. 103: EDS maps of 347SS after exposure to Experiment 5 conditions reveal outer chromia layer and corresponding inner layer deplete in chromium .....</i>                                                                                  | 120 |
| <i>Fig. 104: EDS line scan through large oxide outgrowth on 347SS after 1000 hours exposure to Experiment 5 conditions .....</i>                                                                                                                 | 120 |
| <i>Fig. 105: EDS maps of AFA-OC6 after exposure to Experiment 5 conditions reveal large oxide growth to be associated with niobium .....</i>                                                                                                     | 121 |
| <i>Fig. 106: EDS maps of AFA-OC7 after exposure to Experiment 5 conditions reveal large oxide growth to be associated with niobium .....</i>                                                                                                     | 122 |
| <i>Fig. 107: EDS maps of AFA-OC10 after exposure to Experiment 5 conditions reveal large oxide growth to be associated with niobium .....</i>                                                                                                    | 122 |
| <i>Fig. 108: Oxidation Constants of IN800H in RG-CO<sub>2</sub> .....</i>                                                                                                                                                                        | 124 |
| <i>Fig. 109: Oxidation Constants of 347SS in RG-CO<sub>2</sub> .....</i>                                                                                                                                                                         | 124 |
| <i>Fig. 110: Oxidation Constants of AFA-OC6 in RG-CO<sub>2</sub> .....</i>                                                                                                                                                                       | 125 |
| <i>Fig. 111: Oxidation Constants of AFA-OC7 in RG-CO<sub>2</sub> .....</i>                                                                                                                                                                       | 125 |
| <i>Fig. 112: Oxidation Constants of AFA-OC10 in RG-CO<sub>2</sub> .....</i>                                                                                                                                                                      | 126 |
| <i>Fig. 113: STEM Cross-Section showing multi-oxide layers on AFA-OC6 .....</i>                                                                                                                                                                  | 130 |
| <i>Fig. 114: Comparison of IN800H in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa .....</i>                                                                                                                                           | 131 |
| <i>Fig. 115: Comparison of 347SS in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa .....</i>                                                                                                                                            | 131 |
| <i>Fig. 116: Comparison of AFA-OC6 in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa .....</i>                                                                                                                                          | 132 |
| <i>Fig. 117: Comparison of AFA-OC7 in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa .....</i>                                                                                                                                          | 132 |
| <i>Fig. 118: Comparison of AFA-OC10 in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa .....</i>                                                                                                                                         | 133 |
| <i>Fig. 119: SEM micrographs of AFA-OC6 in IG-CO<sub>2</sub> at 550°C, 20 MPa .....</i>                                                                                                                                                          | 135 |
| <i>Fig. 120: SEM micrographs of AFA-OC7 in IG-CO<sub>2</sub> at 550°C, 20 MPa .....</i>                                                                                                                                                          | 136 |

|                                                                                                               |     |
|---------------------------------------------------------------------------------------------------------------|-----|
| <i>Fig. 121:</i> SEM micrographs of AFA-OC10 in IG-CO <sub>2</sub> at 550°C, 20MPa .....                      | 137 |
| <i>Fig. 122:</i> SEM micrographs of NF616 in IG-CO <sub>2</sub> at 550°C, 20 MPa .....                        | 138 |
| <i>Fig. 123:</i> SEM micrographs of HCM12A in IG-CO <sub>2</sub> at 550°C, 20 MPa .....                       | 139 |
| <i>Fig. 124:</i> SEM micrographs of 347SS in IG-CO <sub>2</sub> at 550°C, 20 MPa.....                         | 140 |
| <i>Fig. 125:</i> Cross-Section of 316L at 550°C after 200 hours in IG-CO <sub>2</sub> (30,000X) .....         | 141 |
| <i>Fig. 126:</i> Cross-Section of IN800H at 550°C after 200 hours in IG-CO <sub>2</sub> (30,000X).....        | 141 |
| <i>Fig. 127:</i> Salient Morphological Features in IG-CO <sub>2</sub> at 550°C, 20MPa .....                   | 142 |
| <i>Fig. 128:</i> Weight Gain of Alloys after 200 hours in RG-CO <sub>2</sub> at 650°C, 20MPa.....             | 142 |
| <i>Fig. 129:</i> Weight Gain of Alloys after 200 hours in IG-CO <sub>2</sub> at 650°C, 20MPa .....            | 143 |
| <i>Fig. 130:</i> Weight Gain of Alloys after 200 hours in BDG-CO <sub>2</sub> at 650°C, 20MPa.....            | 143 |
| <i>Fig. 131:</i> Surface Morphology of 316L and 347SS at 650°C after 200 hours in IG-CO <sub>2</sub> ...      | 146 |
| <i>Fig. 132:</i> GIXRD Patterns of 316L.....                                                                  | 148 |
| <i>Fig. 133:</i> GIXRD Patterns of 347SS.....                                                                 | 149 |
| <i>Fig. 134:</i> SEM/EDS of Al Coated NF616 before exposure.....                                              | 150 |
| <i>Fig. 135:</i> SEM micrographs of Al Coated NF616 in Research CO <sub>2</sub> at 550°C, 20 MPa.....         | 152 |
| <i>Fig. 136:</i> SEM micrographs of Al-Coated T92 in Research CO <sub>2</sub> at 550°C, 20 MPa. ....          | 153 |
| <i>Fig. 137:</i> Model for paralinear oxidation growth of duplex scale [35]. .....                            | 155 |
| <i>Fig. 138:</i> Cross-Section of Al-Coated T92 after 1000 hours in RG-CO <sub>2</sub> /550°C/20MPa. ....     | 156 |
| <i>Fig. 139:</i> SEM micrographs of Al Coated HCM12A in Research CO <sub>2</sub> at 550°C, 20 MPa. ....       | 157 |
| <i>Fig. 140:</i> SEM micrographs of Al-Coated T122 in Research CO <sub>2</sub> at 550°C, 20 MPa .....         | 158 |
| <i>Fig. 141:</i> Cross-Section of Al-Coated T122 after 1000 hours in RG-CO <sub>2</sub> at 550°C, 20MPa. .... | 159 |
| <i>Fig. 142:</i> Schematic Representation of Duplex Oxide Formation on Al-Coated FM Steels                    | 160 |
| <i>Fig. 143:</i> GIXRD patterns of Al-Coated NF616 (T92) and HCM12A (T122) .....                              | 160 |
| <i>Fig. 144:</i> SEM/EDS of Y Coated NF616 FM Steel (0hrs) .....                                              | 161 |
| <i>Fig. 145:</i> SEM micrographs of Y-Coated NF616 in Research CO <sub>2</sub> at 550°C, 20 MPa.....          | 162 |
| <i>Fig. 146:</i> SEM micrographs of Y-Coated NF616 in Research CO <sub>2</sub> at 550°C, 20 MPa.....          | 163 |
| <i>Fig. 147:</i> SEM micrographs of Y-Coated HCM12A in Research CO <sub>2</sub> at 550°C, 20 MPa..            | 164 |
| <i>Fig. 148:</i> SEM micrographs of Y-Coated T122 in Research CO <sub>2</sub> at 550°C, 20 MPa .....          | 165 |
| <i>Fig. 149:</i> Photographs of Electroplated Coupons for Examining Cross-Sections .....                      | 166 |
| <i>Fig. 150:</i> GIXRD patterns of Y-Coated NF616 (T92) and HCM12A (T122).....                                | 167 |
| <i>Fig. 151:</i> SEM/EDS of Shot Peened T92 before exposure.....                                              | 168 |
| <i>Fig. 152:</i> SEM micrographs of Shot Peened T92 in RG-CO <sub>2</sub> at 550°C, 20 MPa.....               | 169 |
| <i>Fig. 153:</i> SEM micrographs of Shot Peened T92 in RG-CO <sub>2</sub> at 550°C, 20 MPa.....               | 170 |
| <i>Fig. 154:</i> Cross-sections of Shot Peened T122 Before Exposure.....                                      | 171 |
| <i>Fig. 155:</i> Cross-Section of Shot Peened T92 after 1000 hours in RG-CO <sub>2</sub> /550°C/20MPa. ....   | 172 |
| <i>Fig. 156:</i> SEM micrographs of Shot Peened T122 in RG-CO <sub>2</sub> at 550°C, 20 MPa.....              | 173 |
| <i>Fig. 157:</i> SEM micrographs of Shot Peened T122 in RG-CO <sub>2</sub> at 550°C, 20 MPa.....              | 174 |

|                                                                                                          |     |
|----------------------------------------------------------------------------------------------------------|-----|
| <i>Fig. 158: Cross-Section of Shot Peened T122 after 1000 hours in RG-CO<sub>2</sub>/550°C/20MPa.</i>    | 175 |
| <i>Fig. 159: Schematic Representation of Duplex Oxide Formation on Peened FM Steels</i> .....            | 176 |
| <i>Fig. 160: GIXRD patterns of Shot Peened T92 and T122 after 1000 hours exposure</i> .....              | 176 |
| <i>Fig. 161: Effect of Al, Y Coatings and Shot Peening on NF616 at 550°C, 20 MPa</i> .....               | 178 |
| <i>Fig. 162: Effect of Al, Y Coatings and Shot Peening on HCM12A at 550°C, 20 MPa .....</i>              | 179 |
| <i>Fig. 163: Progression of Interference Colors with Magnitude of Weight Gain at 650°C ...</i>           | 181 |
| <i>Fig. 164: Control Chart for Individual Weight Gains of AFA-OC10 (Expt. 5)</i> .....                   | 184 |
| <i>Fig. 165: Effect of Outliers on Weight Gain Oxidation Curve.....</i>                                  | 185 |
| <i>Fig. 166: Individual Weight Gains at 450°C, 20MPa in RG-CO<sub>2</sub> after 200hrs (Expt. #3)..</i>  | 186 |
| <i>Fig. 167: Individual Weight Gains at 550°C, 20MPa in RG-CO<sub>2</sub> after 200hrs (Expt. #4)..</i>  | 186 |
| <i>Fig. 168: Individual Weight Gains at 650°C, 20MPa in RG-CO<sub>2</sub> after 200hrs (Expt. #5)..</i>  | 187 |
| <i>Fig. 169: Individual Weight Gains at 650°C, 20MPa in IG-CO<sub>2</sub> after 200hrs (Expt. #7)...</i> | 187 |
| <i>Fig. 170: Individual Weight Gains at 650°C, 20MPa in IG-CO<sub>2</sub> after 200hrs (Expt. #8)...</i> | 188 |
| <i>Fig. 171: Interference Colors of Coupons for Expt. #3 through #5.....</i>                             | 201 |
| <i>Fig. 172: Interference Colors of Coupons for Expt. #3 through #5 (Cont.).....</i>                     | 202 |
| <i>Fig. 173: Interference Colors of Coupons for Expt. #3 through #5 (Cont.).....</i>                     | 203 |
| <i>Fig. 174: Interference Colors of Coupons for Expt. #6 .....</i>                                       | 204 |
| <i>Fig. 175: Interference Colors of Coupons for Expt. #7 and #8. ....</i>                                | 205 |
| <i>Fig. 176: Interference Colors of Coupons for Expt. #9 .....</i>                                       | 206 |

## 1. Literature Review

### 1.1 High Temperature Corrosion of Alloys

While the mechanism of low temperature corrosion was being investigated, the physical-chemist Gustav Tammann wrote in 1920 [1] what is popularly considered to be the first paper that expressly addressed high temperature oxidation in metals. It is the earliest mentioning of the length proportionality to square root of time relationship for the corrosion rate of a metal, a simple growth law or rate equation we refer to as the parabolic oxidation law equation. In 1922, Tammann deduced an exponential relationship from observations of color changes with the oxidation of various metals in air at relatively low temperatures [2]. A more accurate optical method was employed by Constable several years later. The classical work of Pilling and Bedworth [3] in 1923 led to the development of the well-known volume ratio or Pilling-Bedworth ratio, which states that if the ratio of the molar volume of the reaction product to that of the metal is greater than 1, the thick oxide (scale) layers which form on the metal during oxidation are adherent and pore-free. If the volume ratio is less than 1, the linear time law has been found to apply for the obvious reason that the oxide is not able to form a coherent layer, and thus fresh metal surface is continuously exposed [4].

The P-B ratio is defined as

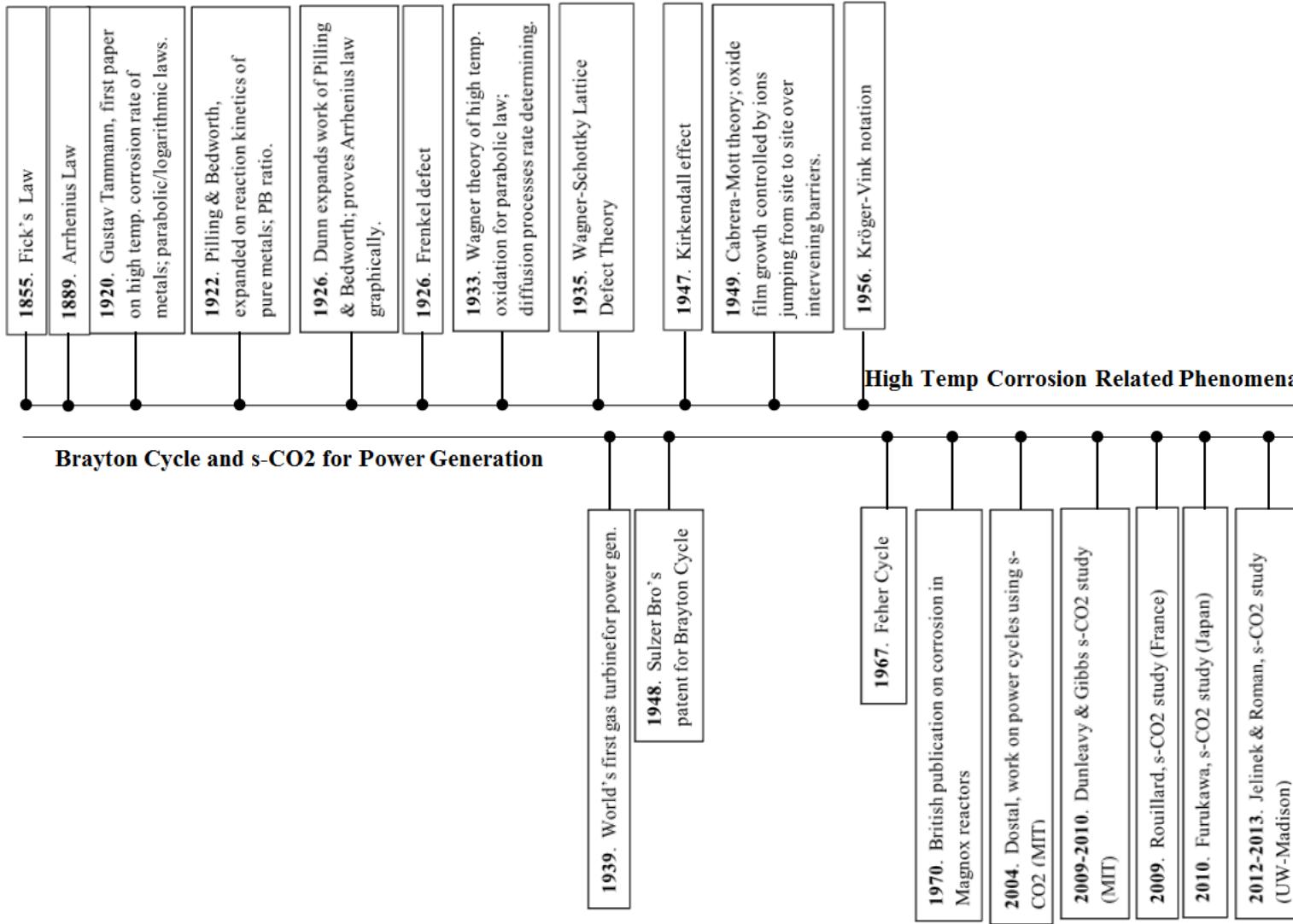
$$PB = \frac{V_o}{V_m} = \frac{m_o \rho_m}{n m_m \rho_o} \quad (1)$$

where  $V_o$  is the molar volume of the oxide,  $V_m$  is the molar volume of the metal,  $m_o$  and  $\rho_o$  are the molecular mass and density of the oxide,  $m_m$  and  $\rho_m$  are the molecular mass and

density of the metal, and  $n$  is the number of atoms of metal per one molecule of the oxide. Following the experimental approach of Pilling and Bedworth, Dunn attempted to formulate a more fundamental theory of oxidation and diffusion. In 1926, Dunn was able to show analytically from reaction kinetics, agreement with the Arrhenius law equation [5]. This result may be stated as

$$\frac{d \log_e k}{dT} = -\frac{Q}{RT^2} \quad \rightarrow \quad k = k_o e^{(-\frac{Q}{RT})} \quad (2)$$

The rearranged Arrhenius equation to resemble a straight line equation is given below as


$$\ln k = \ln k_o - \frac{Q}{R} * \frac{1}{T} \quad (3)$$

Many oxidation reactions involving metals and alloys seem to show a linear temperature dependence of oxidation rate constants that obey the Arrhenius equation. Both  $Q$  and  $k_o$  are supposedly very useful physical quantities to know because the rate constant  $k$  can be calculated for any temperature once these two parameters are known. Using (3), the apparent activation energy  $Q$  can be determined from the slope of the best-fit line by plotting  $\log_{10} k$  as a function of  $1/T$ . In terms put forth by Kubaschewski, the activation energy refers to the concept that only those atoms having energies of oscillation exceeding  $Q/6.02 \times 10^{23}$  at a certain moment are able to leave their crystallographic positions [4]. The rate constant  $k$  is most commonly determined at different temperatures from isothermal measurements.

In 1933 Wagner published a theory on the high temperature oxidation of metals by the parabolic rate law, which was observed by Tammann, and which indicates that a diffusion process is rate-determining. However, details of the lattice defect phenomena at diffusion processes are not discussed here (i.e., Wagner-Schottky theory of lattice defects). To distinguish between the two oxidation regions, Hauffe delineates high temperature oxidation processes into those oxide layers which are thin (tarnishing process) and those oxide layers which are thick (scaling processes), and goes on to describe that for thick layers, the effects of the electric field transport region are negligible (but not for thin layers), since their contribution under these conditions are no longer detectable, and that the migration processes in thick layers are beyond the field transport region, and are diffusion processes involving two types of lattice defects; interstitial cations or anion vacancies and free electrons in the conduction band or cation vacancies with holes in the valence band [6].

To give some background on the use of ferritics and ferritic-martensitic steels, one can turn to Klueh. According to Klueh, Fe-Cr alloys, in particular 9-12Cr ferritic-martensitic steels, were developed during the first half of the last century and have a long history of use in the power-generation industry as boiler and turbine materials. Such steels were selected for use in steam generators of nuclear power plants during the 1960's, and steels with addition of V, Nb, and/or W and with oxide dispersions were subsequently chosen and evaluated as fuel element core component (duct and cladding) materials in sodium-cooled fast breeder reactors. Even though austenitics and nickel based alloys are potential candidates, they are more expensive, have higher coefficients of thermal expansion and show lower heat conductivity, which are significant drawbacks for their use as heat exchanger tubes [7]. The

fission (in core) and fusion reactor applications require steels that are resistant to radiation damage induced by bombardment from high energy neutrons, and in part has led to the development of reduced-activation steels, containing W, V, Mn, Ta, and Ti and without Mo, Nb, and Ni [8]. Advancement in alloys have been undertaken primarily for the sole intention of performing under extreme conditions, particularly at elevated pressures and temperatures. Specialty alloys have been either developed or tailored as modified versions to serve a specific application or to compete with an alloy already in use for another application in terms of corrosion resistance and creep-rupture resistance. *Fig. 1* below shows a timeline related to gains made in high temperature corrosion and power generation relative to the Brayton cycle.



**Fig. 1:** Timeline of Phenomena

## 1.2 Supercritical Carbon Dioxide

### 1.2.1 Brayton Cycle Application

The working fluid is very important for the power conversion system of the next generation nuclear power plant. The cycle efficiency, the size of all the components such as turbine, compressor, recuperator, intermediate heat exchanger, and other components will depend on the fluid because each different fluid has different heat transfer and transport properties. Due to the different properties of the fluids, the balance of plant will have varying energy and mass balances [9]. Several heat transfer fluids (HTF) being considered for next generation power plants are supercritical CO<sub>2</sub> (SCCO<sub>2</sub>), liquid metal alloys, and molten salts. This body of work focuses on SCCO<sub>2</sub> and mimics the high temperatures and pressures anticipated for turbomachinery components as it would be in-plant for a SCCO<sub>2</sub> Brayton Cycle.

The supercritical carbon dioxide (SC-CO<sub>2</sub>) Brayton cycle system originally proposed by Sulzer (1950) [10] and later by Feher (1967) [11] was introduced as a means to provide high energy conversion system efficiency at moderate temperatures. Further development of the system from its initial intent was for many years neglected. The lack of interest was mainly due to the much wider use of Rankine cycle technology. However, there has been renewed interest in Brayton cycle technology stemming in part from the advanced nuclear reactor initiative (Generation IV) and the Global Nuclear Energy Partnership (GNEP). Although now that development is under way, applications are being made to a much wider array of power generating technologies including solar, geothermal, and fossil/bio fuel systems.

The most advantageous aspect of the supercritical Brayton cycle is its reduced compression work compared to that of an ideal gas Brayton cycle; improving efficiency by performing

compression close to the critical point. The critical point of carbon dioxide is 7.38MPa at 31.1°C. The  $\text{SCCO}_2$  Brayton cycle utilizes  $\text{CO}_2$  as a coolant above its critical point to reduce compression work, which in turn results in higher efficiency. The reduced volumetric flowrate of  $\text{CO}_2$  due to higher density compared to helium will reduce compression work, which will eventually increase turbine work enhancing the plant net efficiency [9]. This translates into the simplification of the compressor, often down to a single unit without intercooling stages. Full inlet conditions at the turbine inlet are anticipated to be 550°C and 20MPa with the high side of the cycle possibly seeing 650°C. The high pressure necessary for efficiency also becomes beneficial allowing the use of more compact turbines and heat exchangers. Even when compared to Helium (the most viable contender in the nuclear field),  $\text{CO}_2$  requires far fewer turbine and compressor stages. The  $\text{SC-CO}_2$  Brayton cycle is therefore under consideration for power conversion systems for fast reactors as well as high temperature gas reactors [12] [13] [14]. Additionally, using  $\text{CO}_2$  in conjunction with Sodium Fast Reactors (SFR) eliminates the possibility of sodium water interactions that would be present with a more traditional steam cycle. According to Dostal [15], above 20 MPa the efficiency of the cycle is not significantly improved. However, operating at high temperature and high pressure necessitates the use of a high strength material whose mechanical properties and corrosion performance are well suited for a  $\text{SCCO}_2$  environment for an intended temperature and power output. The corrosion performance of low alloy/mild steels in sub-critical  $\text{CO}_2$  have been studied and characterized, but only at medium temperatures and relatively low pressures (0.1 MPa to 4 MPa) for the British MAGNOX and AGR program, wherein ferritic steels made up most of the structural support [16].

### 1.2.2 Concentrating Solar Power (CSP) Application

The basic concept behind a concentrated solar power-plant (CSPP) is to translate solar thermal energy into production of electricity. This type of power plant is similar in terms of an energy production rationale to other competing technologies such as the coal-fired power plant (CFPP), nuclear power plant (NPP), etc., but is different in applied thermodynamic cycle and machinery, and more notably its fuel source. The CSPP uses a parabolic trough of mirrors or central power tower to tune the sunlight. Current, or for namesake ‘conventional’ CSPP’s, utilize oil or steam to transfer the solar energy at peak temperatures  $\sim 400^{\circ}\text{C}$  [17] to a turbine for generating electricity. Conventional CSPP’s use either a Rankine thermodynamic cycle or an organic Rankine thermodynamic cycle (ORC) [18]. The majority of large coal-fired power plants (CFPP) used to be operated at sub-critical steam conditions (pressures  $\leq 22.1 \text{ MPa}$ ) prior to about 1990; the main steam temperature was standardized at  $540^{\circ}\text{C}$  worldwide, although  $565^{\circ}\text{C}$  was the standard in the U.K., with the steam pressure being typically 18 MPa. However, the need to develop CFPP’s with reduced generating costs and acid rain and greenhouse gas productions was widely recognized in the late 1970’s and early 1980’s and subsequently led to the design and construction of supercritical water (SCW) or ultra-supercritical water (USCW) and combined cycle power plants with improved thermal efficiencies [19]. Today, the most advanced CFPP’s operate at steam conditions of  $593^{\circ}\text{C}$ , and new plants are being commissioned that operate up to  $620^{\circ}\text{C}$  [20]. To be competitive in the field of electric power generation, the solar and nuclear power plant industry is performing R&D efforts to qualify structural materials for a new generation of power plants that operate at higher temperatures. The underlying ongoing efforts behind this

temperature increase are analogous to those of a CFPP, to achieve higher power conversion efficiencies by raising the operating temperature along with the additional thermodynamic property benefits of operating above the fluids critical point. Such R&D efforts by Dostal [15] and Gong [21] have renewed interest in supercritical carbon dioxide (SCCO<sub>2</sub>) as a heat transfer or working fluid (HTF) in a Brayton thermodynamic cycle. This cycle yields significant benefit with respect to the turbo machinery size and allows increased efficiency at temperatures above 650°C. Experimental work at Sandia National Lab on low pressure closed Brayton cycles [27] has led to the construction of high pressure SCCO<sub>2</sub> Brayton flow loops and has added momentum for the advocacy of SCCO<sub>2</sub>. Currently, these cycles hold significant promise for any high temperature energy source, including fossil systems if sequestration of carbon dioxide is anticipated.

### **1.3 Carburization and Metal Dusting**

Carburization is a high temperature phenomena caused by carbon ingress (diffusion of carbon containing molecules through the pores of the scale), leading to internal carbide formation or “metal dusting” and changes the mechanical properties of the materials [28]. Metal dusting, a catastrophic form of carburization that can occur in high carbon activity environments, produces pit or crevice corrosion where metal is disintegrated into a powdery mixture of carbon, metal, oxides and carbides which can easily detach from the surface. According to Grabke, the material is considered to be carburized if its carbon content exceeds the original carbon content when it was first place in service. Carburization generally is problematic at 800-1200°C with carbon activities  $a_c \leq 1$ . Metal dusting is a

lesser degree form of carburization that precedes it and is generally observed between 350-900°C. This phenomenon leads to material decomposition, i.e., pitting or general metal wastage in Fe, Ni, and Co based alloys into fine metal or carbide particles and carbon (coke) in carbonaceous gases ( $a_c > 1$ ).

#### **1.4 High Temperature Oxidation- Test Methods & Models**

Discontinuous measurements are widely used to assess corrosion kinetics at high temperatures and over long exposure times, and this method has been applied in recent years by SCCO<sub>2</sub> investigators Ballinger and McKrell at MIT [24,25,26], Furukawa in Japan [27], Rouillard in France [28,29] and previously by Anderson and Sridharan [30,31]. The discontinuous method consists of stopping the experiment after some chosen duration of exposure time to allow removal of specimens for examination and weighing. *Thermogravimetry* is used to measure the weight at temperature after each interval of removal, and the difference between the weight after and the weight before exposure is termed weight change. High temperature oxidation of metals and alloys by this process tends to lead to a weight gain by the growth of an oxide layer or layers, whether external or internal does not matter. These measurements are typically made in an environment under isobaric and isothermal conditions. This method appears to be suitable for rank ordering of different alloys, and can be extended to evaluate not just flat coupon samples, but samples having a geometry or weld condition as it would be in industrial application. It is interesting to note that little effort has been aimed at developing appropriate guidelines and standards agreed upon as best practice [32, 33]. Therefore, interpretation and comparison of weight gain data

from different studies should be evaluated with caution. Many other methods and techniques can and have been applied at high temperatures. Kofstad as well as Grabke have used the continuous thermogravimetric technique in the past through automatic recording microbalances in their laboratories, but done typically with a reaction chamber and furnace. Kofstad has even stated that the continuous method can be applied and the temperature linearly increased for determining the activation energy from a single oxidation run [34, 35]. Cyclic oxidation, which was a method more frequently encountered in literature during review, is devised solely to introduce thermal cycling with a higher frequency interval with rapid cooling, which imposes a thermal shock or stress on the coupons causing a protective oxide layer to crack and spall, rendering the base alloy unprotective and susceptible to accelerated corrosion attack, thereby naturally leading to higher metal wastage rate and witnessing of a weight loss earlier rather than a weight gain. Such measurements are said to be more representative of the cycling conditions seen by materials in an industrial application. For example, Pint et al [36] used 10hr thermal cycles in order to simulate the CSP duty cycle for a heat exchanger application at a high temperature, and to force rapid Al depletion for purposes of lifetime prediction. Nesbitt [37] also used cyclic oxidation of 1hr cycles and with a 20min cooling period to assist development of a numerical model (COSIM) to simulate coating degradation by simultaneous oxidation and coating-substrate interdiffusion, namely by measuring the initial Al and Cr contents of the coating and substrate and their concentration – depth profiles.

### **3. Test Setup and Procedure**

#### **3.1. Thermogravimetry**

For this study, the discontinuous thermogravimetric measurement method was used to determine the weight gain. Details on the method and procedure used to determine weight gain at discrete points is described below in subsequent sections.

##### **3.1.1. Test Setup and Shakedown**

The SC-CO<sub>2</sub> test facility was designed and constructed based on the requirements for the experimental testing. The corrosion test facility needed to sustain a maximum temperature of 650°C as well as a pressure of 20MPa. Components were therefore selected to exceed these defined maximum testing parameters, providing a margin of safety.

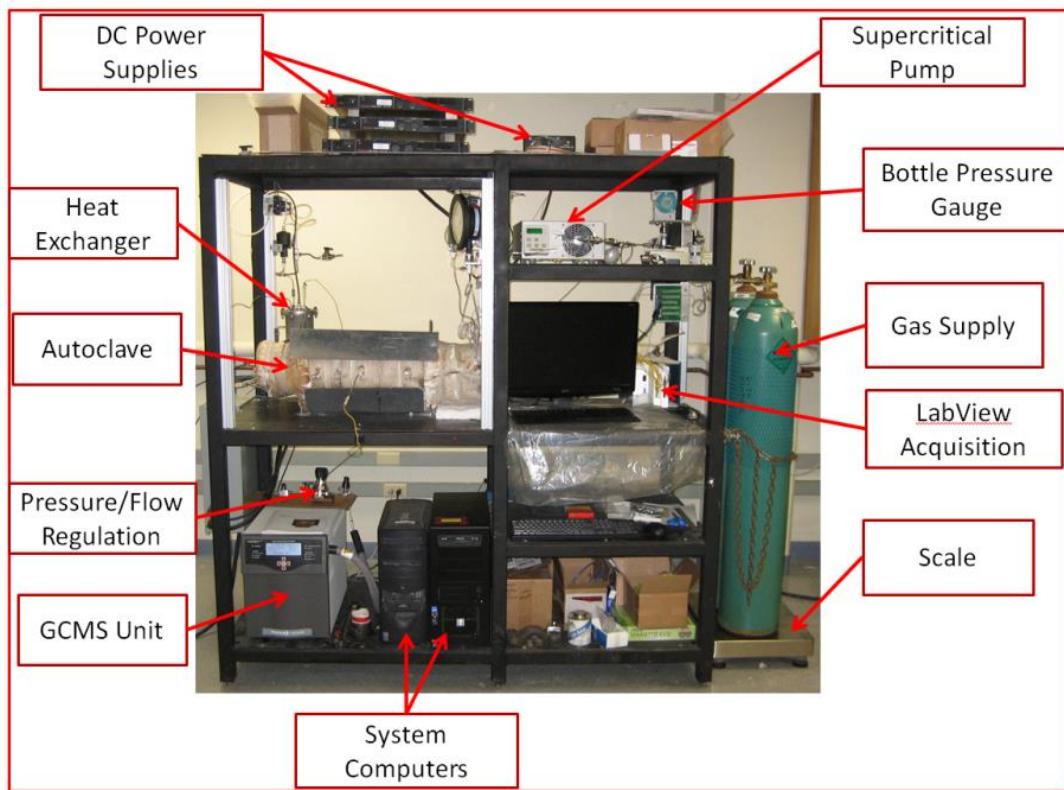
The supercritical carbon dioxide corrosion test facility consisted of the following basic features; namely, Gas Source, Autoclave, GCMS, and Automation Equipment. These basic aspects can be broken down into more specific components outlined as follows:

##### **Gas Source:**

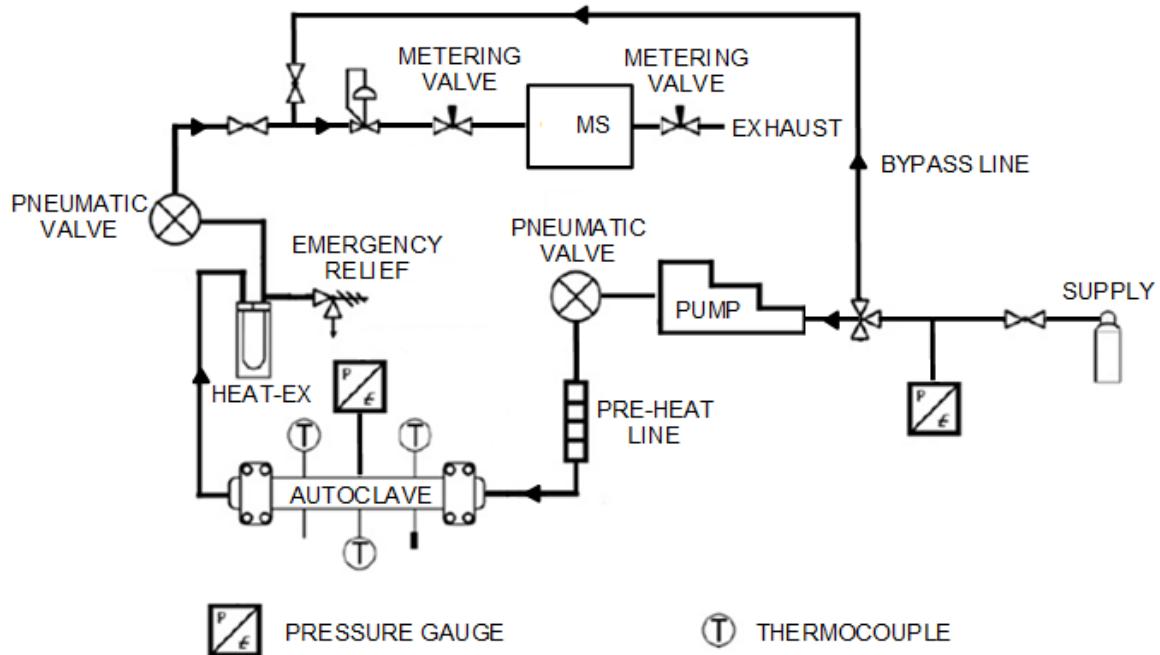
1. Gas cylinders
2. High resolution scale
3. Bottle side pressure transducer
4. High pressure CO<sub>2</sub> pumping system

##### **Autoclave:**

1. Resistive heaters
2. Two inch diameter (SCH 160) 25 inch in length Inconel 625 pipe
3. High pressure high temperature hubs and seals (Grayloc)
4. Alumina sample holder with Inconel mounting bracket
5. Exit gas chiller


GCMS:

1. Pressure and flow control system
2. Gas analyzer


Automation:

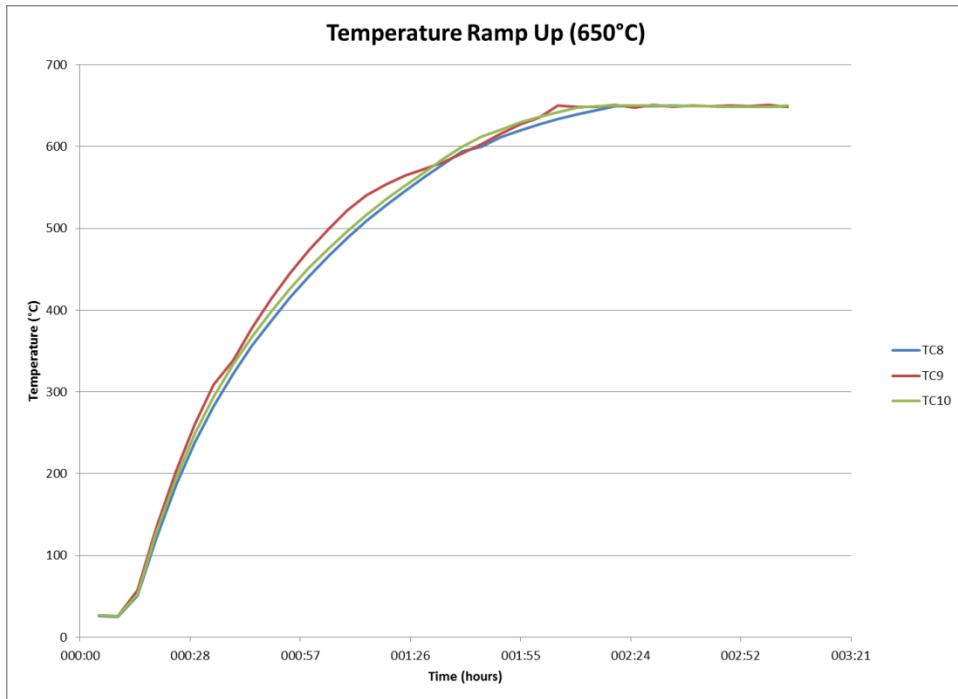
1. Thermocouples and test section pressure transducer
2. Acquisition system
3. Computer controller (automation)

Components for each section were selected based on both the aspects of the supercritical fluid as well as cost constraints at the time of the build. A photograph of the experimental equipment and a process flow diagram of the test setup are shown below in *Fig. 2* and *Fig. 3*.

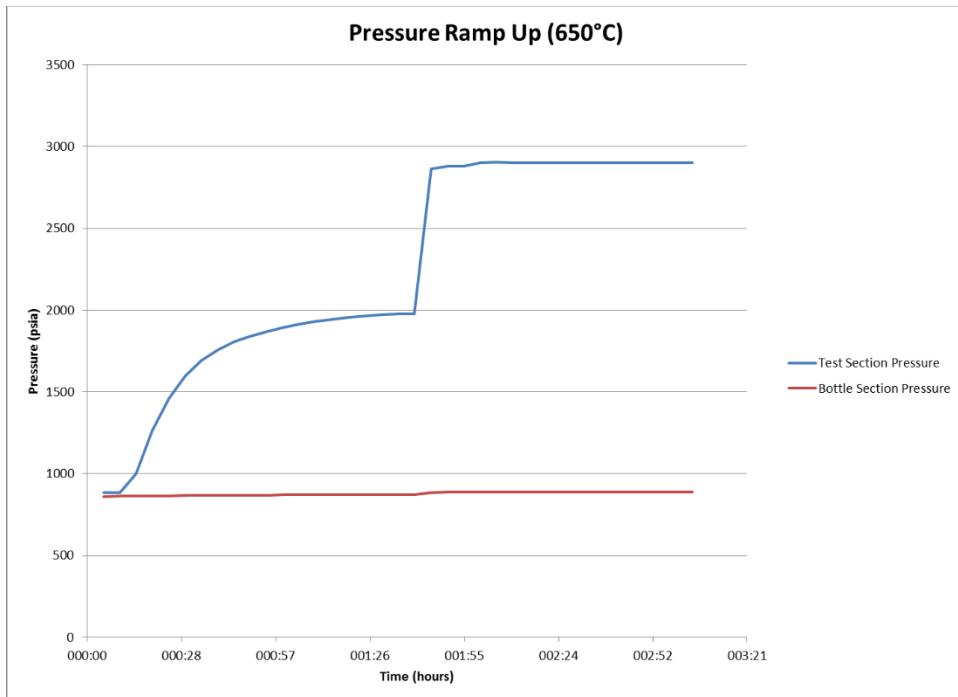


**Fig. 2:** Photograph of SCCO<sub>2</sub> Equipment and Experimental Test Setup

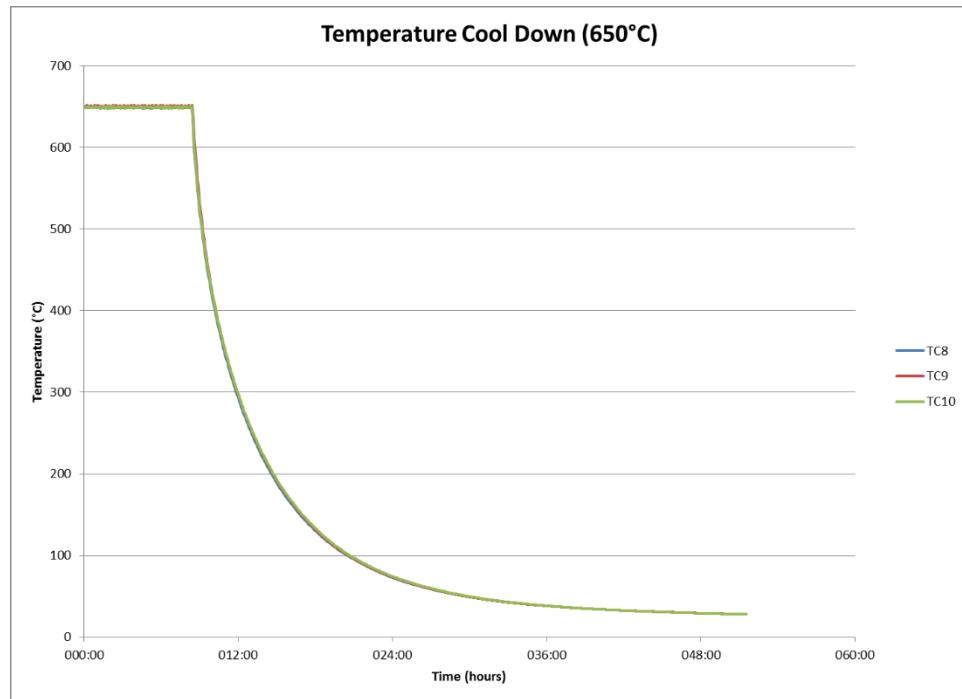



**Fig. 3:** Process Flow Diagram of SCCO<sub>2</sub> Experimental Test Setup

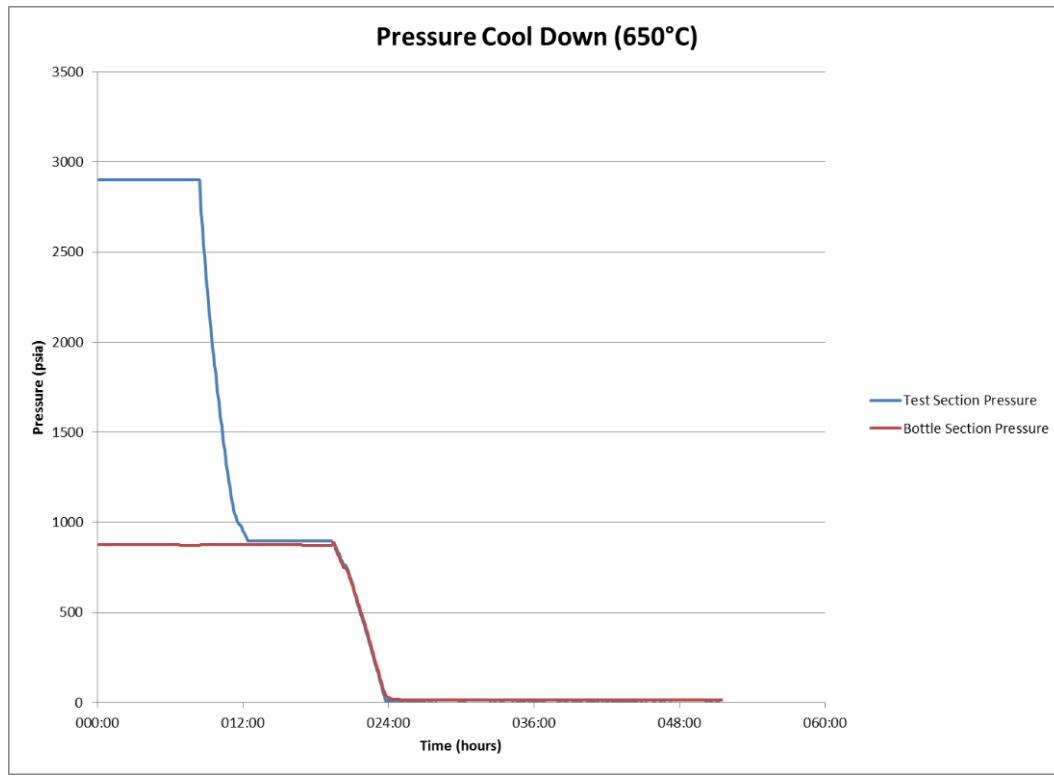
After the system was reconstructed, it was necessary to perform “shakedown” tests designed to establish reliability and to identify potential weakness in the system prior to experimental testing. The first few shakedown tests were performed using CO<sub>2</sub> at a pressure of approximately 800 psi (cylinder pressure). These tests isolated the autoclave test section at room temperature and monitored system pressure for signs of leakage. Leaks that were identified were marked and sealed after the conclusion of the test. This process was repeated until it was shown that the system could retain consistent pressure for 200 hours.


The second stage of shakedown testing involved ramping the temperature up in 50 degree intervals to a maximum temperature of 650°C then allowing the system to cool. This procedure established ramping ability, temperature stability during ramping (consistency across all three sections of the autoclave), as well as the cool down characteristics. It was found that the automated temperature ramping algorithm could consistently and evenly ramp the system without overshooting, and without the need to use manual stepped temperature intervals. The automated temperature ramping algorithm was therefore used for all system startups in lieu of manual temperature ramping. Pressurized CO<sub>2</sub> at ~800 psi was added to this test regime to observe the extent of pressurization during temperature ramping. It was found that pressures typically reached 1000-1800 psi depending on the flow settings. A small pumping study followed one of the pressurization tests to determine approximately how quickly the system could be pressurized, and the results indicated that pressurization could be achieved within tens of minutes. Therefore, based on these results, it was decided that pumping would not be initiated until the temperature was about 50°C from the set point.

Having established system integrity as well as temperature and pressure ramping characteristics, the final shakedown tests were conducted for real experimental conditions. Three tests were conducted at 450°C, 550°C, and 650°C with a testing pressure of 20 MPa (2900.75 psi) for all three tests. These final shakedown tests not only established system reliably, but also provided baselines for system startup and cool down times.

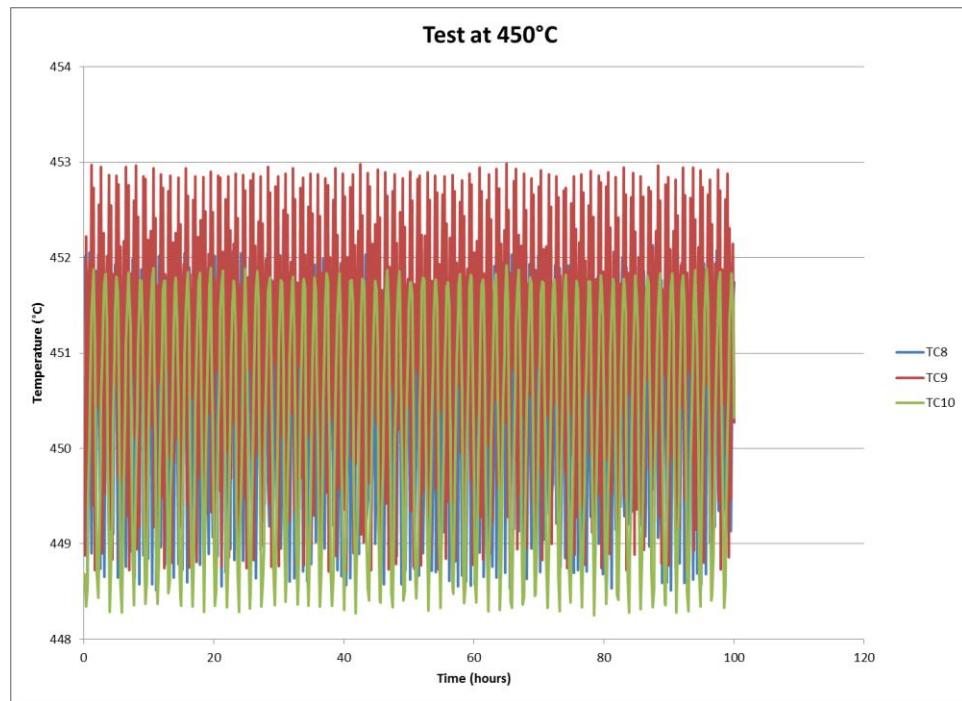

*Fig. 4* and *Fig. 5* show examples of temperature and pressure ramping for 650°C conducted during the shakedown tests. As can be seen in the temperature profile, heating across the three sections was fairly uniform. Temperature in the middle section (TC9) corrects itself as pressure ramping is initiated. *Fig. 6* and *Fig. 7* show examples of temperature and pressure trends during a cool down from 650°C. The figures show temperature and pressure information just before the termination command is executed indicating a stable temperature of 650°C and pressure of 2900.75psi (20MPa). The termination command then immediately stops the heaters as well as the pump. As can be seen, temperature and pressure quickly drop once the termination command is given. While the system is cooling, the pump is stopped but gas is still allowed to flow through the system to promote cooling. Therefore, *Fig. 7* shows a plateau at about 800psi indicating bottle pressure. It takes the system approximately 10 hours to cool below 100°C at which point the flowing gas is completely stopped. Temperature and pressure continue to drop until levels are reached allowing for safe sample removal.



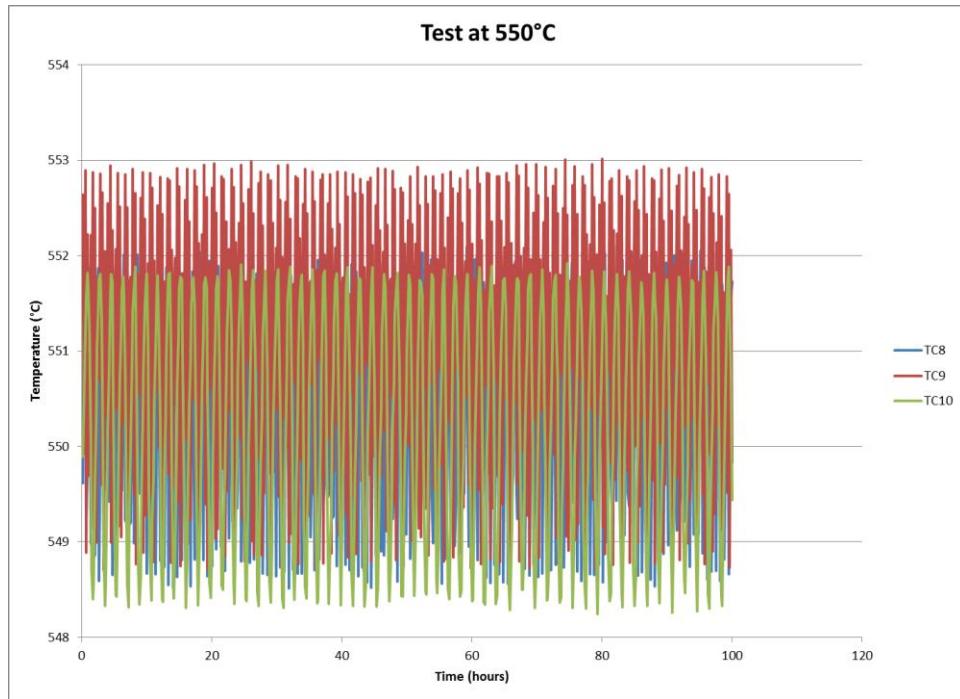

**Fig. 4:** Example of a temperature ramp up trend to 650°C



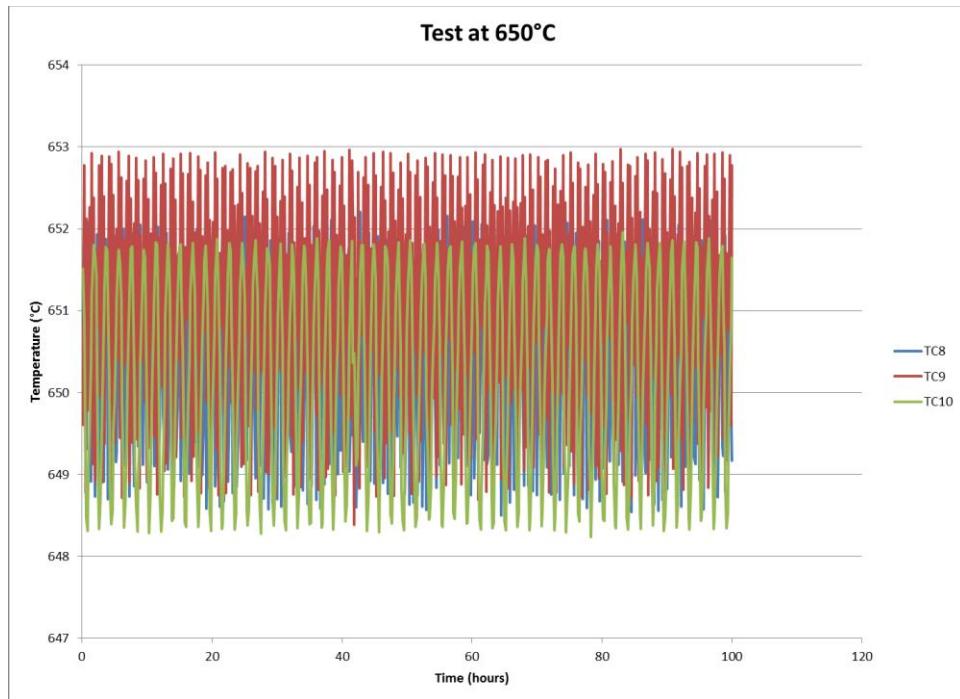
**Fig. 5:** Example of a pressure ramp up trend to 650°C




**Fig. 6:** Example of a temperature cool down trend from 650°C



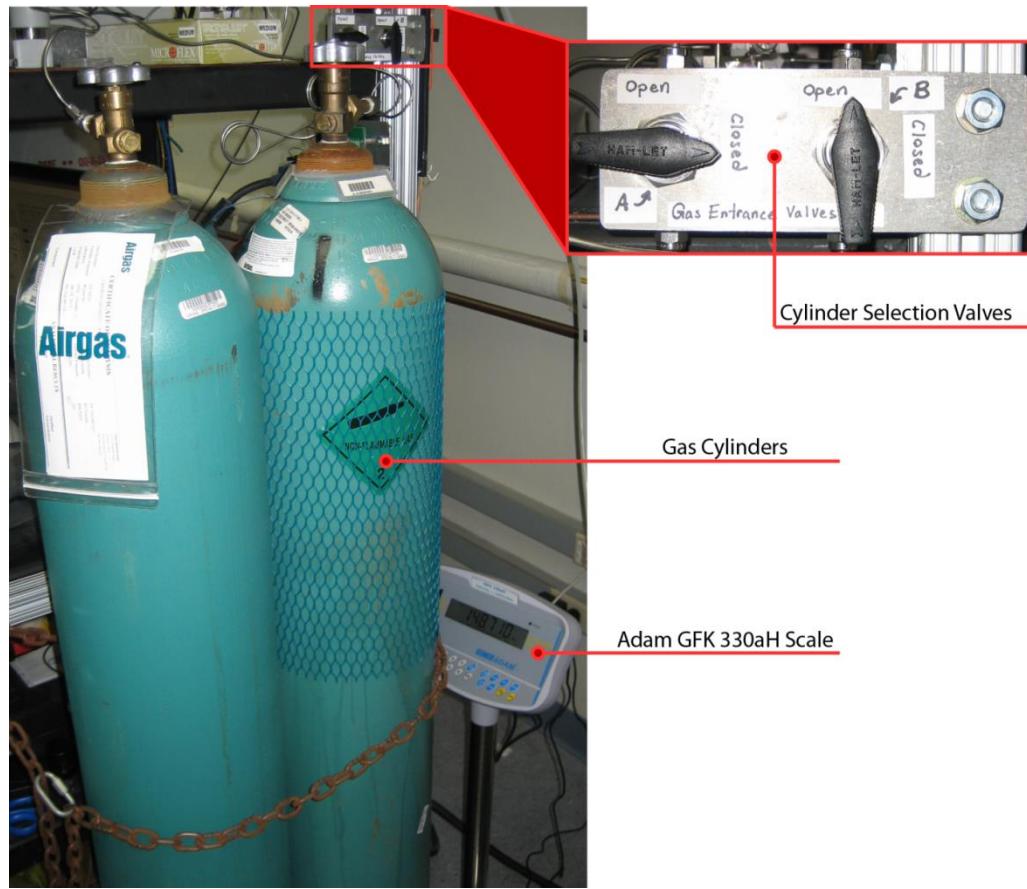

**Fig. 7:** Pressure profiles during temperature cool down from 650°C


*Fig. 8, Fig. 9, and Fig. 10* are examples of the stability of the system observed during the shakedown testing. As can be seen, temperatures are very stable fluctuating only as much as 3°C under all three conditions. Considering the temperature sections, thermocouple placement is illustrated in *Fig. 17*. Thermocouples TC8, TC9, and TC10 are inserted into the autoclave taking direct measurements in the middle of each of the three heating segments.



**Fig. 8:** Temperature stability trend for 450°C



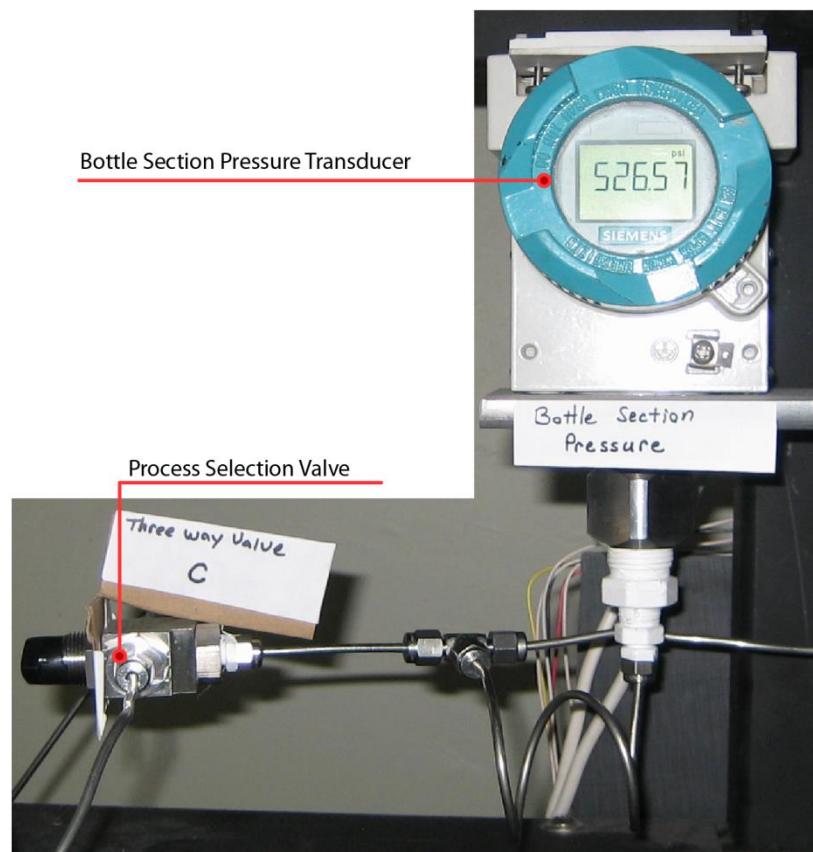

**Fig. 9:** Temperature stability trend for 550°C



**Fig. 10:** Temperature stability trend for 650°C

### 3.1.2 Gas Source

Gas originated from vendor supplied gas cylinders. For the experiments described herein, research grade CO<sub>2</sub> was provided by Airgas Inc. and certified at 99.9998% CO<sub>2</sub> per gas cylinder. During operation only one gas cylinder was in use at any given time. Two gas cylinders were connected to the system at all times to ensure redundancy. Gas cylinders were placed on an Adam GFK 330aH scale with a resolution of  $\pm 2$  grams so that the change in mass could be accurately determined during testing. The change in mass from the cylinders determined both the mass flow rate, and whether or not the cylinder was nearing empty. With only one gas cylinder used in process at a time, separate ball valves were installed to isolate the reserve cylinder. This feature also made it possible to switch from a spent cylinder to a new cylinder during testing. *Fig. 11* illustrates the gas supply setup with cylinders set atop the scale, and an enhanced view of the control valves.



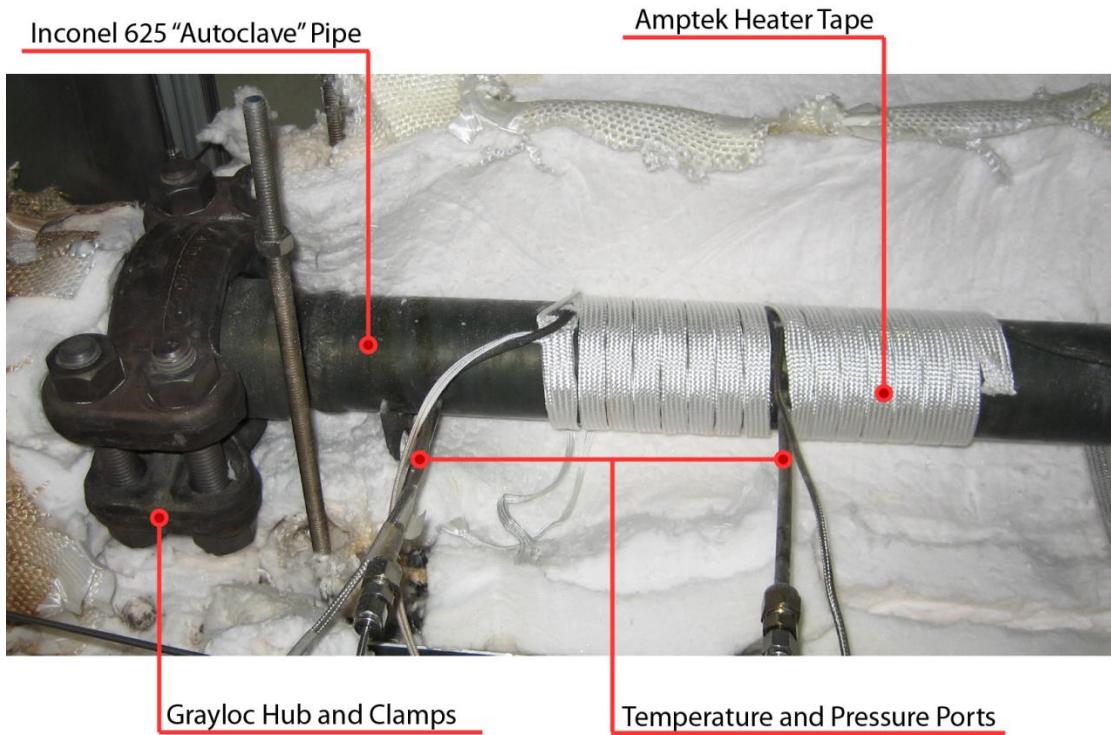

**Fig. 11:** Photograph of Gas Supply Cylinders, Scale, and Process Control

All the process connections for the test facility, except where specifically described, were made using 316 stainless steel. This included tubing, as well as Swagelok fittings. Additionally, all tubing in the system was rated for 6000 psi or greater, providing a large pressure margin for safe operation, as the expected operating pressure was not to exceed 3000 psi. Because the gas was at approximately room temperature outside of the autoclave, corrosion in the process lines was considered negligible.

Directly after the cylinder switching valves a Siemens Sitrans pressure transducer (Fig. 12) was connected to provide accurate ( $\pm 0.25\%$  FS) pressure information about the process gas

before it entered the supercritical pump. The full scale range for this transducer was 0.63 bar to 63 bar. The supercritical pump provided the pressure for the autoclave, maintaining the critical pressure as well as inducing a flow large enough to ensure fresh fluid to the samples (avoiding stagnation) and small enough so that fluid flow effect could be considered negligible. Approximately, the flow was set to refresh the  $9.18 \times 10^{-4}$  cubic meter autoclave volume once in two hours' time. The supercritical pump (Fig. 13), a Chrom Tech SFC-24, consisted of two sapphire pistons and a pulse dampener for a smooth fluid flow, and was capable of pumping at 24 ml/min to pressures up to 10,000 psi.



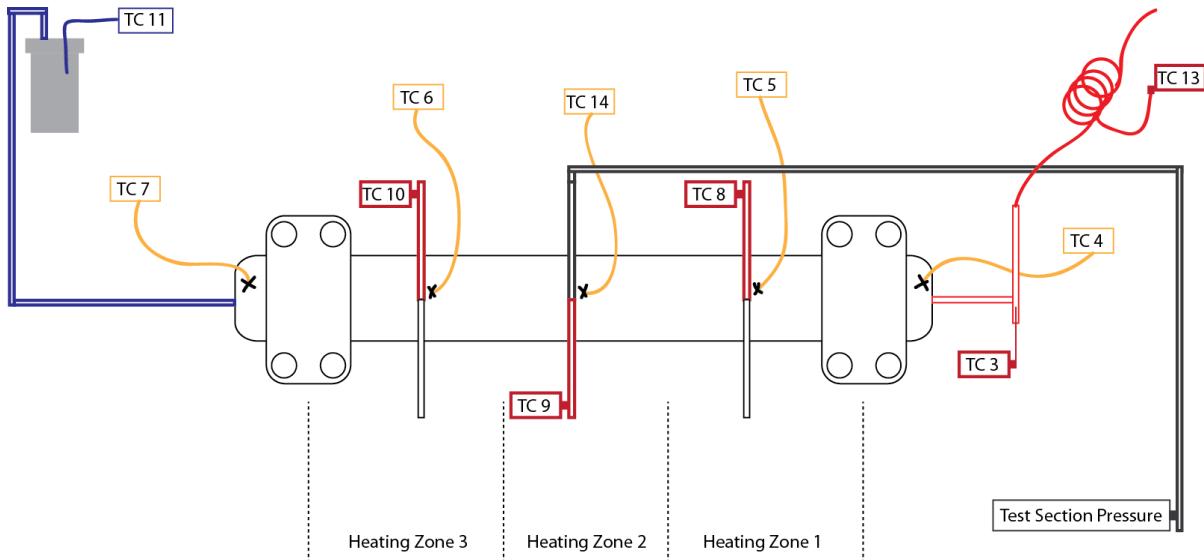

**Fig. 12:** Photograph of Bottle Section Pressure Transducer and 3-Way Process Valve



**Fig. 13:** Photograph of ChromTech Supercritical CO<sub>2</sub> Pump

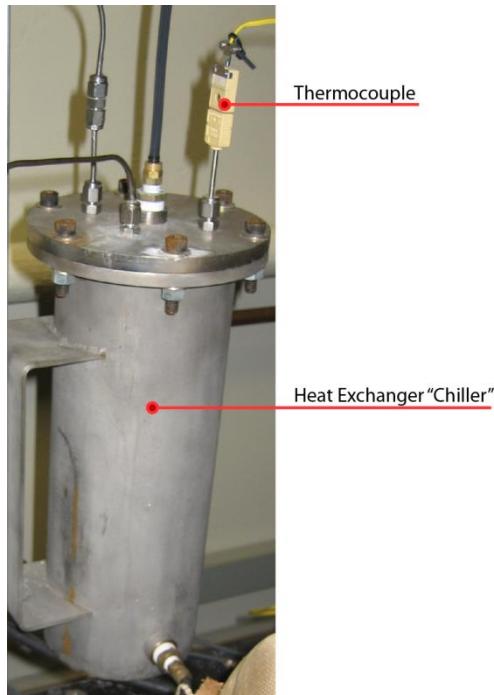
### 3.1.3 Autoclave

After leaving the pump and before entering the autoclave tube, the supercritical CO<sub>2</sub> was heated to test temperature by a coil of Ni-chrome wire wrapped around a 1/8 inch (outer diameter) coil of Hastelloy C-276 tube (~ 3 linear feet). The resistive heating was accurately controlled using a thermocouple and a variable DC power supply. The autoclave itself consisted of a ~25 inch long NPS 2 Schedule160 Inconel 625 pipe that had Grayloc pressure fittings attached at both ends. Six 1/4 inch Hastelloy C-276 tubes were welded into holes in the body of the tube, and allowed access for three Omega K-type thermocouples and two pressure sensors used to monitor the testing environment. The remaining port was used for a positioning rod (described later). *Fig. 14* shows part of the autoclave pipe with a Grayloc hub and clamps sealing the end. Seen in the figure protruding from the autoclave are two of the six tube ports.




**Fig. 14:** Photograph of IN625 Pipe, Grayloc Hub and Clamps, Amptek Heater Tape, and Kaowool Insulation

Test gas entered and exited through the end caps which had 1/8 inch Hastelloy C-276 tube inlets welded into them. The body of the Autoclave was maintained at the test temperature by the use of three independent HTS/Amptek AMOX-covered heater tapes. *Fig. 14* also depicts the Amptek heater wrapped for the middle heating section. The heater tapes had a maximum operation temperature of 760°C and were controlled via three Control Concepts model 1032 power controllers. Five additional K-type thermocouples were attached to the outer body of the autoclave tube for system monitoring. The end caps were maintained at temperature by small coils of Ni-chrome wire; with resistive heating controlled via DC supply and thermocouples.


While the Grayloc fitting on the exit gas end of the autoclave was repeatedly used as the sample exchange port, the Grayloc hub on the inlet gas side remained sealed. This limited the possibility of seal ring failure for the inlet gas end. The Grayloc seals worked very well, but there were concerns about the integrity of the seal ring after multiple removals from the higher temperature tests. This held especially true for testing at 650°C where the seal ring coating did not hold up past three uses. The Grayloc seal rings were Inconel 625 material coated with silver, and after multiple exposures, the silver started to separate from the seal ring creating breaches into the system from which CO<sub>2</sub> could leak. Therefore, seal rings were inspected after each test interval and replaced when they showed signs of wear.

*Fig. 15* shows the location for thermocouples, the thermocouple number, the location for pressure transducers, and the heating zones. The entire body of the autoclave was wrapped with refractory insulation (Kaowool in two 1" thick layers) and an alumina fiber blanket to maintain the temperature, and limit heat loss. Two, approximately crescent shaped, polished aluminum reflectors were added above and below the autoclave to reflect thermal radiation back into the autoclave.

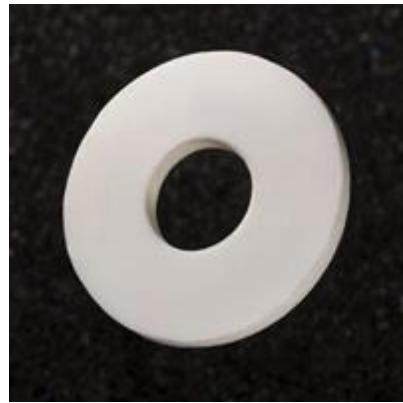


**Fig. 15:** Diagram of the Autoclave Showing Thermocouple Placement and Heating Zones

After leaving the autoclave test section, the CO<sub>2</sub> needed to be cooled considerably. A simple counter flow heat exchanger was used for this purpose (*Fig. 16*). The “chiller” consisted of a “can” (stainless steel container) that was filled and circulated with building cooling water. A 20 foot piece of 1/8” Hastelloy tube was coiled inside the can through which the hot CO<sub>2</sub> could pass. A thermocouple attached to the chiller monitored the exit temperature of the CO<sub>2</sub> to make certain it reached a safe temperature.



**Fig. 16:** Photograph of Gas Cooler (Heat Exchanger)

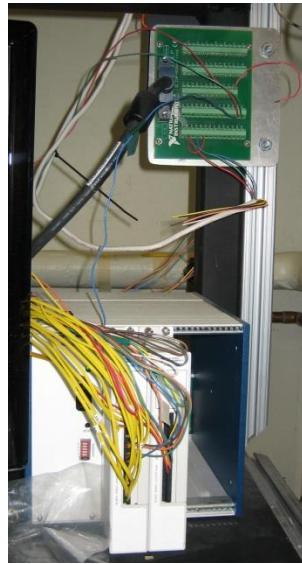

### 3.1.4. Sample Mounting Hardware

The test coupons were mounted in a sample holder consisting of components capable of withstanding the elements of a high temperature, high pressure environment, and that could be entirely removed from the autoclave at regular intervals for examination. The one additional component of the corrosion testing facility not strictly associated with maintaining the high pressure high temperature environment was the sample holder. The sample holder, used to hold the test material during testing, was made out of alumina owing to its benign interaction with CO<sub>2</sub> and its high temperature capabilities. The outer framework of the sample holder acted as a chassis and was constructed of IN625. An alumina ceramic "boat" was precision machined and inserted into the IN625 frame and pinned into position within

the frame at both ends by 3.0 mm  $\varnothing$  alumina pins. Alumina inserts with a slot were machined and placed at the end of the boat so that a 3.0 mm  $\varnothing$  alumina rod could be freely suspended and traverse the length of the boat. This enabled the freedom to remove and install coupons. This design also served the purpose to gauge and retain spalled oxide particles from suspended test coupons, which could later be collected from the boat for further chemical analysis if necessary. To mitigate the effect of galvanic corrosion and catalytic effects between coupons and coupons of different materials, a 1.0 mm thick alumina ceramic washer (spacer) was inserted between each coupon on the sample boat holder. *Fig. 17* and *Fig. 18* below show the layout of the sample holder and its components and the alumina spacer.



**Fig. 17:** Different Views of Test Sample Holder



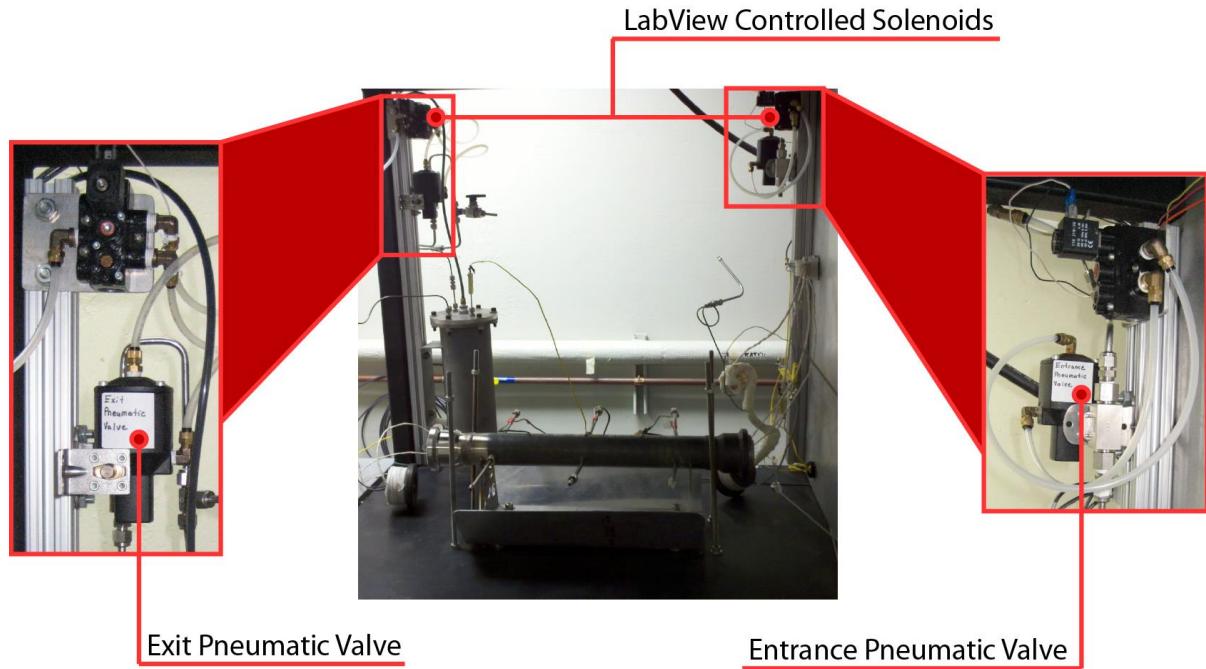

**Fig. 18:** Image of Alumina Spacer.

ID = 0.120-0.133", OD = 0.370-0.383", thickness = 0.036-0.045".

### 3.1.5 Automation

The SC-CO<sub>2</sub> Corrosion Test facility was completely automated. Automation was accomplished through the use of National Instruments (NI) hardware, and software (LabView). Specifically, acquisition signals were gathered from the thermocouples and pressure transducers wired into an NI SCXI data acquisition device connected to a custom built computer. *Fig. 19* depicts the National Instruments hardware acquisition device wired to all the thermocouples and pressure transducers. LabView software running on the computer executed code specifically written for the system to read in values from the data acquisition device. Data driven events were then used to execute commands to the hardware. System readings were simultaneously compiled into a report format for data logging so that an accurate history of the testing conditions for the duration of the experiment could be maintained.




**Fig. 19:** National Instruments hardware with temperature, sensors, heater control, DC power supply triggering, and valve signaling

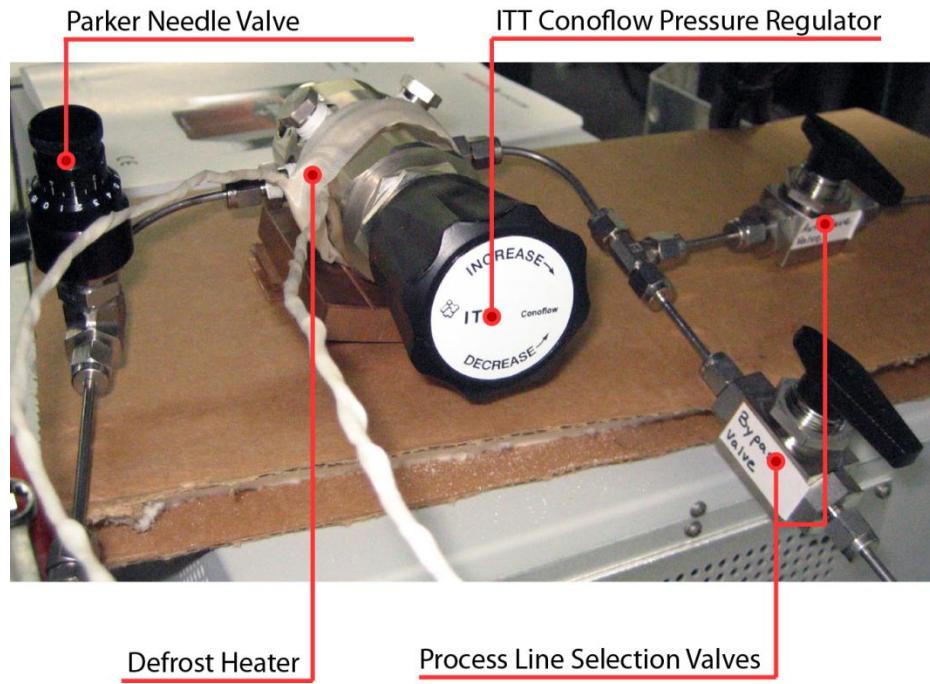
Heating was executed using the data from thermocouples ported in the autoclave. Thermocouple signals were processed and interpreted with respect to calibrations, and the resulting temperatures were further processed with a proportional-integral-derivative (PID) algorithm to determine the appropriate heating response. Commands from LabView based on the temperature readings were output to analog channels on the NI SCXI device which then were used to control the Model 1032 power controllers. The power controllers dictated the power to the heater tape; controlling the temperature. Pressure readings taken from the pressure transducer in the autoclave section were likewise used to determine control commands sent via com port to the SC-CO<sub>2</sub> pump.

Although the Adam scale was not directly wired into the NI SCXI data acquisition module, its connection via com port allowed LabView to record periodic measurements. These

measurements were then graphically displayed within the program interface, and recorded with the temperature and pressure measurements.

Possibility of the failure of the SC-CO<sub>2</sub> pump necessitated the ability to isolate the autoclave to maintain pressure. Between the pump and the “preheat” section as well as just after the cooler, pneumatic LabView controlled valves were inserted so that the autoclave could be automatically isolated in the event of a malfunction mid test. The settings to the valves were made such that in the event of power failure the valves would close isolating the autoclave section. *Fig. 20* shows the pneumatic valves attached to the testing facility and individual close ups.




**Fig. 20:** Photographs of the Automated Entrance and Exit Valves

Additional items were added to the system for safety and ease of monitoring. These items included a manual pressure vent (hand operated purge valve), an automatic pressure release valve, an easily visible pressure gauge, polycarbonate blast shields, inline filters, and a calibration-check gas-bypass. The bypass was inserted into the process line after the bottle section pressure transducer using a three way ball valve, and ran directly to the GCMS (including pressure regulation). This bypass allowed easier access to the gas directly from the cylinder for calibration and monitoring purposes. To address the potential for power fluctuations an uninterruptable power source (UPS) was added to the system. The Tripp Lite SU3000XL on-line double conversion 2400 watt UPS system not only provided backup power to the system in the event of power failure, but also actively conditioned the supplied power.

### **3.1.6. Mass Spectrometer**

A Pfeiffer Vacuum Thermo Star quadrupole mass spectrometer (MS) was selected as the device to measure both the inlet gas composition and outlet reaction products. Denoted by MS in *Fig. 3*, and also shown in *Fig. 22*, the MS operates with feed gas at atmospheric pressure and was attached downstream from the two-stage pressure regulator. With the exit gas at room temperature after leaving the heat exchanger, a pressure and flow regulation system was implemented to simultaneously maintain a set backpressure and allow a small flow of gas to exit at atmospheric pressure. A two-step system was devised using a high pressure regulator in conjunction with a precision needle valve to manage flow and provide proper backpressure. The pressure regulator selected was a Conoflow HP 700 rated specifically for use up to 6000 psi. This particular regulator used two stages to provide

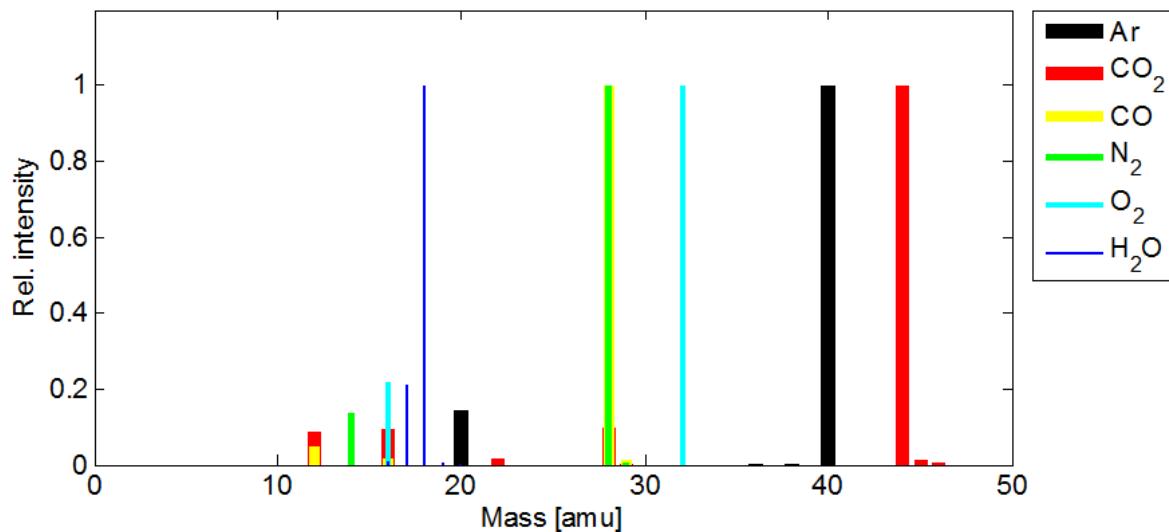
constant outlet pressure regardless of fluctuations on the inlet side. Using the HP700 to bring the pressure down to a manageable level (approximately 25 psi), a high precision Parker needle valve was used to set the flow. *Fig. 21* depicts the pressure/flow regulation setup.



**Fig. 21:** Photograph of Pressure Regulation Setup

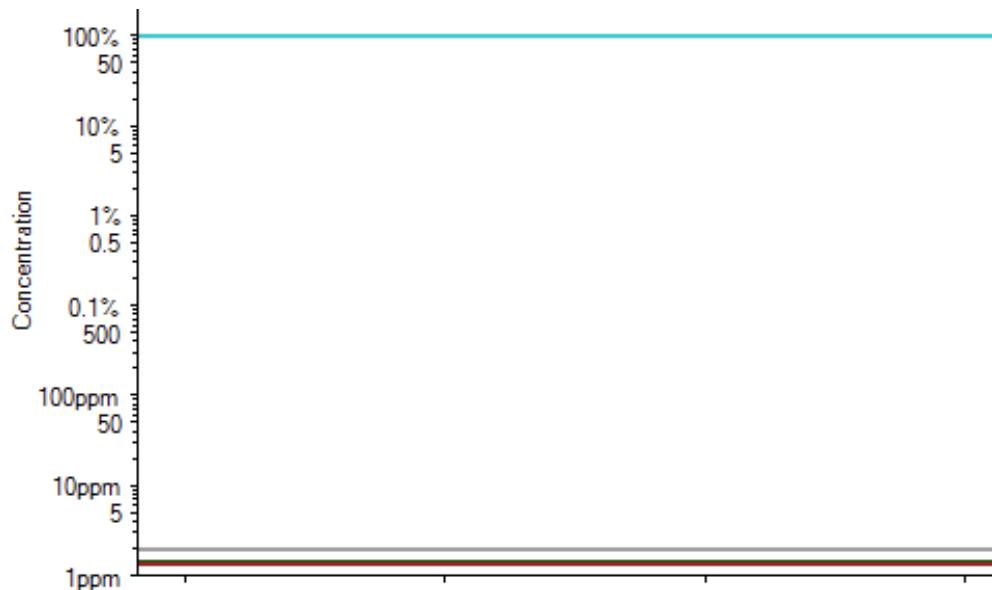
In order to investigate any chemical reactions possibly taking place during the corrosion process, the use of gas chromatography was implemented in the facility. Cylinder gas would be initially characterized using a process line that bypassed the autoclave, and exit gas from the autoclave could be monitored through the duration of the experiment. Because this unit could be operated with gas at atmospheric pressure, it was attached at the end of the process line. A "T" fitting, a small length of stainless steel capillary tube, and another Parker needle valve were used to set the flow of gas as well as prevent any backflow of air into the GCMS unit.



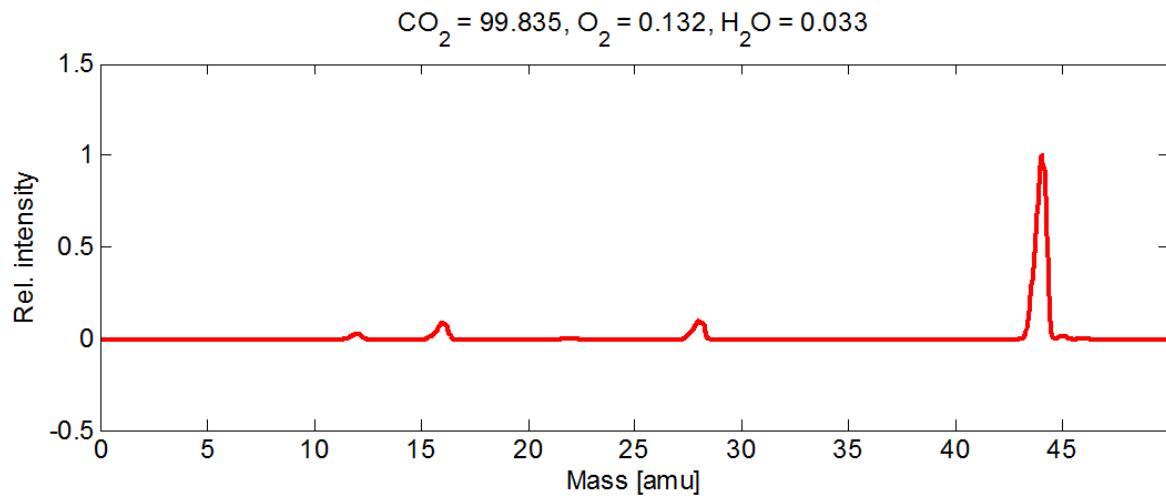

**Fig. 22:** Photograph of Pfeiffer Vacuum Thermostar MS

A mass spectrum will usually be presented as a vertical bar graph, in which each bar represents an ion having a specific mass to charge ratio ( $m/z$ ) and the length of the bar indicates the relative abundance of the ion. The most intense ion is assigned an abundance of 100, and it is referred to as the base peak. Most of the ions formed in a MS have a single charge and the  $m/z$  value is equivalent to mass itself. Modern day MS's can distinguish ions by only a single atomic mass unit (amu), and can provide measurement of a molecular species of differing mass. But if one seeks after the elemental isotopes, these are not measurable directly and must be determined by calculations based on the observed molecular spectrum [38]. A carbon dioxide molecule is composed of only three atoms, and has a reasonably simple mass spectrum. The base peak or ion current is at  $m/z$  44 ( $^{12}\text{C}^{16}\text{O}_2$ ), and the only fragment ions are CO ( $m/z$  28) and O ( $m/z$  16). Table 1 below lists the amu peaks of different gaseous species.

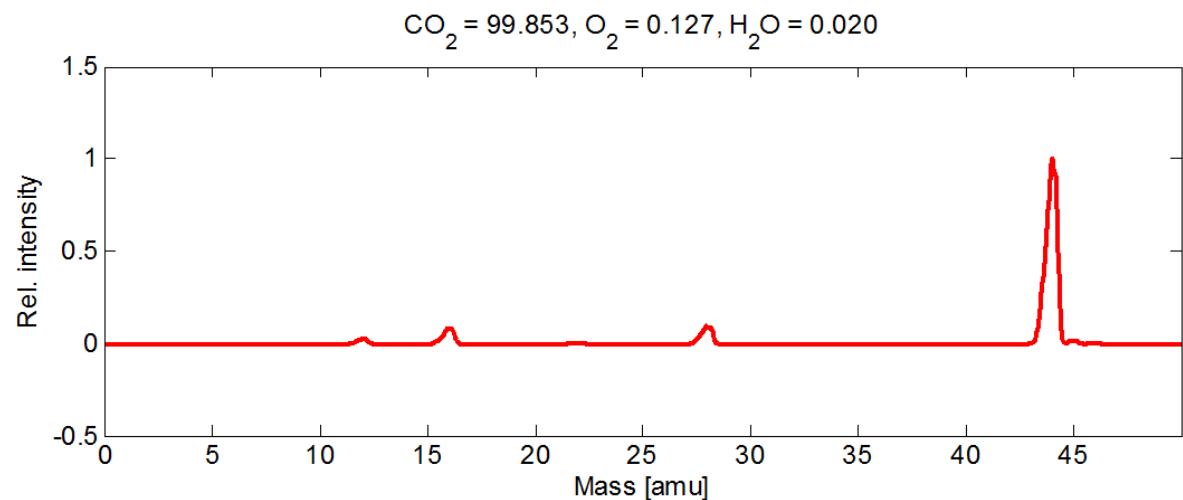
**Table 1:** List of amu Peaks for Different Gaseous Species


| Species          | Atomic Mass Unit                       |
|------------------|----------------------------------------|
| CO <sub>2</sub>  | 12,13,16,22,28,29, <b>44</b> ,45,46    |
| CO               | 12,14,16, <b>28</b> ,29,30             |
| O <sub>2</sub>   | 16, <b>32</b> ,33,34                   |
| Air              | 14,16,17,18,20,28,29,32,34,40,44       |
| H <sub>2</sub> O | 16,17, <b>18</b> ,19,20                |
| N <sub>2</sub>   | 14, <b>28</b> ,29                      |
| NO <sub>2</sub>  | 14,16, <b>30</b> ,31,46                |
| SO <sub>2</sub>  | 16,24,32,34,48,49,50, <b>64</b> ,65,66 |

**Note:** Bold value indicates base (principal) peak




**Fig. 23:** Mass Spectra of Different Species from NIST  
Courtesy of David Grierson


The mass spectra for RG-CO<sub>2</sub>, IG-CO<sub>2</sub> and BDG-CO<sub>2</sub> from their respective supply cylinders are provided below in *Fig. 24*, *Fig. 25*, and *Fig. 26*, respectively. Measurements were made for each CO<sub>2</sub> concentration through the bypass line (see *Fig. 3*). Kane and Goodell have observed that mass spectrometers require far more attention than a gas chromatograph, whereas they have been able to setup, install, operate, and serviced their gas chromatograph with only casual assistance from colleagues, the mass spectrometer was very demanding of professional services [39].



**Fig. 24:** Measured Gas Composition of RG-CO<sub>2</sub> at Outlet  
CO<sub>2</sub> = 99.999%, CO < 2ppm, O<sub>2</sub> < 2ppm, H<sub>2</sub> < 2ppm, H<sub>2</sub>O < 1ppm



**Fig. 25:** Mass Spectra of BDG-CO<sub>2</sub> at Inlet (from Cylinder)



**Fig. 26:** Mass Spectra of IG-CO<sub>2</sub> at Inlet (from Cylinder)

### 3.1.7. Test Procedure

After the sample holder has been installed in the autoclave, the sample holder is set into the same repeating position by a locating pin that penetrates through both extending arms at the front of the sample holder and into a hole inset. The coupons, which are suspended on an alumina sample holder, are positioned approximately in the center of the autoclave. A silver-coated ribbed seal ring with two lips is installed onto the end of the autoclave pipe, followed by a blind end hub. These components make up the Grayloc connector system typically used for high pressure piping and vessel connections. The Grayloc end hub is then wrapped with a ceramic fiberglass insulation blanket and a protective alumina fiber blanket cover. First, the autoclave temperature is raised from atmospheric STP conditions to the desired temperature (i.e., 450°C, 550°C, 650°C). The rate of temperature increase was approximately 605K/hr at 550°C. The CO<sub>2</sub> is fed in a liquid state from a commercial cylinder (70°F, ~ 835 psia, ~ 450 hours life) to a constant flow, dual-piston supercritical CO<sub>2</sub> pump, which displaces the liquid at a constant rate beyond it's critical pressure (7.39 MPa) to 20 MPa. A pre-heat line, just after the pump outlet, heats the gas to within close proximity of the desired temperature to minimize thermal disparity prior to entering the conductively heated autoclave above its critical temperature (31°C). The coupons, which are suspended on an alumina sample holder, were positioned approximately in the center of the autoclave. The flow rate of SCCO<sub>2</sub> was about 0.02 kg/hr, sufficient to refresh the autoclave every two hours, and can be considered as low flow or quasi-static. The SCCO<sub>2</sub> is then returned to STP conditions after 200 hours of exposure to enable removal of coupons for weighing and determination of weight change. A total of 10 coupons were tested, with two coupons removed every 200

hours of exposure for surface analysis examination using optical methods. *Fig. 27* shows the sequence used for removing coupons. Gas composition from the cylinder and the autoclave outlet were monitored using the MS system.

|          | Test Samples |   |   |   |   |    |    |    |    |    |
|----------|--------------|---|---|---|---|----|----|----|----|----|
| 0 hrs    | 1            | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 |
|          | □            | □ | □ | □ | □ | □  | □  | □  | □  | □  |
| 200 hrs  | 1            | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 |
|          | □            | □ | □ | □ | □ | □  | □  | □  | □  | □  |
| 400 hrs  |              | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10 |    |
|          |              | □ | □ | □ | □ | □  | □  | □  | □  | □  |
| 600 hrs  |              |   | 5 | 6 | 7 | 8  | 9  | 10 |    |    |
|          |              |   | □ | □ | □ | □  | □  | □  |    |    |
| 800 hrs  |              |   |   | 7 | 8 | 9  | 10 |    |    |    |
|          |              |   |   | □ | □ | □  | □  |    |    |    |
| 1000 hrs |              |   |   |   | 9 | 10 |    |    |    |    |
|          |              |   |   |   | □ | □  |    |    |    |    |

*Fig. 27*: Sequence for Coupon Removal

### 3.2. Metallic Coatings

From the weight gain results of alloys in tested in research grade CO<sub>2</sub>, the 9-12Cr ferritic-martensitic steels T92 and T122 exhibited the highest weight gains. Therefore, these two materials were selected to see if corrosion resistance could be enhanced by a suitable coating. Previous works by Ren [40] and Allen and Sridharan et al [41, 42] have shown improvement in corrosion resistance at high temperature for ferritics in supercritical water environment, and Tang et al [43] have shown improvement in corrosion resistance in air at high temperature. For this study, the surface treatments selected were as follows:

- Single Element Aluminum Coating (5.000 kÅ, both sides)
- Single Element Yttrium Coating (5.000 kÅ, both sides)
- Shot Peening (SS shot, 60psi/6secs, both sides)

### 3.2.6. Sputterer

Deposition of the thin film aluminum and yttrium coating were conducted using a Denton Discovery 24 RF/FC physical vapor deposition (PVD) system at the Wisconsin Center for Applied Microelectronics (WCAM). This system was chosen for its capability to achieve high vacuum pressures and its wide diameter palette, enabling the radial distribution of a uniform sputtered coating on as many as 25 samples simultaneously, all within 1-2% of 5.000 kÅ. Given the range of variation observed in weight gain amongst individual samples, it is beneficial to minimize this variation any further by depositing on all the samples under the same conditions at one time if possible.



**Fig. 28:** Photograph of RF/DC Multi-Cathode PVD Sputterer

### 3.2.7. Coating Procedure

For each coating, the coupons were installed on a palette along the inside of a copper ring guide. *Fig. 29* below shows a photograph of this installation. Several additional coupons were added to allow for SEM/EDS/XRD and thickness check of coated samples.



**Fig. 29:** Photograph of Sample Mounting, Chamber, and Coating Deposition

The chamber was then allowed to pump down to a pressure of about  $1.1\text{-}1.8\text{e}^{-6}$  torr. The deposition was then started and deposited a  $5.000$  kÅ at a rate of about  $3.3\text{-}3.5$  Å/s for about 24-25 minutes. The deposition was then manually stopped and the cathode allowed to cool before removing the samples. After the cathode cooled down, the palette was removed from the chamber and each coupon was gently flipped over to allow for coating of the other side by repeating the above process. This process was essentially the same for both coatings using aluminum and yttrium. Table 2 below shows the deposition parameters used in this study. The Yttrium target, which had not been used before in this sputterer chamber, was “broken-in” (out-gassed) and ramped-up in power for about 60 minutes to determine the cathode power setpoint and deposition rate.

**Table 2:** PVD Sputtering Parameters for Al and Y Coatings

| Parameter           | Aluminum (2.70 g/cc, 1.080 Z) |                         | Yttrium (4.34 g/cc, 0.835 Z) |                         |
|---------------------|-------------------------------|-------------------------|------------------------------|-------------------------|
| Side                | Front                         | Back                    | Front                        | Back                    |
| No. of Coupons      | 23                            | 23                      | 23                           | 23                      |
| HCM12A              | 10                            | 10                      | 10                           | 10                      |
| NF616               | 13                            | 13                      | 13                           | 13                      |
| Purge Gas           | Argon                         | Argon                   | Argon                        | Argon                   |
| Gas Flow Setpt      | 20 sccm                       | 20 sccm                 | 20 sccm                      | 20 sccm                 |
| Cathode #           | 4                             | 4                       | 4                            | 4                       |
| Rotational Speed    | 13rev/min                     | 13rev/min               | 13rev/min                    | 13rev/min               |
| Dep. Screen Thk.    | 4.996 kÅ                      | 5.011 kÅ                | 5.000 kÅ                     | 5.000 kÅ                |
| Dep. Time           | 00:25:07                      | 00:24:57                | 00:23:41                     | 00:23:39                |
| Dep. Rate           | 3.3 Å/s                       | 3.4 Å/s                 | 3.5 Å/s                      | 3.5 Å/s                 |
| Dep. Pressure       | 1.8e <sup>-6</sup> torr       | 1.7e <sup>-6</sup> torr | 1.1e <sup>-6</sup> torr      | 1.5e <sup>-6</sup> torr |
| Sputter Press Setpt | 6 mtorr                       | 6 mtorr                 | 12 mtorr                     | 12 mtorr                |
| Sputter Power Setpt | 45%                           | 45%                     | 17.5%                        | 17.5%                   |

### 3.3. Shot Peening

Shot peening is the process of cold working the surface of a structural or machine part by means of a propelled stream of spherical shot. The process is used to improve the fatigue properties of the part, and to retard stress corrosion cracking, by the introduction of compressive stresses in the surface layer. The presence of this layer of compressive stresses serves as a retardant to initiation and growth of failure cracks. Shot peening causes local plastic flow in the surface of the object, stressing the material beyond its yield strength, which results in a residual compressive stress [44]. Stress corrosion is failure by cracking under a combination of corrosion and tensile stresses. Peening inhibits stress corrosion by virtue of the associated surface compressive residual stress state. It is generally applied to increase resistance to fatigue and stress corrosion failure and is widely used on springs and gears [44, 45]. In regards to other surface deformation methods, Grabke et al [45, 46] have

shown the effect of grain size, cold working, and surface finish on the metal dusting resistance of steels in a carburizing environment. Cast steel shot is the most widely used media. Despite carbon steel shot being the most widely used and least expensive media, to avoid imparting carbon onto the alloy sample surface with carbon-bearing particles and to do away with having to further clean the surface, an Ervin AMACAST ES-300 (S110) stainless steel shot was selected. Pricing of three different shot media considered is provided below in Table 3.

**Table 3:** Shot Media and Pricing

| <b>Blast Media</b>                         | <b>Pail/Drum Wt.</b> | <b>Density</b> | <b>Total Costs</b> | <b>Piece Price</b> |
|--------------------------------------------|----------------------|----------------|--------------------|--------------------|
| Stainless Steel (S110 size)                | 50 lbs               | 7.0 g/cc       | \$213              | \$4.25/lb          |
| Glass Bead<br>(Potter's Product "AA" Size) | 50 lbs               | 2.5 g/cc       | \$33               | \$0.66/lb          |
| Ceramic<br>(Zirblast B-40)                 | 55 lbs               | -              | \$262              | \$4.75/lb          |
| Carbon Steel (S110)                        | 50 lbs               | 7.0 g/cc       | \$50               | \$1.00/lb          |

### 3.3.6. Peen Machine

For this study, a Media Blast & Abrasives Powerpeen 2000™ pneumatic shot machine was selected. The nozzle size was chosen based on the shot size, flow volume, intensity, and area (pattern) to be peened. Media already present in the machine was evacuated through the abrasive mixing valve located below the mixing pot and blasted down with an air hose completely from the inside of the cabinet. This action was performed to prepare for install of the stainless steel shot. The blast nozzle was a  $\frac{1}{4}$ " venturi boron carbide nozzle and was positioned 6.5" normal from the almen sample holder.

### 3.3.7. Mounting Hardware

Fig. 30 below shows a schematic of the shot peening process and related hardware. Fig. 31 below shows how the ferritic samples were mounted for shot peening.

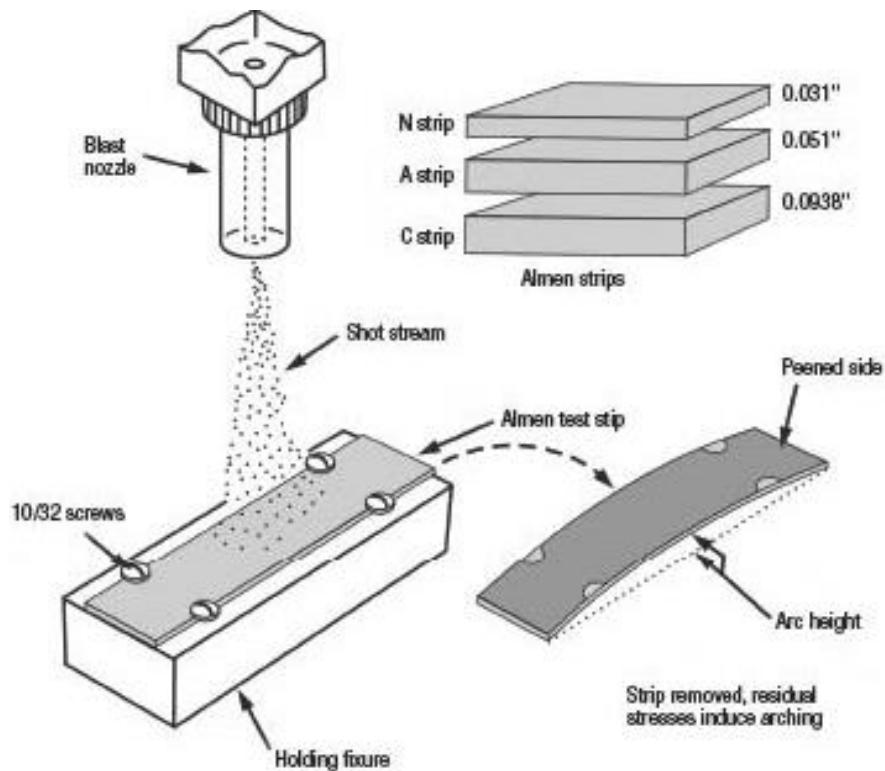



Fig. 30: Schematic of Shot Peening Process and Hardware

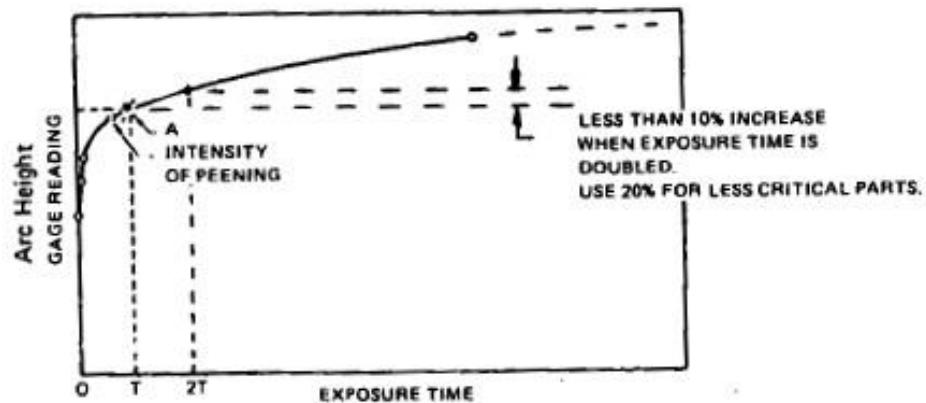
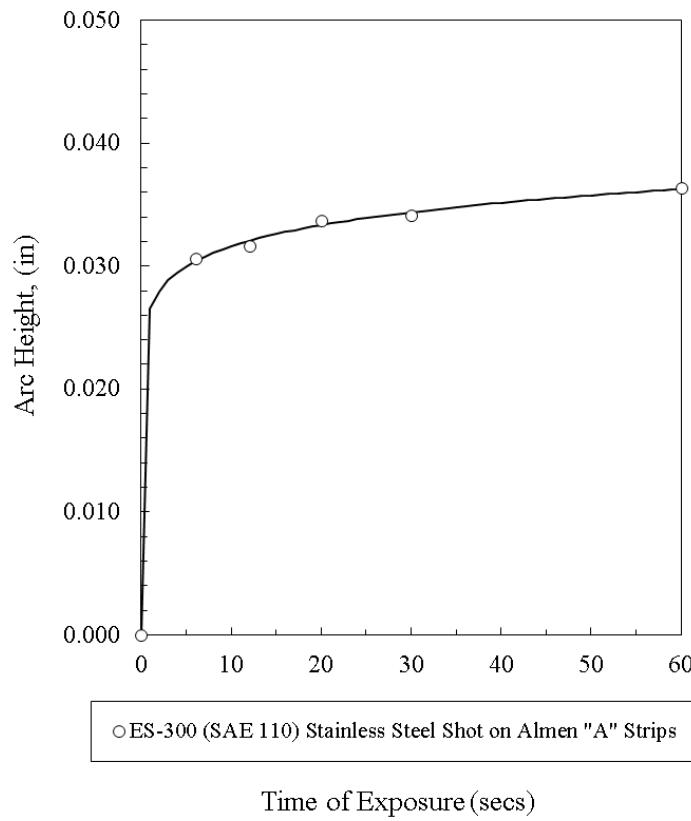




Fig. 31: Mounting of (a) Almen Strips and (b) Coupons for Shot Peening

### 3.3.8. Peening Procedure

Prior to determining the intensity curve, the newly installed virgin stainless steel shot was pre-blasted against a SS plate to work harden the dead soft 20 HRC shot to as much as 50+ HRC.

To ensure that shot peening operating conditions were similar from coupon to coupon, the procedures followed for shot peening and determining the peening intensity saturation curve were in general accordance with SAE J443 [48]. *Fig. 32* below shows a typical intensity curve.




*Fig. 32:* Typical Intensity/Saturation Curve Determination

The peening intensity is expressed as the arc height of a shot peened test strip. By peening a series of test strips with increasing exposure time, a curve can be fit to the resulting data. Saturation is defined as the “knee” in the curve since increasingly longer periods of time are required to impose a significant increase in arc height. To determine the intensity curve for this study, almen “A” strips were mounted on an almen holder and blasted at 60 psi under a

side-to-side sweeping motion for times of 6, 12, 20, 30, and 60 seconds. This sweeping motion was implemented to ensure full coverage of the test strip due to the flow pattern generated from the blast nozzle. The difference between the flat height and peened height is the arc height, measured at the center of the strip where maximum deflection has occurred.

*Fig. 33* below shows the peening intensity curve for this study.



**Fig. 33:** Shot Peen Intensity/Saturation Curve

The FM steels, NF616 and HCM12A, were shot peened at 60 psi for 6 seconds on both sides. This time was chosen for all coupons since it was at the saturation point of the intensity curve. This time was also beneficial in the sense that it did not produce a bow in the sample after peening both sides, keeping the sample relatively flat with zero arch, which is crucial to

maximize the coupon capacity of the sample boat holder. Interestingly enough, corrosion tests to evaluate stresses in the oxide layer have been performed on arched coupons by Huntz. Table 4 below provides the shot peening parameters for this study.

**Table 4:** Shot Peen Parameters for Determining Intensity/Saturation Curve

| Parameter            | Strip #1 | Strip #2 | Strip #3 | Strip #4 | Strip #5 |
|----------------------|----------|----------|----------|----------|----------|
| Pressure (psi)       | 60       | 60       | 60       | 60       | 60       |
| Nozzle Size          | 1/4"     | 1/4"     | 1/4"     | 1/4"     | 1/4"     |
| Nozzle Angle         | 90°      | 90°      | 90°      | 90°      | 90°      |
| Nozzle Distance (in) | 6.5      | 6.5      | 6.5      | 6.5      | 6.5      |
| Holder Type          | Almen    | Almen    | Almen    | Almen    | Almen    |
| Shot Media           | SAE 110  |
| Shot Type            | SS       | SS       | SS       | SS       | SS       |
| Shot Density (g/cc)  | 7.0      | 7.0      | 7.0      | 7.0      | 7.0      |
| No. of Passes        | 3        | 3        | 3        | 3        | 3        |
| Peen Time (sec)      | 6        | 12       | 20       | 30       | 60       |
| Flat Ht. (in)        | 0.05010  | 0.05045  | 0.05010  | 0.05040  | 0.05000  |
| Peened Ht. (in)      | 0.08070  | 0.08210  | 0.08380  | 0.08455  | 0.08635  |
| Arc Ht. (in)         | 0.03060  | 0.03165  | 0.03370  | 0.03415  | 0.03635  |

#### 4. Test Materials and Sample Preparation

##### 4.1. Tested Alloys

A test matrix of the experiments conducted and alloys tested is provided below in Table 5. Experiments 2 through 5 were spear-headed by former graduate student, Jacob Jelinek, with whom the current author was assisting in material preparation and data analysis during that time.

The alloys tested in this study represent different families of stainless steels as defined by crystallographic structure. Those families are:

- **Ferritic-Martensitic** (Fe-Cr), b.c.c
- **Austenitic** (Fe-Cr-Al), f.c.c
- **Advanced Austenitic** (Fe-Cr-Ni-Al), f.c.c
- **Superalloy** (Fe-Ni-Cr), f.c.c
- **High Ni-based** (Ni-Cr-Co), f.c.c

Other alloys such as IN617, Haynes 182, Duplex 2205, and MA 754 were considered but set aside for potential future testing. PM2000, an oxide-dispersion strengthened (ODS) alloy, performed very well in a  $\text{SCCO}_2$  environment along with several other alloys by Anderson et al [31] that are not discussed here. IN617 is receiving considerable attention for high temperature applications in next generation nuclear power plants. MA 754 (UNS N07754), an oxide dispersion strengthened superalloy, which was used for jet engine applications and made by Specialty Metals Corporation for GE many years ago, has not been made in the past 5 years or so with the equipment being mothballed [49]. Therefore, acquisition of this material for  $\text{SCCO}_2$  corrosion screening has proven challenging. Initial screening by Idaho National Laboratory (INL) appears to promote the high creep resistance and corrosion resistance of MA 754 in  $\text{SCCO}_2$  [9]. The mechanical pretreatment of the alloys is provided below in Table 6. Elemental compositions of alloys are provided below in Table 7.

**Table 5:** Test Matrix

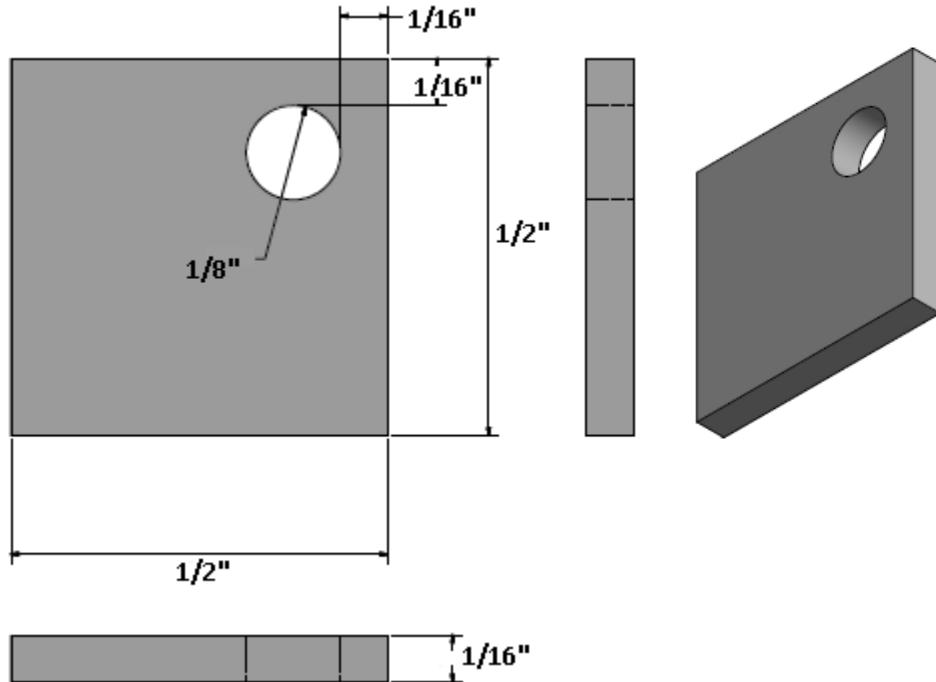
| Expt. # | Phase | Gas                  | Gas Purity | Temp. | Pressure  | Hours | Alloys                                                                                |
|---------|-------|----------------------|------------|-------|-----------|-------|---------------------------------------------------------------------------------------|
| 1       | I     | RG-CO <sub>2</sub>   | 99.9998%   | 450°C | 8.274 MPa | 400   | NF616, HCM12A, 347SS, OC-6                                                            |
| 2       | I     | RG-CO <sub>2</sub>   | 99.9998%   | 450°C | 20 MPa    | 400   | NF616, HCM12A, 347SS, OC-6                                                            |
| 3       | I     | RG-CO <sub>2</sub>   | 99.9998%   | 450°C | 20MPa     | 1000  | <sup>a</sup> NF616, <sup>a</sup> HCM12A, 347SS, 800H, OC-6, OC-7, OC-10               |
| 4       | I     | RG-CO <sub>2</sub>   | 99.9998%   | 550°C | 20MPa     | 1000  | <sup>b</sup> NF616, <sup>b</sup> HCM12A, 347SS, 800H, OC-6, OC-7, OC-10               |
| 5       | I     | RG-CO <sub>2</sub>   | 99.9998%   | 650°C | 20MPa     | 1000  | <sup>c</sup> NF616, <sup>c</sup> HCM12A, 347SS, 800H, OC-6, OC-7, OC-10               |
| 6       | II    | IG-CO <sub>2</sub>   | 99.85%     | 550°C | 20MPa     | 1000  | NF616, HCM12A, 347SS, 800H, OC-6, OC-7, OC-10                                         |
| 7       | II    | IG-CO <sub>2</sub>   | 99.85%     | 650°C | 20MPa     | 200   | <sup>d</sup> 316L, 347SS, 800H, OC-6, <sup>d</sup> Haynes 230                         |
| 8       | II    | BD G-CO <sub>2</sub> | 99.9%      | 650°C | 20MPa     | 200   | <sup>d</sup> 316L, 347SS, <sup>d</sup> IN740H, 800H, <sup>d</sup> Haynes 230, AFA-OC6 |
| 9       | III   | RG-CO <sub>2</sub>   | 99.9998%   | 550°C | 20MPa     | 1000  | NF616 (Al, Y Coat, Peen), HCM12A (Al, Y Coat, Peen)                                   |

**Note:** <sup>a</sup> removed after 800 hours, <sup>b</sup> removed after 400 hours, <sup>c</sup> removed after 400 hours, in all cases due to excessive weight gain and/or spallation, and to prevent contaminating other samples. <sup>d</sup> added to study at a later time, but tested together.

**Table 6:** Pretreatment of Tested Alloys

| Mat'l ID                     | UNS    | Mfr./Supplier             | Mfr. Heat No. | Pretreatment                                                                             |
|------------------------------|--------|---------------------------|---------------|------------------------------------------------------------------------------------------|
| <b>NF616</b><br>(T92/P92)    | K92460 | Nippon Steel              | N/A           | <sup>1</sup> Normalized @ 1070°C/2hrs/AC, tempered @ 770°C/2hrs/AC                       |
| <b>HCM12A</b><br>(T122/P122) | K91271 | Sumitomo Metal            | N/A           | <sup>1</sup> Normalized @ 1070°C/2hrs/AC, tempered @ 770°C/2hrs/AC                       |
| <b>316L</b>                  | S31603 | N/A                       | N/A           | N/A                                                                                      |
| <b>347SS</b>                 | S34700 | Crucible Specialty Metals | A19926        | <sup>2</sup> SA @ 1950°F, followed by WQ                                                 |
| <b>IN740H</b>                | N/A    | Specialty Metals Corp.    | HT313OJY      | <sup>2</sup> SA @ 2075°F, followed by WQ and aging @ 1472°F/4 hrs and AC                 |
| <b>IN800H</b>                | N08810 | Specialty Metals Corp.    | HH925AG       | N/A                                                                                      |
| <b>Haynes 230</b>            | N06230 | Haynes International      | 8-7828        | <sup>3</sup> SA @ 2150-2275°F, followed by WQ or AC                                      |
| <b>Haynes 282</b>            | N07208 | Haynes International      | 5-8355        | <sup>3</sup> SA @ 2050-2100°F, followed by WQ, aging @ 1850°F/2 hrs/AC + 1450°F/8 hrs/AC |
| <b>AFA-OC6</b>               | N/A    | Oak Ridge National Lab    | 001919        | <sup>4</sup> SA @ 1200°C, followed by WQ                                                 |
| <b>AFA-OC7</b>               | N/A    | Oak Ridge National Lab    | 001920        | <sup>4</sup> SA @ 1200°C, followed by WQ                                                 |
| <b>AFA-OC10</b>              | N/A    | Oak Ridge National Lab    | 001923        | <sup>4</sup> SA @ 1200°C, followed by WQ                                                 |

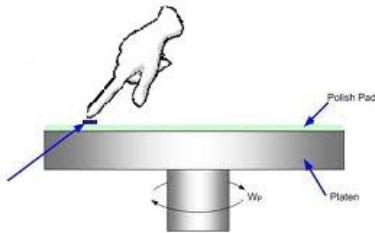
**Note:** <sup>1</sup> Allen et al [50]. <sup>2</sup> Mfr. certificate. <sup>3</sup> Mfr. tech. brochure. <sup>4</sup> ORNL. **SA** = Solution Annealed, **WQ** = Water Quenched, **AC** = Air Cool.


**Table 7:** Elemental Composition (wt %) of Tested Alloys

|              | <b>NF616</b><br>(T92) | <b>HCM12A</b><br>(T122) | <b>316L</b> | <b>347SS</b> | <b>AFA-OC6</b> | <b>AFA-OC7</b> | <b>AFA-OC10</b> | <b>IN740H</b> | <b>IN800H</b> | <b>Haynes 230</b> | <b>Haynes 282</b> |
|--------------|-----------------------|-------------------------|-------------|--------------|----------------|----------------|-----------------|---------------|---------------|-------------------|-------------------|
| <b>Fe</b>    | Bal.                  | Bal.                    | Bal.        | Bal.         | Bal.           | Bal.           | Bal.            | 0.1491        | Bal.          | 3.0 **            | 1.5**             |
| <b>Cr</b>    | 8.82                  | 10.83                   | 17.09       | 17.85        | 13.84          | 13.80          | 13.85           | 24.57         | 19.63         | 22.0              | 19.0              |
| <b>Ni</b>    | 0.17                  | 0.39                    | 10.12       | 9.53         | 25.04          | 25.08          | 12.18           | Bal.          | 33.17         | Bal.              | Bal.              |
| <b>Al</b>    | 0.005                 | 0.001                   | -           | -            | 3.56           | 3.59           | 2.54            | 1.33          | 0.46          | 0.3               | 1.5               |
| <b>Mn</b>    | 0.45                  | 0.64                    | 1.56        | 1.72         | 1.99           | 1.92           | 6.96            | 0.245         | 0.77          | 0.5               | 0.3**             |
| <b>Nb</b>    | 0.06                  | 0.05                    | < 0.01      | 0.67         | 2.51           | 2.50           | 1.02            | 1.46          | -             | -                 | 0.2**             |
| <b>Cu</b>    | -                     | 1.02                    | 0.45        | 0.38         | 0.51           | 0.52           | 3.10            | 0.015         | 0.20          | -                 | 0.1**             |
| <b>Mo</b>    | 0.46                  | 0.30                    | 2.01        | 0.35         | 0.18           | 1.98           | 0.15            | 0.35          | -             | 2.0               | 8.5               |
| <b>Si</b>    | 0.10                  | 0.27                    | 0.29        | 0.76         | 0.13           | 0.13           | 0.13            | 0.17          | 0.29          | 0.4               | 0.15**            |
| <b>C</b>     | 0.11                  | 0.11                    | 0.03        | 0.06         | 0.114          | 0.112          | 0.114           | 0.023         | 0.06          | 0.10              | 0.06              |
| <b>W</b>     | 1.87                  | 1.89                    | -           | -            | 0.16           | 0.96           | 0.15            | 0.022         | -             | 14.0              | 0.5**             |
| <b>Ti</b>    | -                     | -                       | < 0.01      | < 0.01       | 0.05           | 0.05           | 0.05            | 1.33          | 0.53          | -                 | 2.1               |
| <b>V</b>     | 0.19                  | 0.19                    | -           | -            | 0.05           | 0.05           | 0.05            | 0.012         | -             | -                 | -                 |
| <b>P</b>     | -                     | -                       | 0.032       | 0.026        | 0.022          | 0.02           | 0.01            | 0.0023        | -             | -                 | -                 |
| <b>N</b>     | -                     | 0.06                    | 0.050       | 0.049        | 0.001          | 0.001          | 0.0017          | 0.0038        | -             | -                 | -                 |
| <b>B</b>     | -                     | -                       | -           | -            | 0.008          | 0.0085         | 0.0086          | 0.0013        | -             | -                 | 0.005             |
| <b>Zr</b>    | -                     | -                       | -           | -            | -              | 0.16           | -               | 0.021         | -             | -                 | -                 |
| <b>Co</b>    | -                     | -                       | 0.31        | 0.27         | -              | -              | -               | 20.09         | -             | 5.0 **            | 10.0              |
| <b>Ta</b>    | -                     | -                       | < 0.01      | < 0.01       | -              | -              | -               | 0.004         | -             | -                 | -                 |
| <b>S</b>     | -                     | -                       | < 0.001     | 0.02         | -              | -              | -               | 0.003         | -             | -                 | -                 |
| <b>Other</b> | -                     | -                       | -           | -            | -              | -              | -               | -             | -             | B, La             | -                 |
| <b>Note</b>  | 3                     | 3                       | 2           | 2            | 3              | 3              | 3               | 3             | 3             | 1                 | 1                 |

**Note:** <sup>1</sup> Nominal Composition, <sup>2</sup> Chemical Analysis Testing at Anderson Labs, Inc., <sup>3</sup> Mfr. Certificate

#### 4.2. Sample Geometry


Rectangular, square, disc, arc, and even rod/tube shaped samples have been tested in high temperature corrosion environments [33]. For this study, each raw material was cut to size using the electrical discharge machining (EDM) technique to yield a square geometry of 12.7 mm (1/2"), approximately 1.59 mm (1/16") thick. Alloys 316L and Haynes 230 came in sheet form at a stock gauge thickness thinner (~1.00 mm) and slightly thicker (~2.00 mm) than the specified thickness, yielding a surface-to-volume ratio (of which the effect is not known) different from the other materials. A 3.18 mm (1/8")  $\varnothing$  hole was drilled through the upper corner of each specimen to allow the samples to be suspended along a free-free cantilevered and removable alumina rod. A drawing of the coupon geometry is given in *Fig. 34*. The term coupon will be used from here forward in place of sample or specimen.



*Fig. 34:* Drawing for Test Coupon

### 4.3. Surface Finish for Thermogravimetry

Prior to corrosion testing, all surfaces of the coupons were carefully finished by hand to 800 grit, using SiC abrasive papers (Fig. 35). In this study, all samples were polished by the same operator

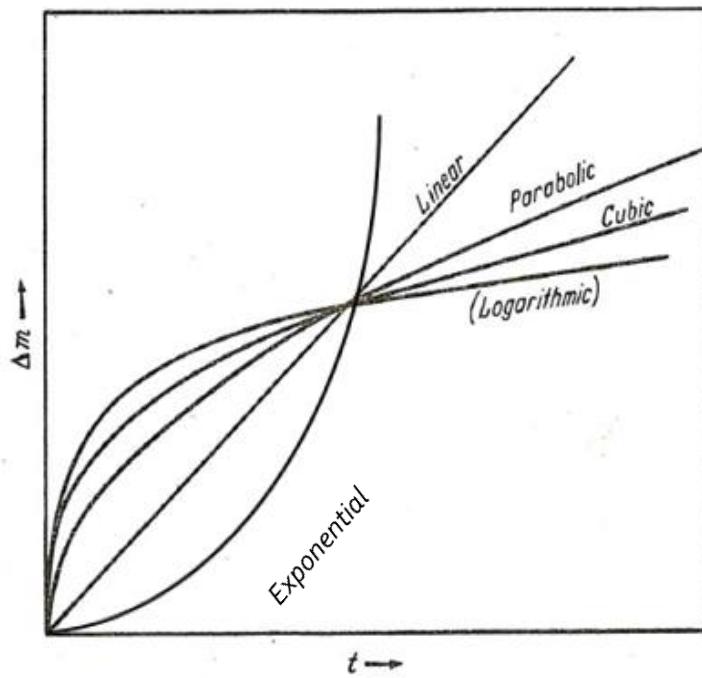


**Fig. 35:** Schematic of Polishing

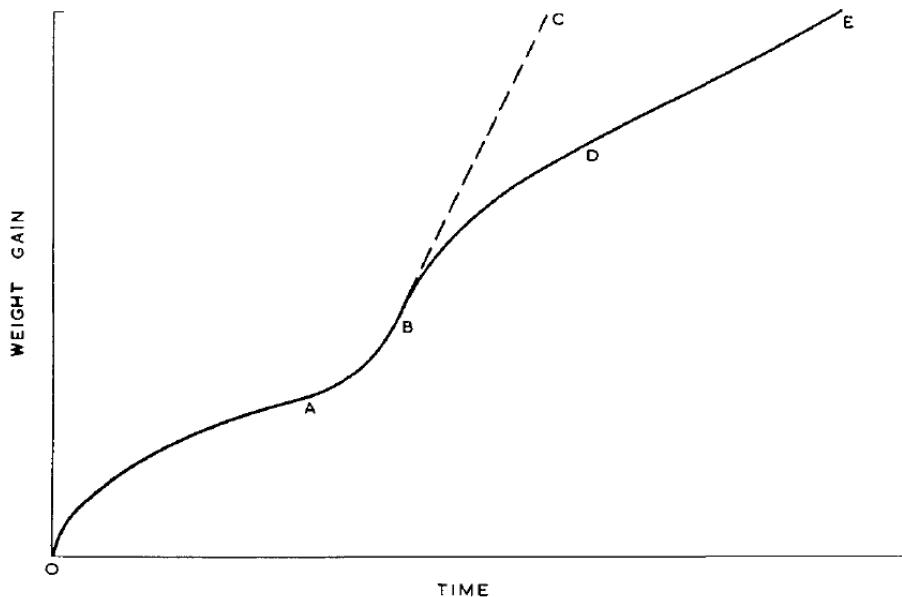
for experiments 4 through 9. This was done to cast-out any possible variation that could occur by using more than one operator. The polishing rate was also carefully controlled. A coupon face was polished for approximately 30-45 seconds and then rotated 90 degrees for another 30-45 seconds, and so on and so on, until a full rotation was completed. This was done for both sides. The edges were polished after both faces were completed for about 60 seconds on each edge, rotating again every 90 degrees and repeating until a full rotation is completed. This process was repeated for each increment in SiC paper, which was 320 grit, 400 grit, 600 grit, and finally with 800 grit. Using this method, a polishing rate of 5 coupons (both sides) per SiC paper was found to produce consistent results. Despite the added consumption of SiC paper, the purpose of this method was to keep the dimensional variation between samples to a minimum. To minimize the possibility of preferential attack at the edges, the edges were rounded off slightly using 600 grit SiC paper. This was done since corrosion rates at corners and edges may be significantly greater than on flat surfaces [33].

The final surface finish was 800 grit on the faces and 600 grit on the edges. In experiments 4 through 9, this was done to maintain consistency in final surface finish with that chosen by the author's predecessor. After obtaining the desired surface finish, each coupon geometry was measured using a digital micrometer ( $\pm 0.001$  mm) and weighed ( $\pm 2\mu\text{g}$ ) to determine relevant property information for computing weight change. The term bare coupon will be used hereafter to denote the surface prior to exposure or without oxidation. Following all dimensioning, all coupons were cleaned in an ethanol solution using an ultrasonic agitator prior to testing.

#### **4.4. Surface Finish for Treatments**


The surface finish for coupons that were coated or shot peened was the same as that done for thermogravimetry testing. However, additional coupons were prepared for each treatment to have extra samples that could be characterized via SEM, EDS, XRD, surface topography (thickness), Vickers hardness, and adhesion testing by ASTM D3359 tape test. However, the nature of the films being so thin applied in this study may call for deviation from standard practices to properly measure adhesion.

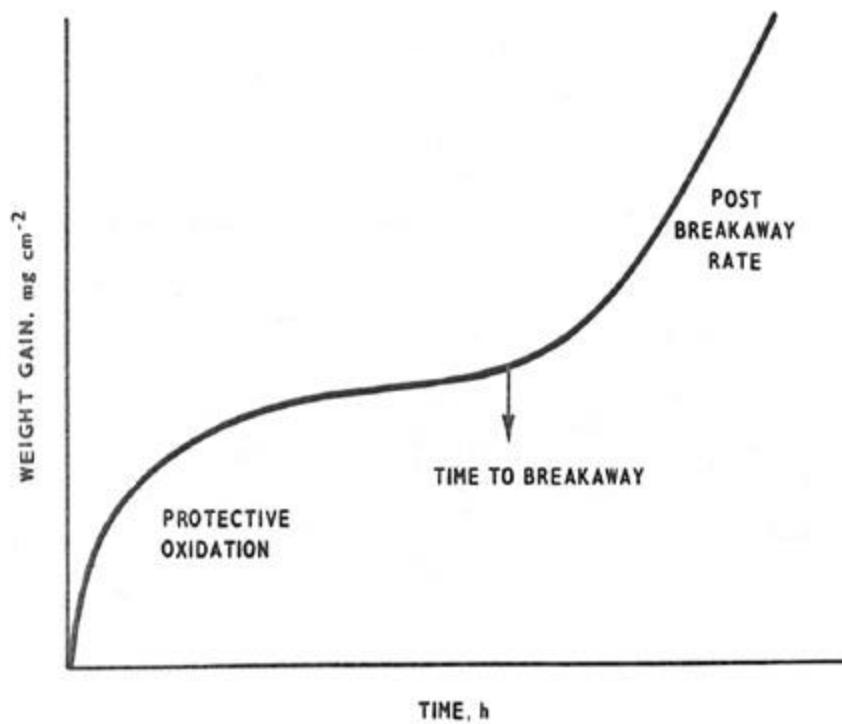
### **5. Reaction Kinetics and Surface Morphology**


#### **5.1. Oxidation Rate Equations**

The reaction kinetics of a pure metal or alloy and corresponding rate equation depend on a number of factors such as temperature, pressure, exposure time, surface finish, and

mechanical pretreatment to name a few. Such rate equations can be utilized to classify the oxidation behavior of metals, but need to be accompanied by additional information from other optical studies such as SEM/EDS, XRD, AES, etc., to elucidate the proper mechanism or mechanisms taking place. Some of the commonly observed rate equations in oxidation studies are shown below in *Fig. 36*. Not always can rate data be fitted to a single rate equation, but on occasion, oxidation reactions can be found to fit a combination of rate equations. In rare instances, an unusual S-shaped curve has even been observed in thermogravimetric oxidation studies. *Fig. 37* below gives an example of such an oxidation curve from one of these studies.




**Fig. 36:** Typical Oxidation Curves [4]



**Fig. 37:** Example of an S-Shaped Oxidation Curve by Cox and Johnston [51].

General oxidation curve for pure niobium in oxygen, showing the pretransition region (OA), the transition region (AB) up to the maximum oxidation rate (BC), and a period of decelerating oxidation (BD) ending in the linear post-transition rate (DE).

Focusing on oxidation in a carbonaceous environment, oxidation curves in sub-critical  $\text{CO}_2$  at medium temperatures and low pressures for the British MAGNOX and AGR program were characterized by regions or regimes to explain the protection afforded by the oxide layer and the breakdown of its protection. *Fig. 38* below shows the oxidation curve trend associated with these regimes.



**Fig. 38:** Schematic Representation of Oxidation Regimes [16]

Going one step further, another explanation given in more recent years of associating oxidation mechanisms to such similar regimes was done by Kofstad. However, this was for oxidation of pure iron in  $\text{CO}_2$  and  $\text{CO}_2+\text{CO}$  gas mixtures at high temperature and low pressure. *Fig. 39* below shows this curve.

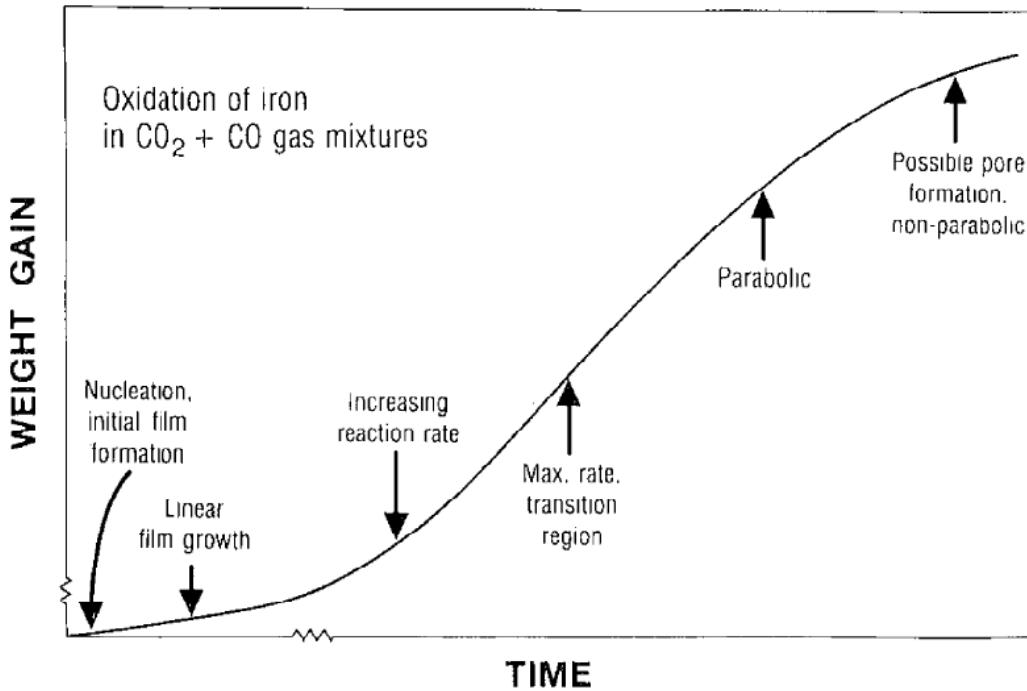



Fig. 39: Another Schematic Representation of Oxidation Regimes [52]

The many types of rate equations that can be encountered in oxidation studies are expressed below. Reference is made to books by Kofstad [35], Kubaschewski and Hopkins [4], and Grabke [33].

Linear

$$\frac{d(\frac{\Delta m}{A})}{dt} = k \quad (4)$$

Parabolic

$$\left(\frac{\Delta m}{A}\right) \frac{d(\frac{\Delta m}{A})}{dt} = k \quad (5)$$

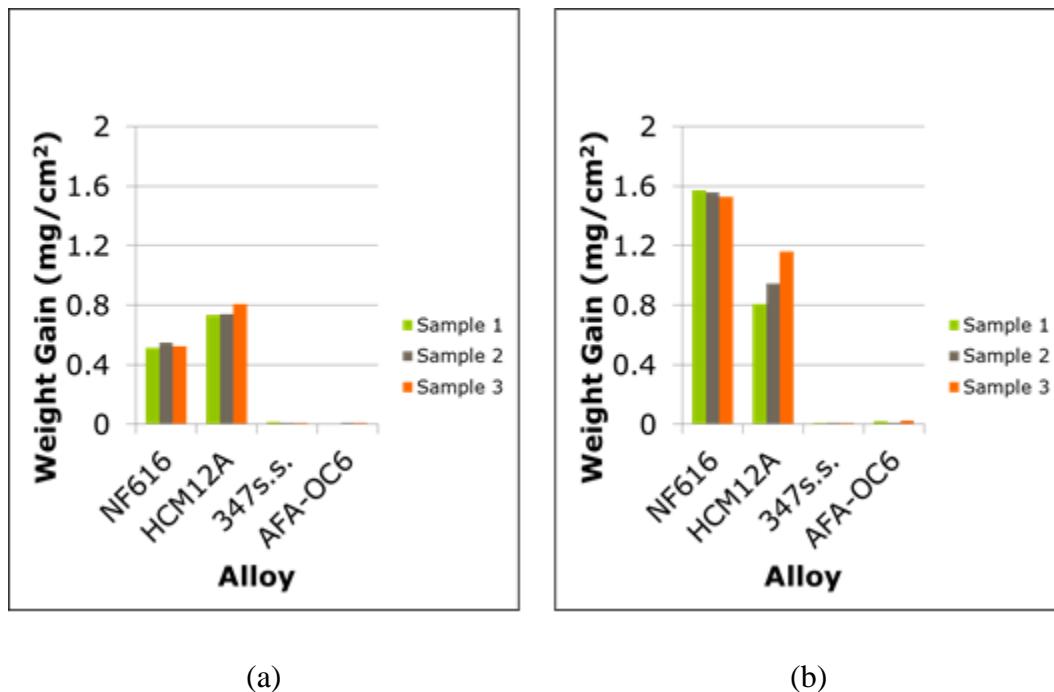
Cubic 
$$\left(\frac{\Delta m}{A}\right)^2 \frac{d\left(\frac{\Delta m}{A}\right)}{dt} = k \quad (6)$$

Quadratic 
$$\left(\frac{\Delta m}{A}\right)^2 + k_1 \left(\frac{\Delta m}{A}\right) = k_2 \quad (7)$$

Direct Logarithmic 
$$\frac{\Delta m}{A} = k \log(t + t_o) + C \quad (8)$$

Inverse Logarithmic 
$$\frac{A}{\Delta m} = C - k \log(t) \quad (9)$$

Paralinear (Kofstad) 
$$x = \frac{k_p}{k_l} \ln \left[ \frac{k_p}{k_p - k_l(x - k_l t)} \right] \quad (10)$$

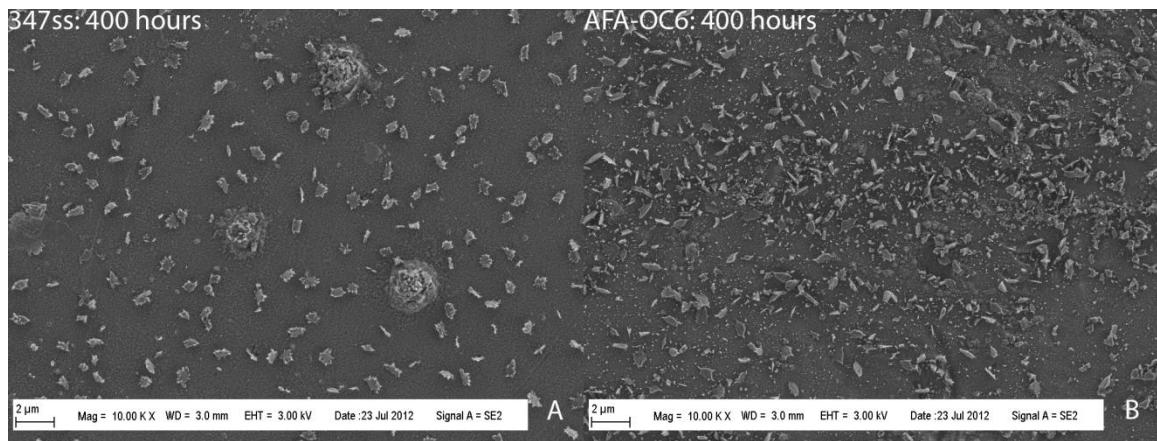

Paralinear (Grabke) 
$$\frac{\Delta m}{A} = k_1^{1/2} t^{1/2} + k_2 t \quad (11)$$

Log-Parabolic 
$$x = k_{log}(t + t_o) + k_p t^{0.5} + C \quad (12)$$

where  $\frac{\Delta m}{A}$  is the weight gain ( $\text{mg/cm}^2$ ),  $t$  is the exposure time (hrs),  $k$  is the oxidation rate constant, and  $n$  is the oxidation exponent.

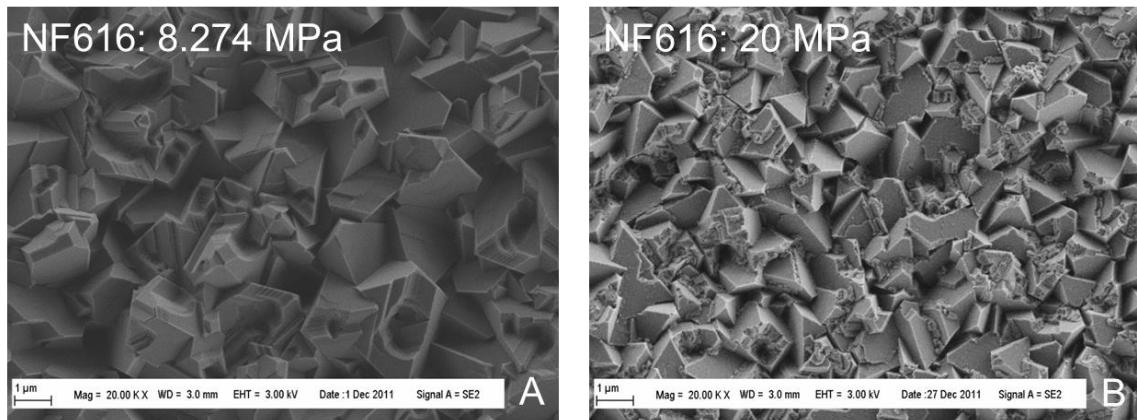
## 5.2. Effect of Pressure – Experiment 2

The effect of pressure on oxidation-corrosion in s-CO<sub>2</sub> was investigated not as a pre-defined objective, but out of the opportunity at the onset of the study to capture a short-term glimpse of whether or not there are such effects in s-CO<sub>2</sub>, and to what degree. A representative alloy from each grade or type of metal matrix was selected for testing at 450°C. *Fig. 40* below shows the difference in weight gain for several alloys at both 8.274 MPa and 20 MPa.

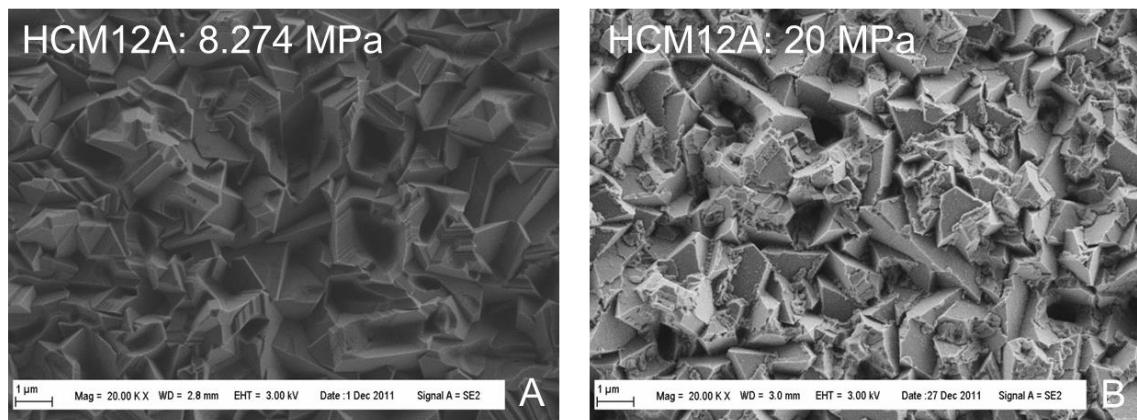



**Fig. 40:** Weight Gains at Different Pressures after 400 hours at 450°C in RG-CO<sub>2</sub>  
(a) 8.274 MPa and (b) 20 MPa

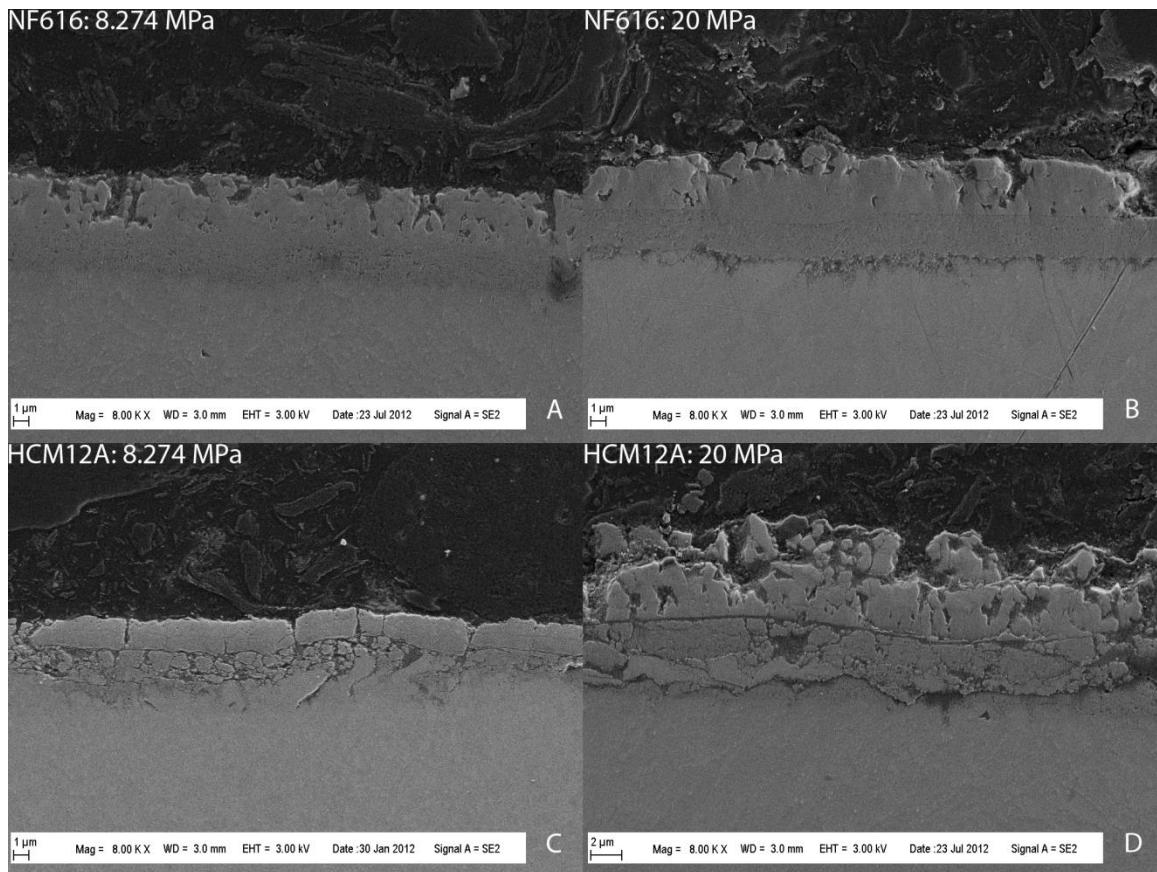
The magnitude of the weight gain increases with increasing pressure. For the 9-12%Cr FM alloys, the rate of oxide growth from the lower to higher pressure for T92 supersedes that of the higher chromium T122. Although this seems counterintuitive since it is generally considered that added Cr improves corrosion resistance, Jelinek suggests that this is likely


due to sporadic spallation of the oxide layer formed on T122 [30]. A somewhat similar counterintuitive finding was observed by Dunlevy for 316L with increase in temperature, attributing the increase in temperature to an increase in the diffusion rate within the alloy, facilitating a faster growth of an inner healing layer, rich in chromium-oxide, which may have restricted the outward diffusion of cations and inward diffusion of anions [25]. Ballinger et al also showed that the magnitude of the weight gain increases with increasing pressure for several alloys, except for 316L which decreased [26]. Perhaps this phenomenon can be explained by the growth of stresses causing the oxide to spall. Coincidentally, this phenomenon occurs again for T122 after short exposure times at 550°C, when comparing its weight gain in RG-CO<sub>2</sub> to that in IG-CO<sub>2</sub>. The physical nature of the oxide changes in content, color, and texture, which could be described as a thick powdery fur coat, and could easily be rubbed off. For several coupons, the alumina spacer adhered to the scale and required a slight force to separate, and resulted in detached scale on the spacer. An image of this thick fur coat can be seen in *Fig. 122*.

Alloys 347ss and AFA-OC6 showed very low weight gains with no significant difference between the two exposure pressures. SEM images of 347SS and AFA-OC6 after exposure to Experiment 1 conditions (*Fig. 41*) showed what looked like the early stages of oxide formation. Samples did not appear to display a fully developed oxide layer at either pressure. It is clear that neither the AFA-OC6 nor the 347SS material formed an oxide layer of any significant thickness, indicating superior corrosion resistance of these two alloys compared to the two ferritic alloys.




**Fig. 41:** Experiment 01 SEM 10000x images of (a) 347SS and (b) AFA-OC6 showing what looks like the early stages of oxide formation


Surface analysis using SEM was performed on the ferritic steel samples. *Fig. 42* and *Fig. 43* show images taken of NF616 and HCM12A respectively after exposure to each test condition. *Fig. 42a* shows larger sized grain growth when compared to *Fig. 42b*. Both images display a continuous oxide structure that formed on NF616 after exposure. *Fig. 44a* and *Fig. 44b* show how this oxide layer had further developed into a thick and uniform and adherent structure. *Fig. 43* shows similar results for the HCM12A material as compared to NF616 under the same conditions. *Fig. 44d* however shows disparate areas of oxidation indicative of material loss or at least breakdown of the oxide layer.

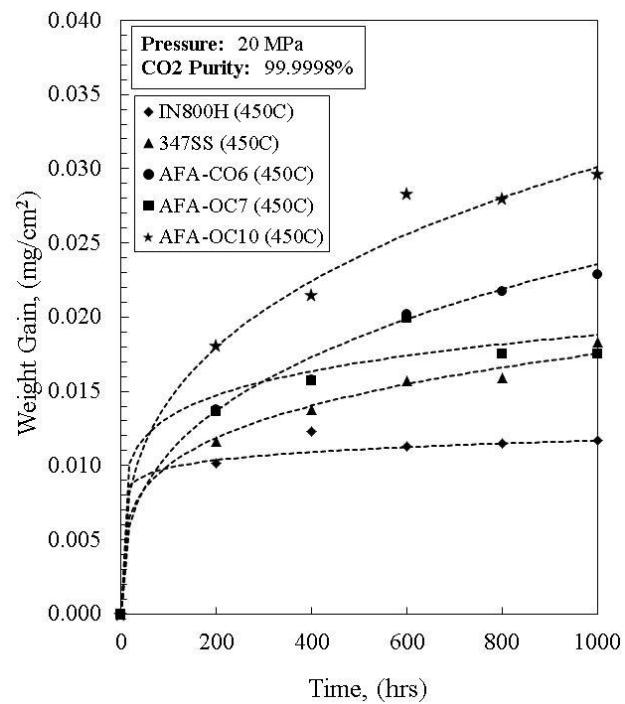


**Fig. 42:** SEM micrographs of NF616 exposed to 450°C for 400 hours at (a) 8.274 MPa and (b) 20 MPa

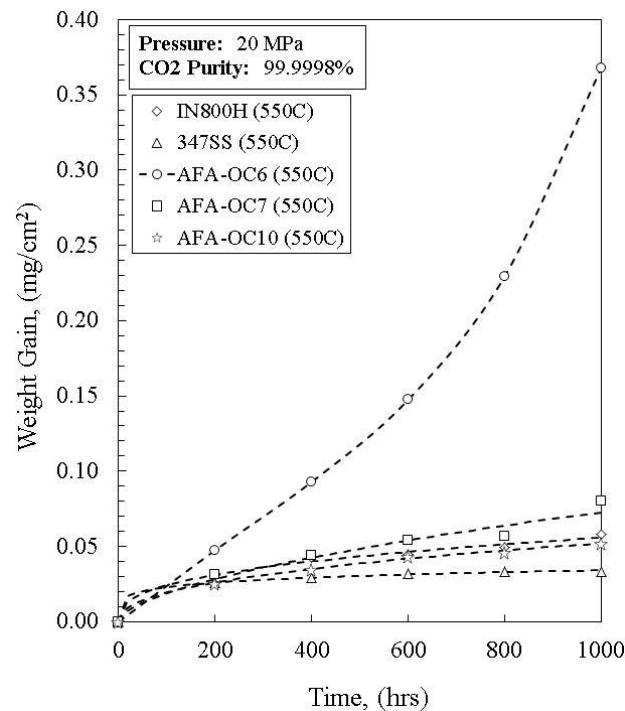


**Fig. 43:** SEM micrographs of HCM12A exposed to 450°C for 400 hours at (a) 8.274 MPa and (b) 20 MPa

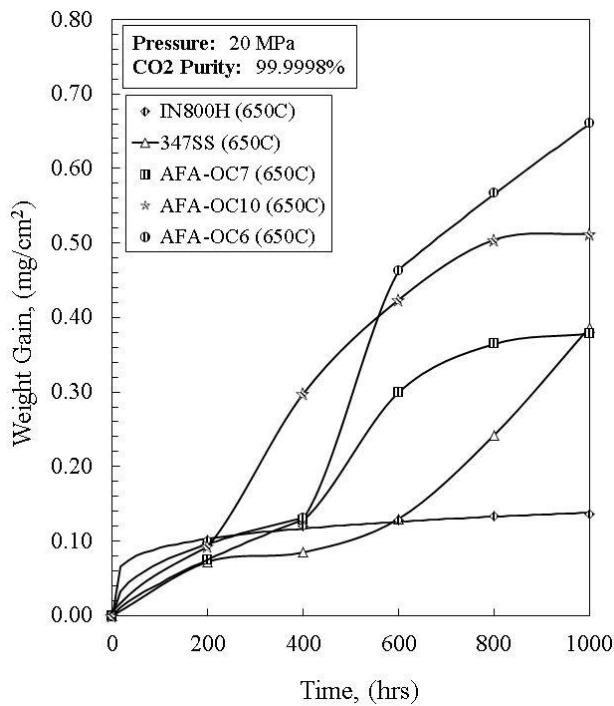



**Fig. 44:** SEM cross section 8000x micrographs of (a) NF616 after Experiment 1 exposure, (b) NF616 after Experiment 02 exposure, (c) HCM12A after Experiment 01 exposure, and (d) HCM12A after Experiment 2 exposure

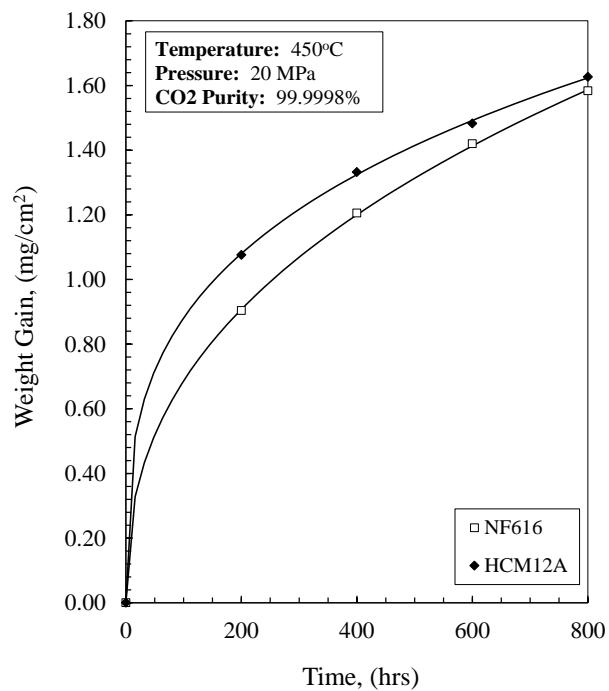
The main conclusion drawn from the pressure study was that the higher pressure environment produced increased oxidation to the ferritic materials. Considering the extent of oxide formation after only 400 hours, ferritic material was anticipated to perform poorly for longer exposures and increased temperatures. For higher corrosion resistant materials such as 347ss and AFA-OC6, there was no observed change in performance. However, the possibility of increased corrosion with pressure could not be precluded without further testing. Given that very little oxidation was observed on the 347SS and AFA-OC6 samples


exposed to 20MPa, it was decided that a longer testing duration could be necessary to observe meaningful results.

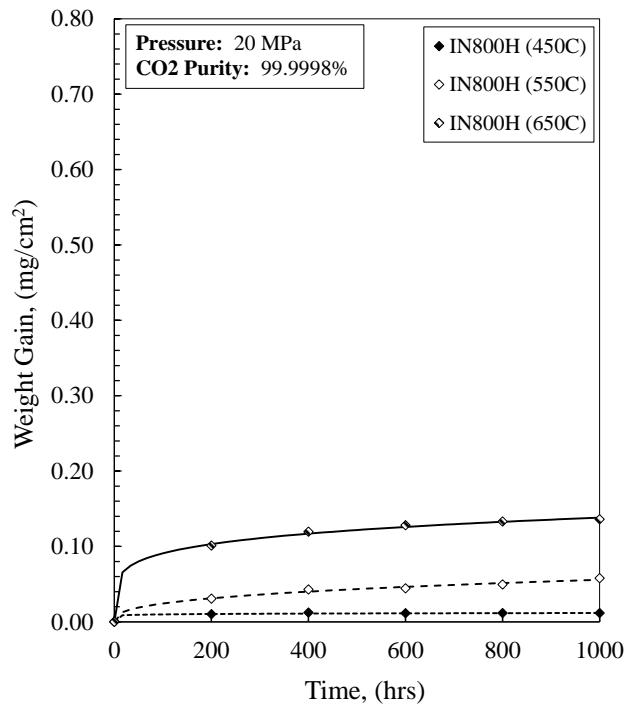
### **5.3. Effect of Temperature – Experiments 3 through 5**


The results of the measured weight gains for the alloys tested at 450°C (Expt. 3), 550°C (Expt. 4), and 650°C (Expt. 5) are shown below in *Fig. 45* through *Fig. 53*. For ease of comparison, an appropriate magnitude for the weight gain and scale size for the plot in each of the figures was held fixed where possible, mindful of future overlay of results chosen by the reader if desired. A Matlab code was written to accommodate the commonly encountered, singularly described rate equations in Sec. 5.1 denoted as equations (4-9) using discrete weight gain values as input data to generate the oxidation curves, which are displayed in all the weight gain figures that follow. Oxidation curves fitted to the measured data points describing the reaction kinetics are also shown.

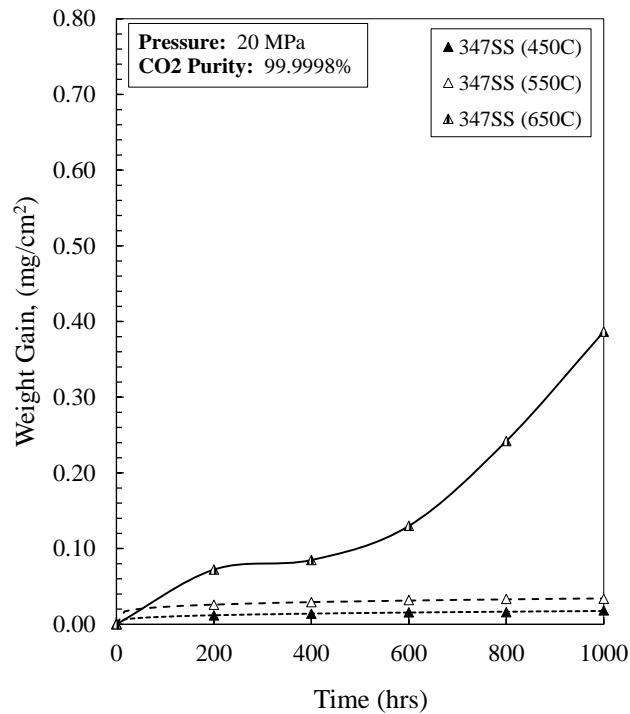



**Fig. 45:** Weight Gain Curves of Tested Alloys at 450°C, 20MPa.




**Fig. 46:** Weight Gain Curves of Tested Alloys at 550°C, 20MPa.

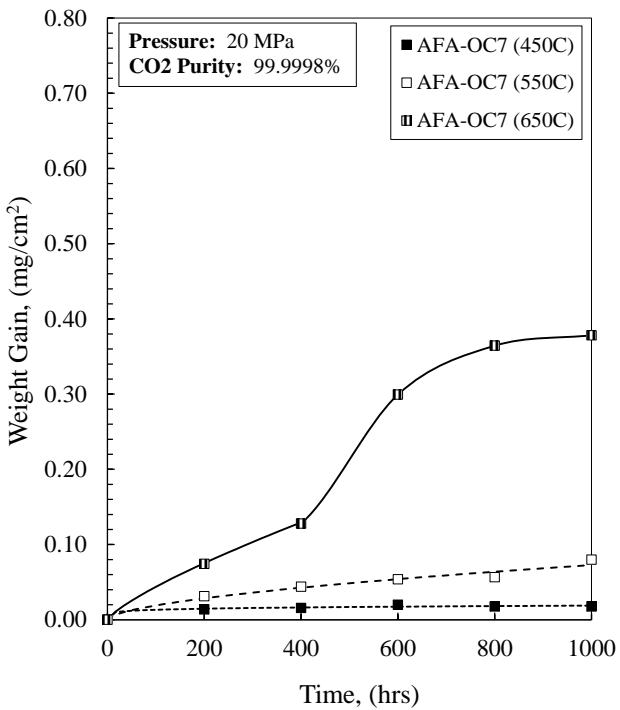



**Fig. 47:** Weight Gain Curves of Tested Alloys at 650°C.

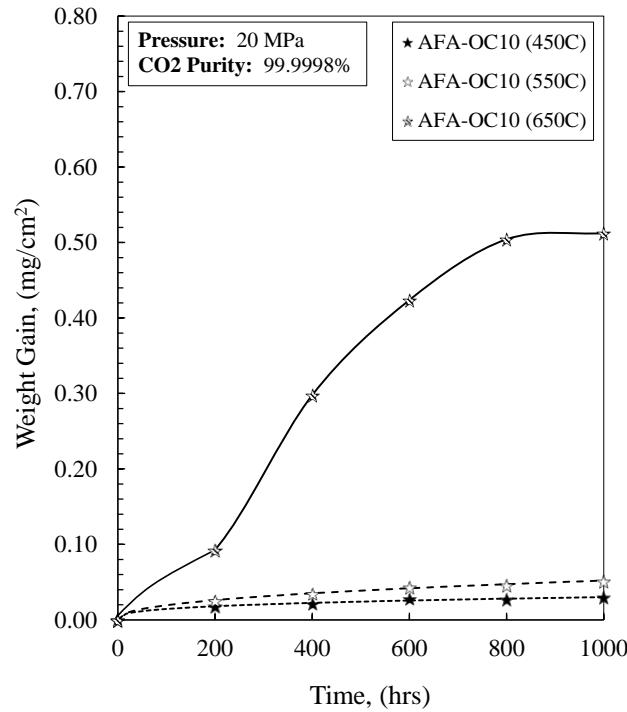


**Fig. 48:** Weight Gain Curves of 9-12%Cr Ferritic-Martensitics at 450°C.




**Fig. 49:** Weight Gain Curves of IN800H at 450°C, 550°C, and 650°C.

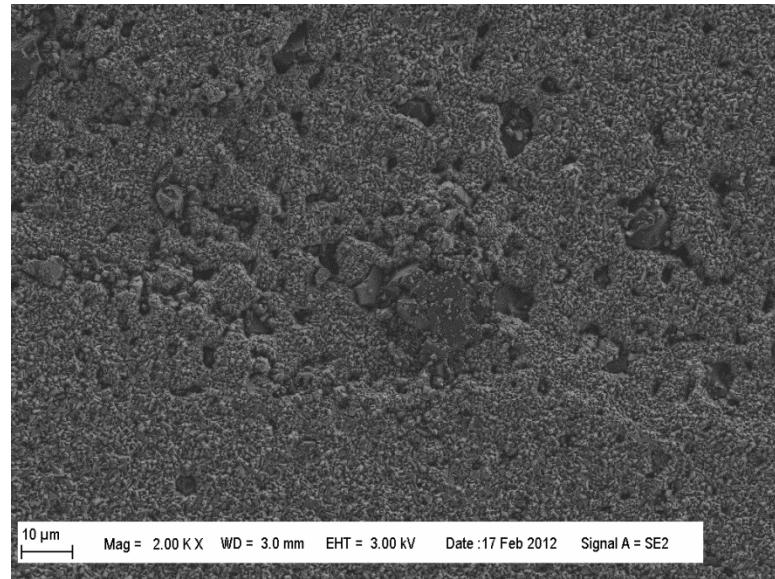



**Fig. 50:** Weight Gain Curves of 347SS at 450°C, 550°C, and 650°C.

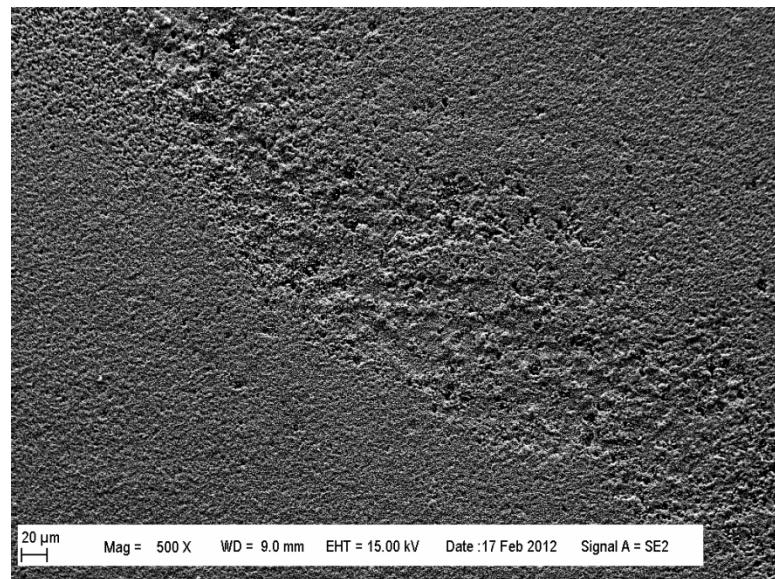


**Fig. 51:** Weight Gain Curves of AFA-OC6 at 450°C, 550°C, and 650°C.



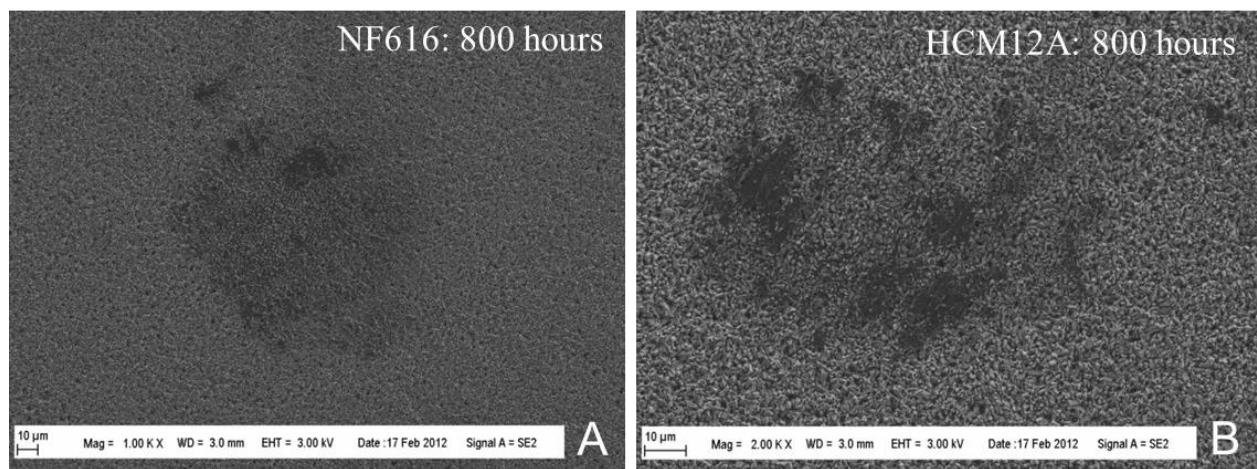

**Fig. 52:** Weight Gain Curves of AFA-OC7 at 450°C, 550°C, and 650°C.




**Fig. 53:** Weight Gain Curves of AFA-OC10 at 450°C, 550°C, and 650°C.

Supplementing the weight gain data and kinetics evaluation, surface analysis was performed on the alloys. *Fig. 54* shows an SEM image of NF616 after 800 hours of exposure to SC-CO<sub>2</sub> at 450°C and 20 MPa. Similar to the image taken at 400 hours in Experiment 2 (*Fig. 44b*), the oxide was fully developed and covered the entirety of the sample. This image also displayed pit like areas where sample oxide material has likely been lost. This material loss is more consistent with dusting than spallation, as the areas tend to be small and pit-like rather than large and plate-like, and SC-CO<sub>2</sub> is a strongly carburizing environment [53]. The same phenomenon was observed for HCM12A, but covering more surface area per sample (*Fig. 55*), indicating greater material loss and less corrosion resistance than NF616. While this may seem counterintuitive, as HCM12A contains more Cr than NF616, similar results have been observed in steam. Below approximately 600°C in steam, studies have concluded that

NF616, HCM12A, and other ferritic material in the range of 2 – 11 wt% Cr display corrosion behavior independent of Cr content [54, 55, 56].

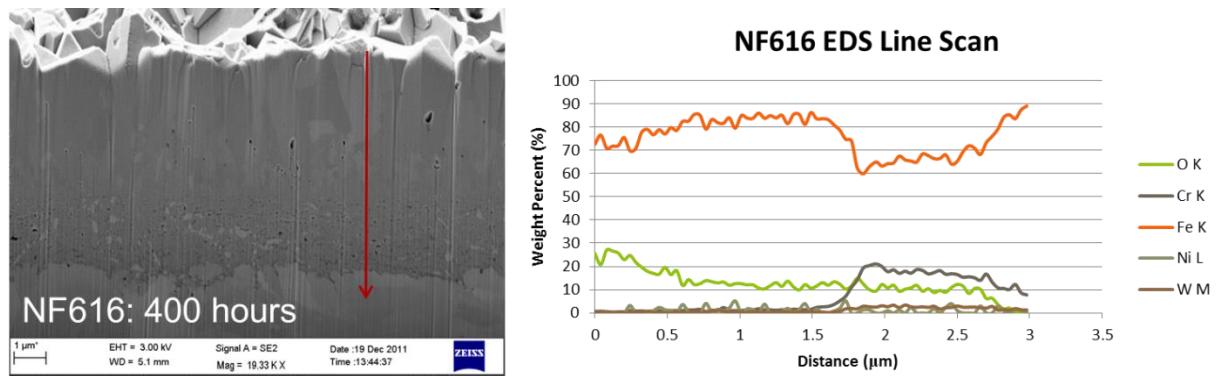



**Fig. 54:** SEM image of NF616 after exposure to 450°C and 20 MPa for 800 hours

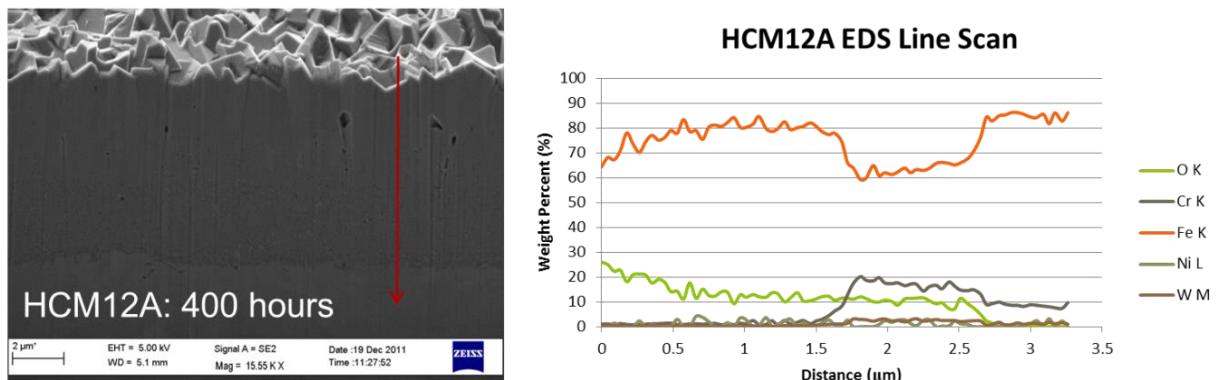


**Fig. 55:** SEM image of NF616 after exposure to 450°C and 20 MPa for 800 hours

In addition to the observation of material loss, both NF616 and HCM12A displayed areas thought to be carbon deposits (*Fig. 56*); also consistent with metal dusting. These areas tended to increase in frequency and magnitude with longer exposure. However, at the time of this writing there is no apparent explanation for the position of the deposits. Occurrence was not uniform over the surface, and location was apparently random, with some patches occurring near the edges, while others were found near the center of the sample. The composition was qualitatively confirmed as carbon using EDS mapping. Further analysis is necessary to provide quantitative results.

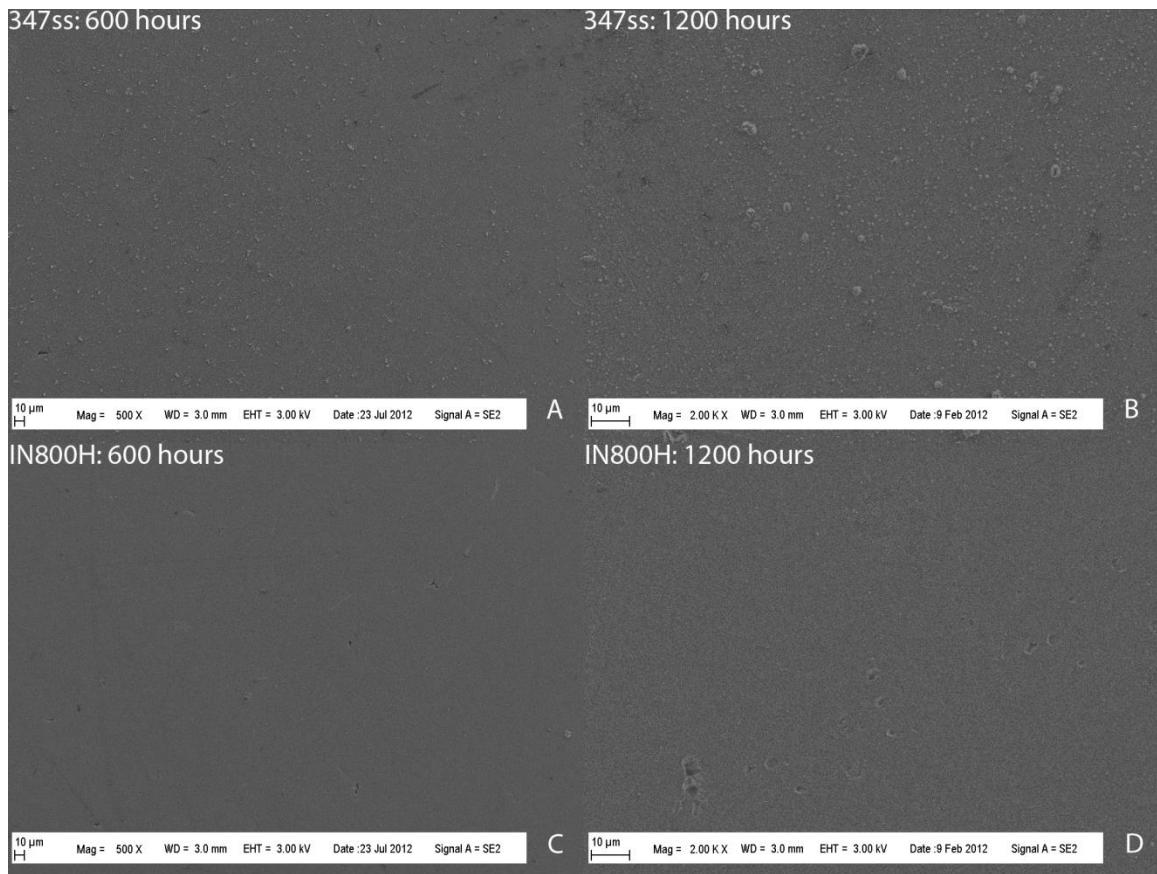



**Fig. 56:** Experiment 3 SEM images of (A) NF616, and (B) HCM12A displaying possible carbon deposits

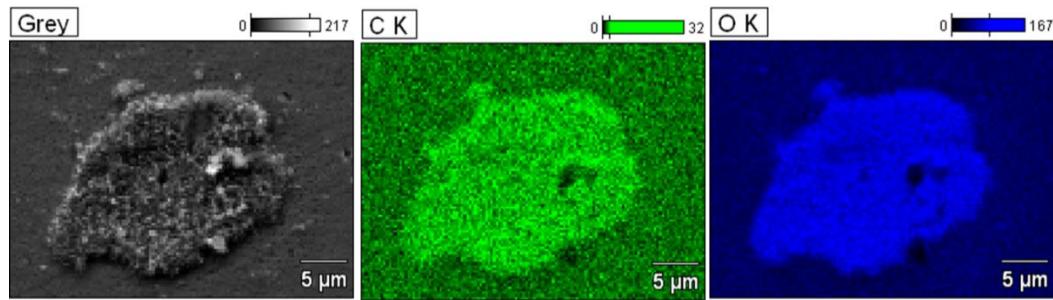

To gain better insight into the development of the oxide through the oxide layer, cross sectional analysis was performed using an ion milling technique. FIB (Focused Ion Beam) was used to mill, or remove a microscopic area of the sample surface, penetrating through the thickness of the oxide. This technique is relatively non-destructive because it does not

necessitate sample mounting (resin, phenolic, etc.), or the deposit of films (for conductivity or preservation of the surface). This technique therefore allows specific accurate selection of positions of interest on the sample surface to perform analysis.

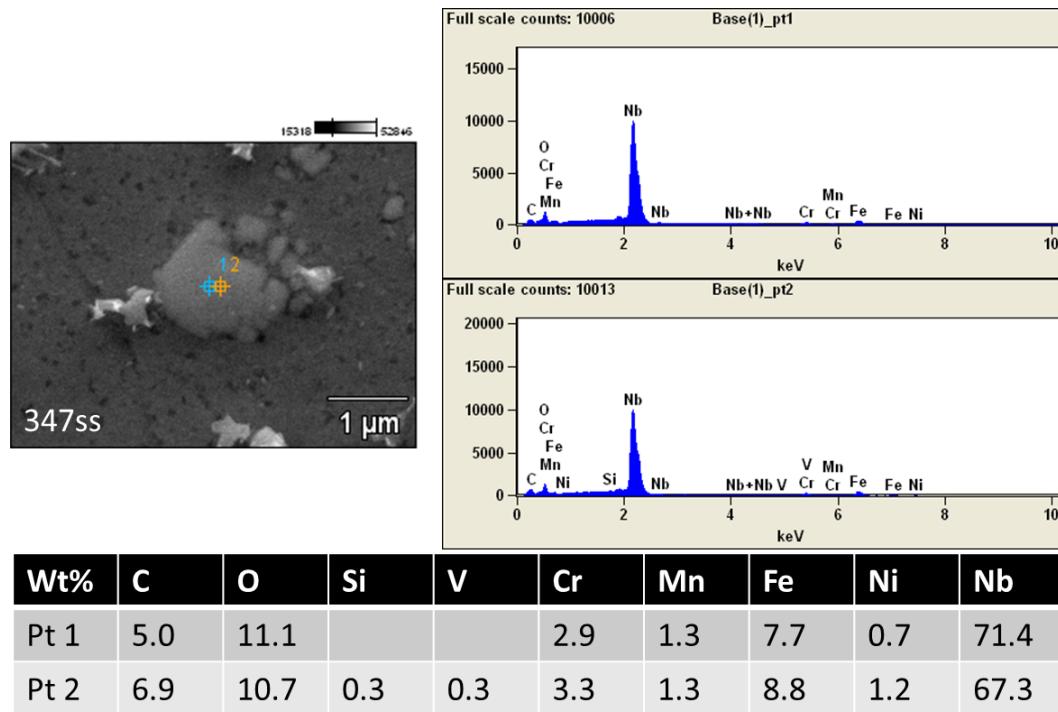
*Fig. 57* and *Fig. 58* show SEM images of FIB milled cross sections. EDS line scans were made through the thickness of the oxide layer to determine the general composition. Both oxides display a fairly dense, thick oxide, which can visibly be seen to consist of two distinct layers. EDS lines scans confirm that there are indeed two distinct layers, consisting of an outer iron oxide layer (magnetite), and inner Cr-spinel layer.




**Fig. 57:** NF616 SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow



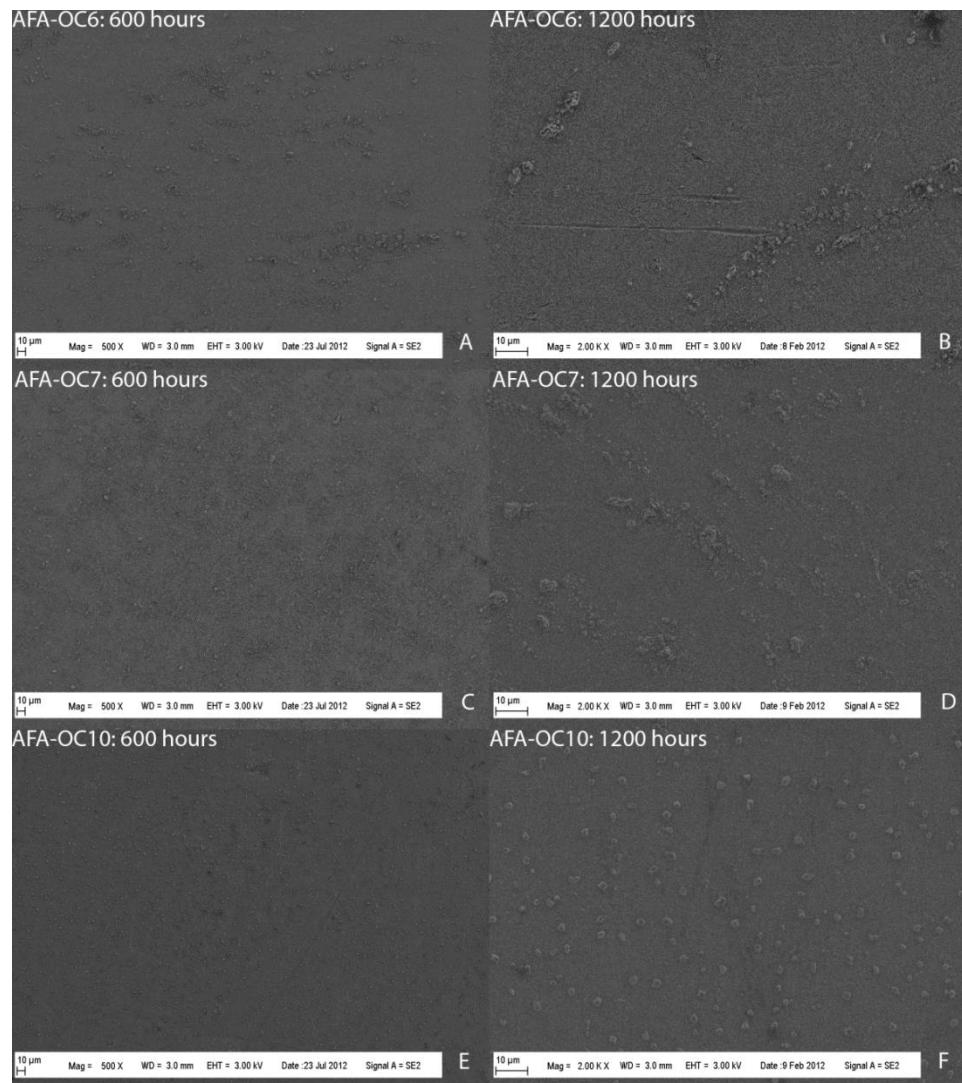

**Fig. 58:** HCM12A SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow


SEM observation of the other test matrix alloys (IN 800H, 347ss, and AFAs) indicated overall excellent performance. Oxide layers were observed to be uniform, fine grained, and fully adherent. *Fig. 59* shows both 347ss and IN 800H after 600 and 1200 hours of exposure. As can be seen, the oxide remained very consistent through the duration of the test. EDS analysis performed on 347ss indicated that the nodules of larger oxide growth (oxide islands) tended to show signs of increased carbon (*Fig. 60*). EDS point analysis further indicated oxide islands on 347ss tended to be high in niobium (*Fig. 61*). This was expected, as niobium is added to the 347ss composition to prevent sensitization, and will readily form carbides before chromium. It is hypothesized that carbide formation (e.g. niobium/titanium carbide) on the surface of the sample prevented complete oxide coverage, creating a pathway for either matrix metal or oxygen to diffuse, circumventing the developed protective layer [57]. This then becomes a nucleation point for further oxidation.

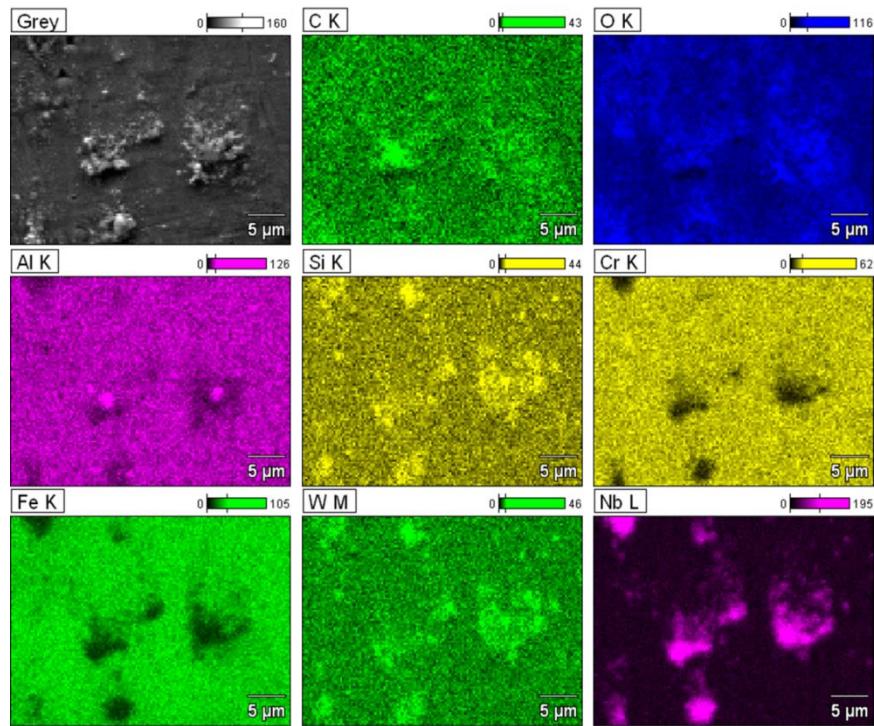


**Fig. 59:** Experiment 3 500x SEM images showing (A) 347SS after 600 hours, (B) 347SS after 1200 hours, (C) IN 800H after 600 hours, and (D) IN 800H after 1200 hours




**Fig. 60:** EDS maps of 347SS indicating a correlation between increased oxide growth and increased carbon




**Fig. 61:** EDS point analysis of an oxide island on 347SS indicating observed peaks and compositional analysis in weight percent

The AFA material tended to show signs of complex oxide growth in islands uniformly distributed across the surface of the sample. *Fig. 62* typifies all three AFA compositions after 600 and 1200 hours displaying relative oxide development. Considering the oxide formations on the AFA material and similarity to oxides observed on 347SS, it was likely that the AFA oxide islands formed at locations containing precipitates of niobium, titanium, and/or manganese depending upon the specific AFA composition. *Fig. 63* shows EDS mapping of AFA-OC7 which illustrated a strong correlation between niobium and the oxide structures. The EDS observations made on AFA-OC6 were essentially the same as AFA-OC7, which was not surprising considering the major differences between the two materials are AFA-OC7 has 1.8 wt% more Mo, and 0.8 wt% more W. The EDS maps also indicated higher

concentrations of carbon in each of the oxide islands, supporting the notion that niobium carbides formed at these locations. *Fig. 64* depicts EDS maps for AFA-OC10 indicating that increased oxidation tended to occur with manganese. This was consistent with general findings indicating that increasing manganese content decreases the oxidation resistance of Fe-Mn-Al alloys [58]. AFA-OC10 contained nearly 7 wt% Mn as an austenite stabilizer, supplementing a reduction in Ni.

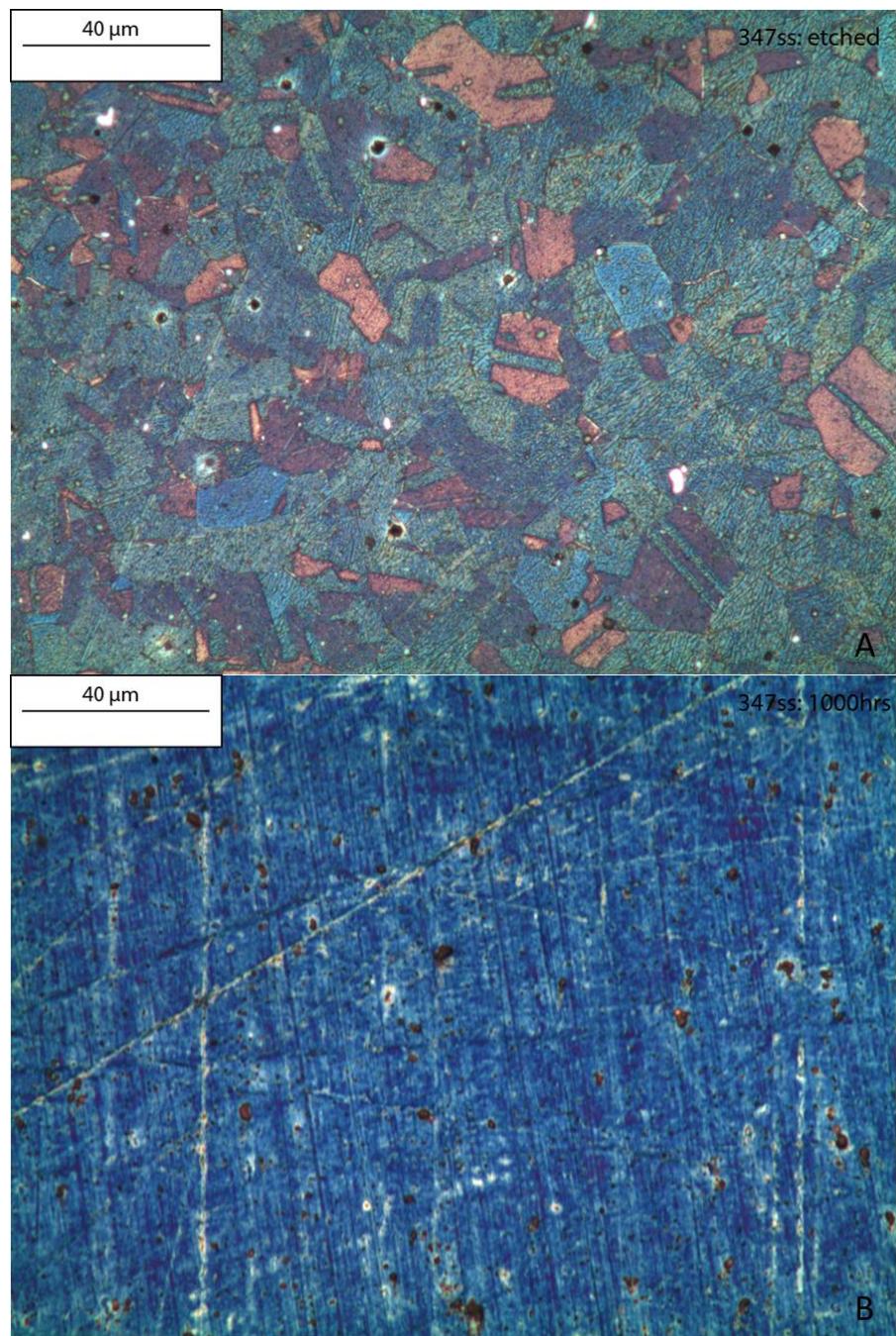


**Fig. 62:** Experiment 3 500x SEM images showing (A) AFA-OC6 after 600 hours, (B) AFA-OC6 after 1200 hours, (C) AFA-OC7 after 600 hours, (D) AFA-OC7 after 1200 hours, (E) AFA-OC10 after 600 hours, and (F) AFA-OC10 after 1200 hours

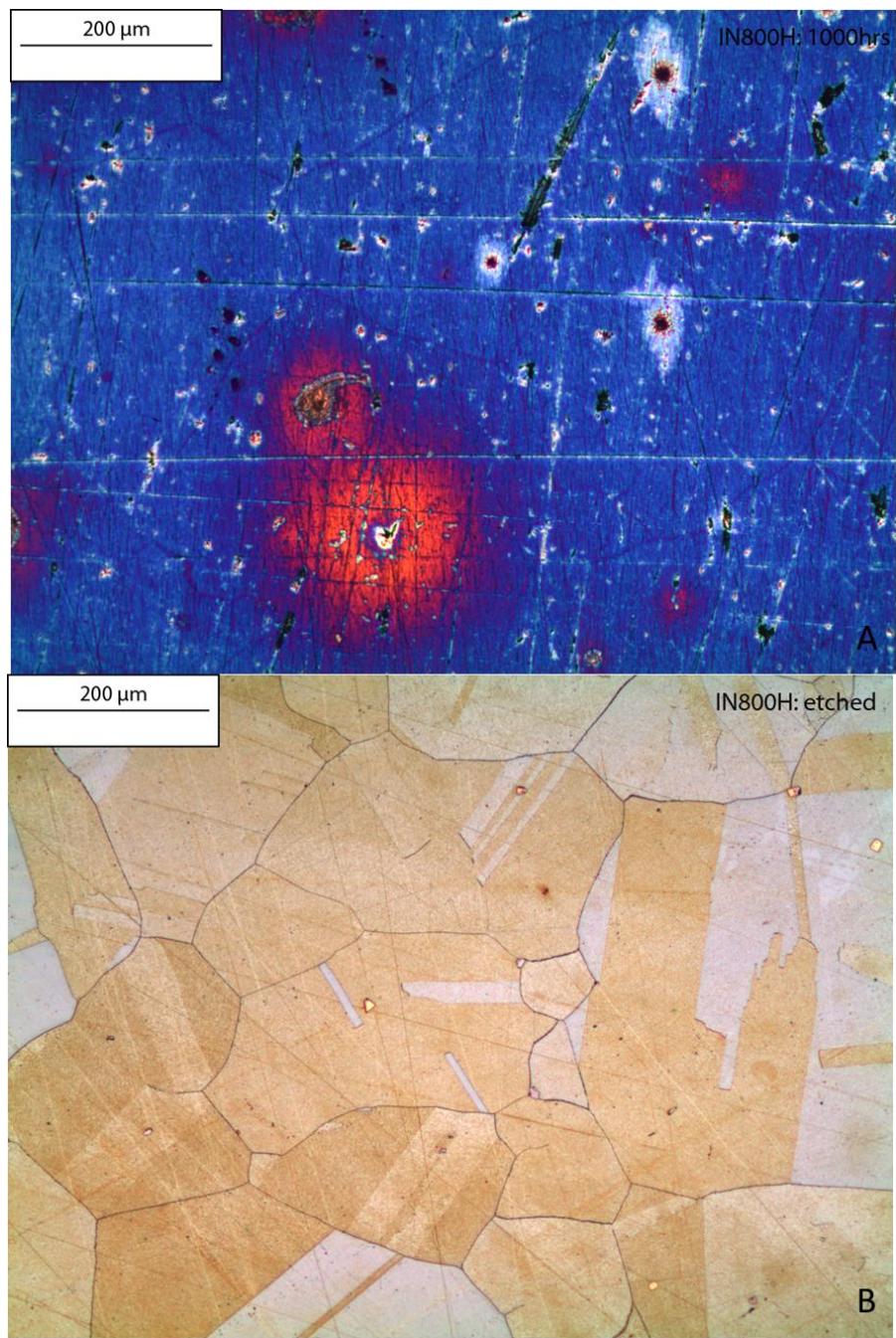



**Fig. 63:** EDS maps taken of AFA-OC7 indicating correlation between strong carbide formers (e.g. Nb) and islands of increased oxidation

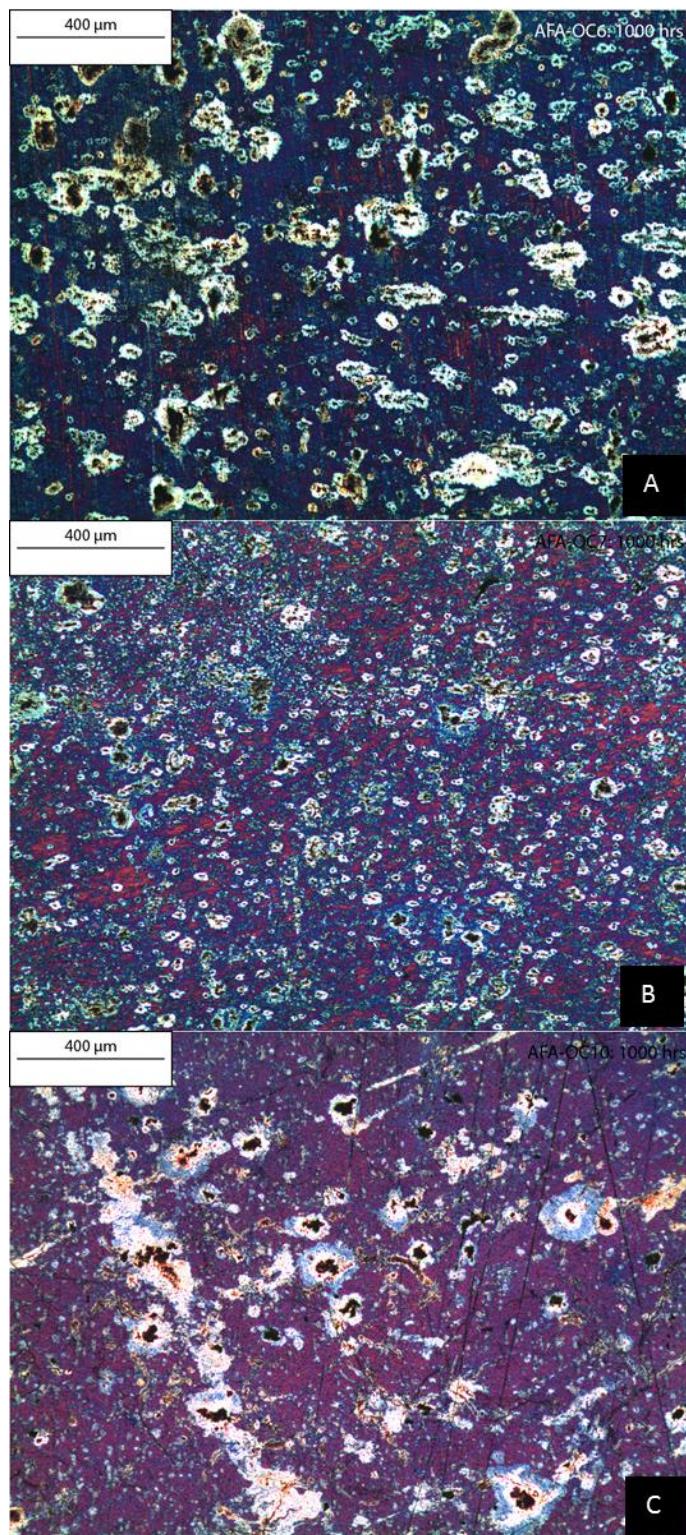



**Fig. 64:** EDS maps taken of AFA-OC10 after exposure to Experiment 3 conditions indicating islands of increased oxidation are mainly Mn

Further surface analysis was performed using optical microscopy. The broader scope granted by lower magnification provided a more complete understanding of the oxide development across the full surface of a sample. Illustrated in *Fig. 65*, the surface of 347SS after 1000 hours of exposure to SC-CO<sub>2</sub> at 450°C and 20 MPa displayed a largely continuous oxide layer (blue) interrupted by one large oxide island (yellow/gold). The thin nature of the protective oxide can further be inferred by the visibility of the polishing marks crosshatching the sample. When compared to images taken of the polished and etched sample (*Fig. 66*), it can be seen that the black spots on the exposed sample (B) correspond to carbides (black spots) on the etched sample (A), which were qualitatively confirmed using EDS.

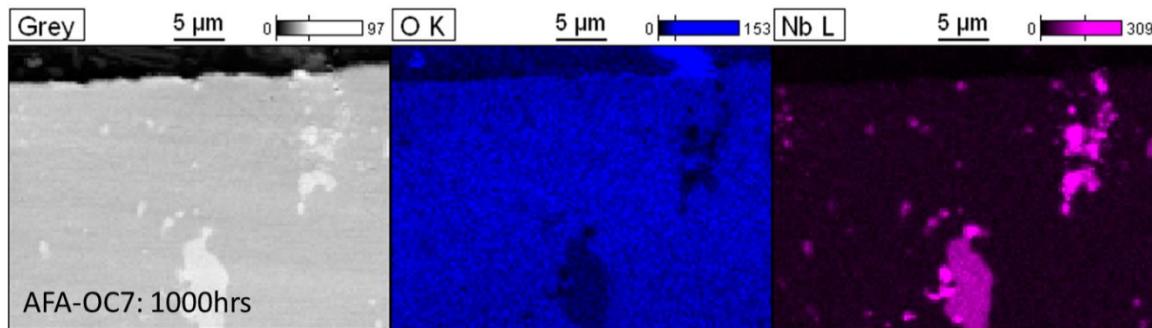

Indication of a thin protective oxide via clearly visible polishing marks is also true of observations of IN 800H after 1000 hours exposure at the conditions of Experiment 3 (*Fig. 67a*). What is even more interesting to note, was clear indication of preferential oxidation of the grain boundaries, most likely due to sensitization. *Fig. 67* also shows the polished and etched surface of IN 800H (B) for comparison, displaying both titanium carbides and titanium nitrides (confirmed using EDS). Observation of the AFA materials using the optical microscope found increased levels of oxidation as was expected given the weight gain data and observations made using the SEM. Like the weight gain ranking, AFA-OC10 showed the most oxidation, AFA-OC6 the second most, and AFA-OC7 showed the least oxide development of the three AFA materials (*Fig. 68*).



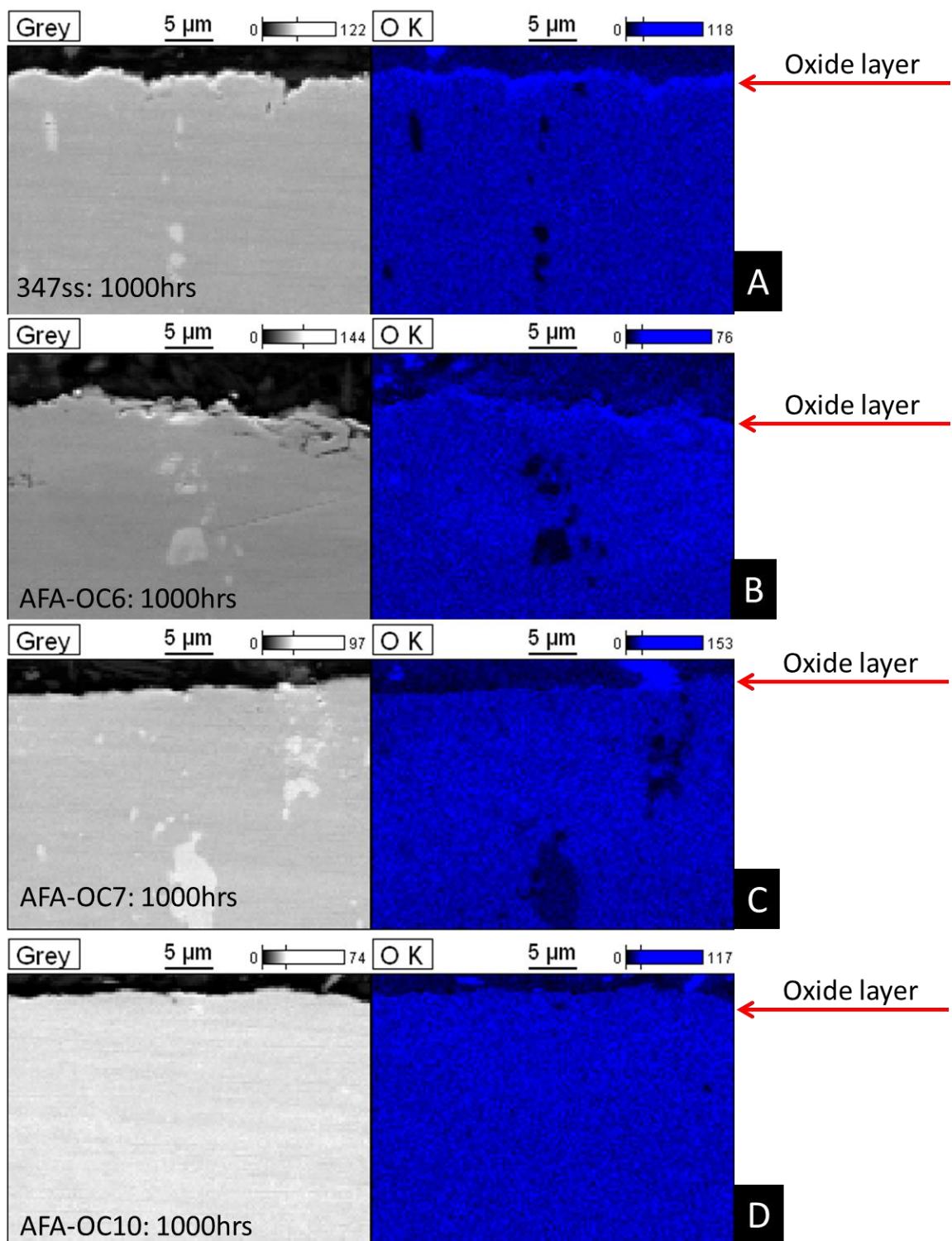

**Fig. 65:** Image of 347SS after 1000 hours exposure to SC-CO<sub>2</sub> at 450°C and 20 MPa



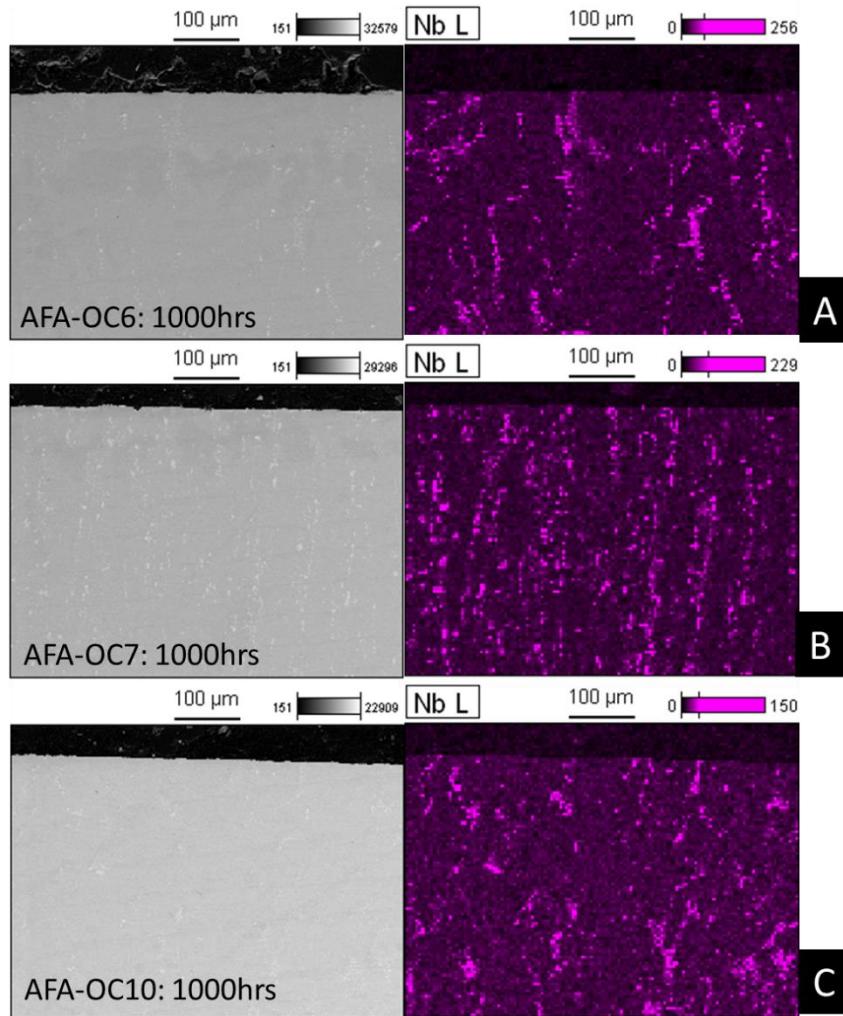
**Fig. 66:** Optical microscope images of 347ss with (A) etched using Beraha's Reagent, and (B) exposed to Experiment 3 test conditions for 1000 hours




**Fig. 67:** Optical microscope images of IN 800H with (A) exposed to Experiment 3 test conditions for 1000 hours, and (B) etched using Beraha's Reagent




**Fig. 68:** Optical microscope images of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 3 condition

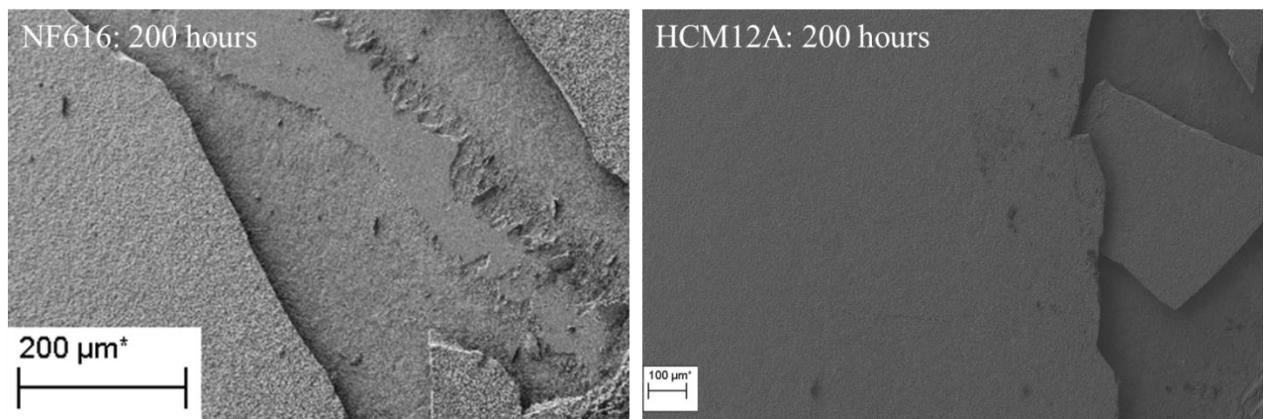

Cross-sections of the samples after 1000 hours of testing at Experiment 3 conditions were analyzed using EDS. The oxide layers that were found on 347ss and the three AFA materials were generally very thin (*Fig. 70*) and did not exceed approximately 1  $\mu\text{m}$ . Inspection of IN 800H found some evidence of an oxide layer, but it was very thin and did not register well using EDS. *Fig. 71* illustrates the distribution of niobium in each of the AFA materials. While it was found that oxide islands on the surface correlated with Nb, it was hard to identify the oxide island structures in the cross-sections that were performed. Further analysis using FIB milling would be more beneficial, as these oxide islands could be specifically targeted for cross-sectional analysis. However, as *Fig. 69* would suggest, increased oxidation does occur above Nb concentrations that penetrate to the surface.



**Fig. 69:** Experiment 3 EDS map of AFA-OC7 displaying increased oxidation above concentrated Nb

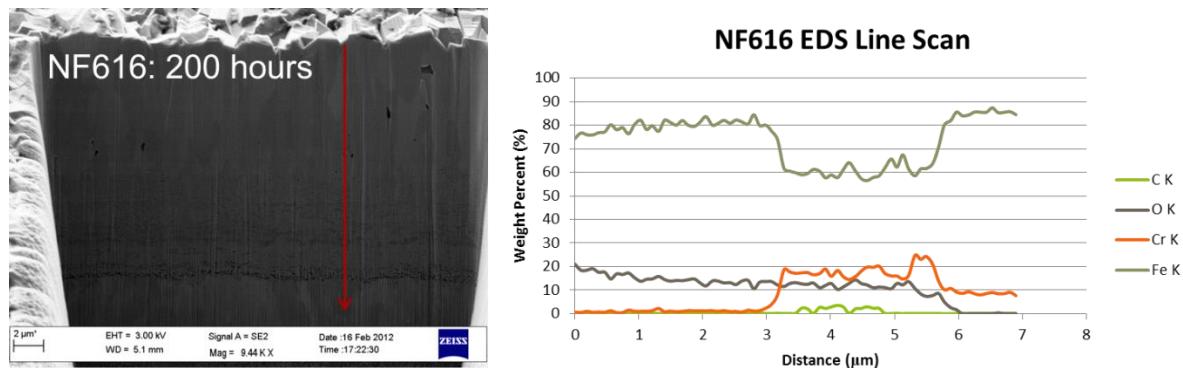


**Fig. 70:** EDS cross-section maps of (A) 347ss, (B) AFA-OC6, (C) AFA-OC7, and (D) AFA-OC10 after 1000 hours exposure to Experiment 3 conditions showing very thin oxide layers

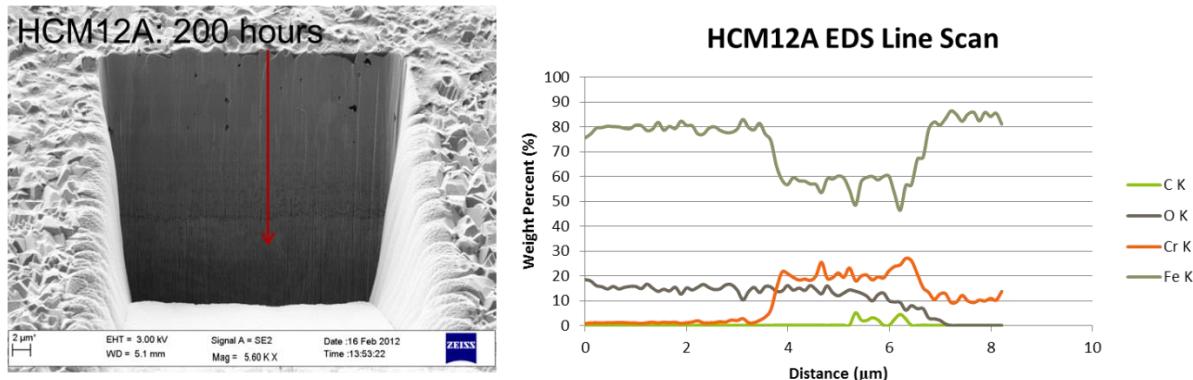



**Fig. 71:** EDS cross-section maps of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 03 conditions showing Nb distribution

Testing for Experiment 4 was conducted at 550°C and 20MPa. The total duration of testing was to be 1000 hours based on the performance observed at 450°C and the expectation that higher temperatures would produce a more aggressive oxidizing environment. Because of the low performance observed in the ferritic material at 450°C it was anticipated that the ferritic material would once again need to be removed from the test, potentially sooner than 800


hours. This proved to be true, and the two ferritic steels showed signs of significant material loss after only 200 hours. In an effort to gain one more data set at 400 hours, two samples each for NF616 and HCM12A were returned for further testing. To limit the potential for cross contamination, the ferritic samples were further separated from each other and the other alloys using additional alumina washers. At the completion of 400 hours, both ferritic materials were removed from further testing.

Surface analysis of NF616 and HCM12A confirmed material was being lost from the samples. SEM images in Fig. 72 of NF616 and HCM12A exhibit large scale material loss, or spallation. Areas that displayed the pit like dusting material loss mechanism were also visible on the surface of both ferritic materials. Observation of large scale spallation after only 200 hours was unexpected; therefore, it was theorized that carbon buildup near the oxide/metal interface provided low oxide adherence and an initiation point for spallation.



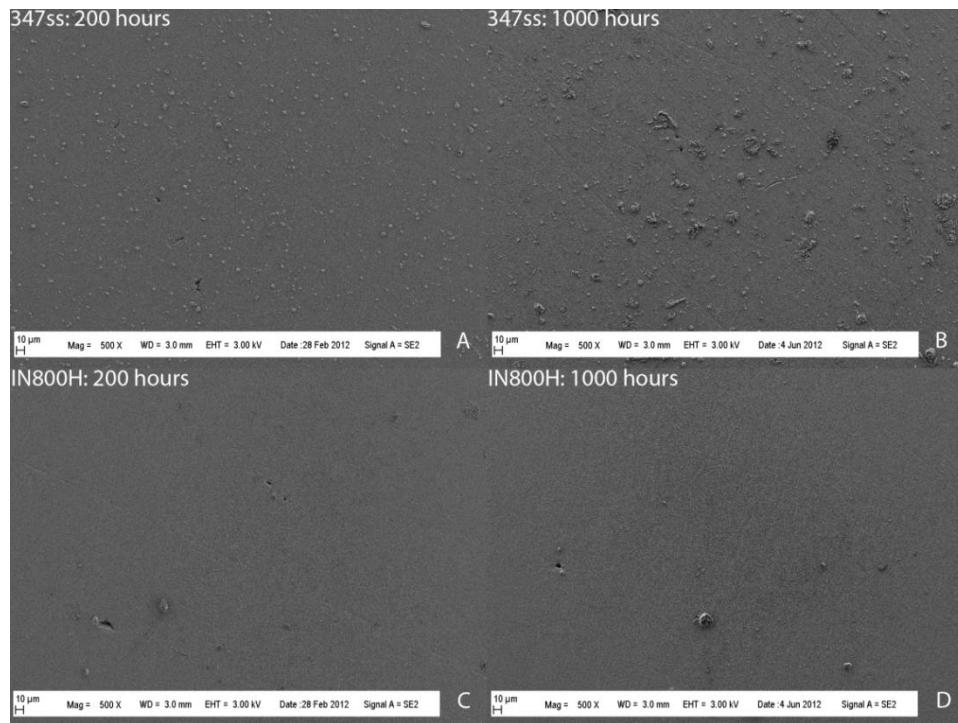

**Fig. 72:** SEM images of NF616 (left) and HCM12A (right) showing signs of material loss (spallation)

FIB cross sections were again performed on the HCM12A and NF616 material to observe the oxide through the thickness. EDS line scans accompanied SEM imaging, and provided insight into compositional changes through the oxide. *Fig. 73* shows a cross sectional SEM image of NF616 on the left, with definite layers visible through the thickness. To the right in *Fig. 73*, an EDS line scan confirmed that there were at least two definite layers (magnetite outer, Cr-spinel inner). There also appeared to be a layer slightly enriched in Cr, directly before returning to the bulk matrix composition. *Fig. 74* illustrates the same general findings in HCM12A that were observed in NF616; being, a definite duplex oxide structure consistent with a magnetite outer and Cr-spinel inner, along with some indication of Cr enrichment at the bulk matrix boundary. Although EDS does not provide a true quantitative measure of carbon, EDS line scans qualitatively indicated that carbon did occur within the inner oxide. This was congruent with the hypothesis that carbon layer formation within the inner oxide layer could develop and reduce oxide adherence.

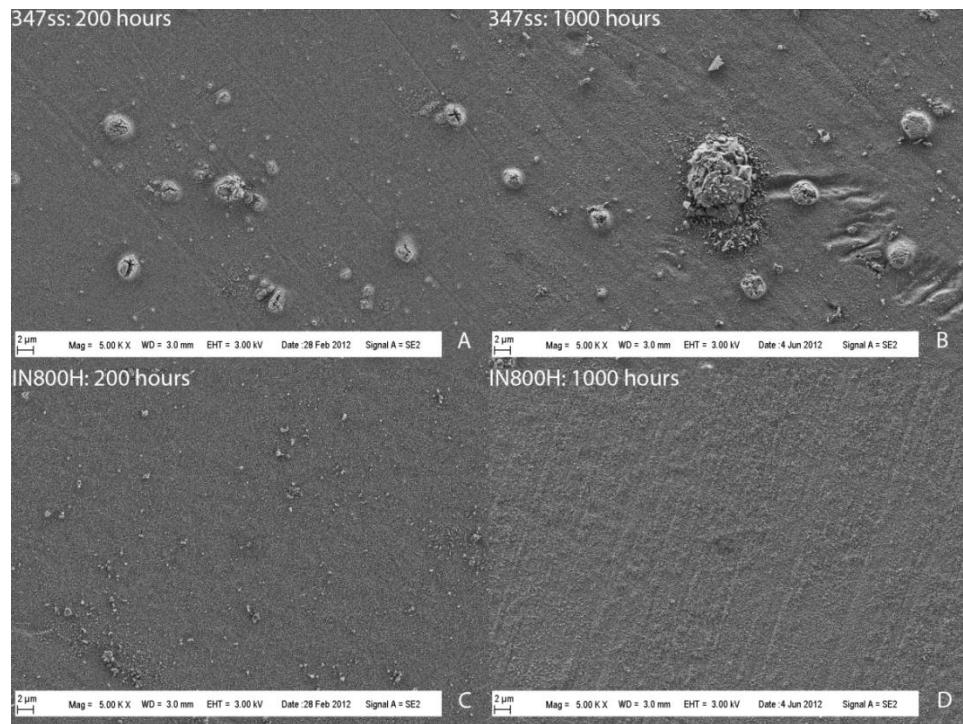


**Fig. 73:** NF616 SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow

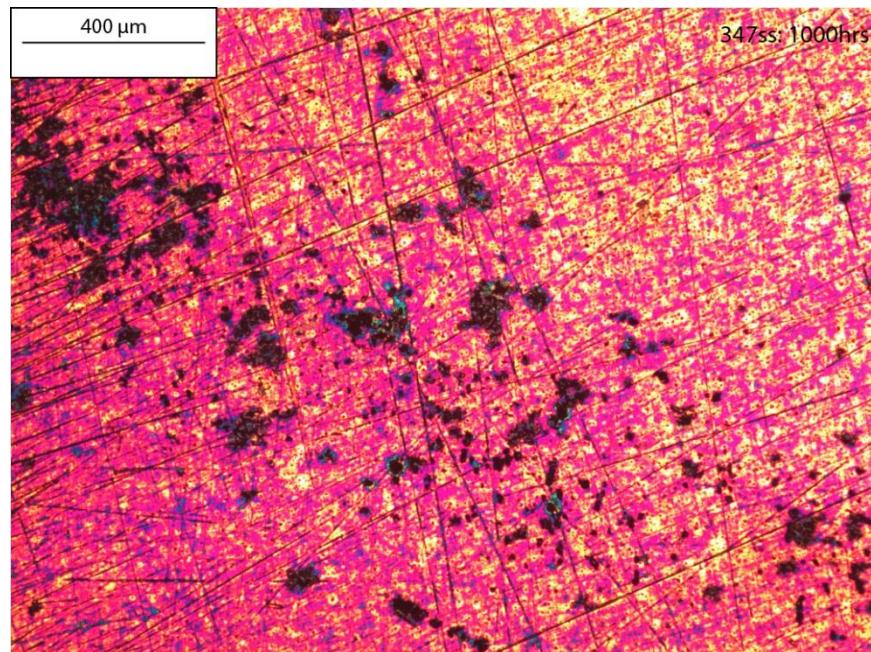



**Fig. 74:** HCM12A SEM image of a FIB milled cross section and corresponding EDS line scan through the oxide layer with the scan position and direction indicated by the arrow

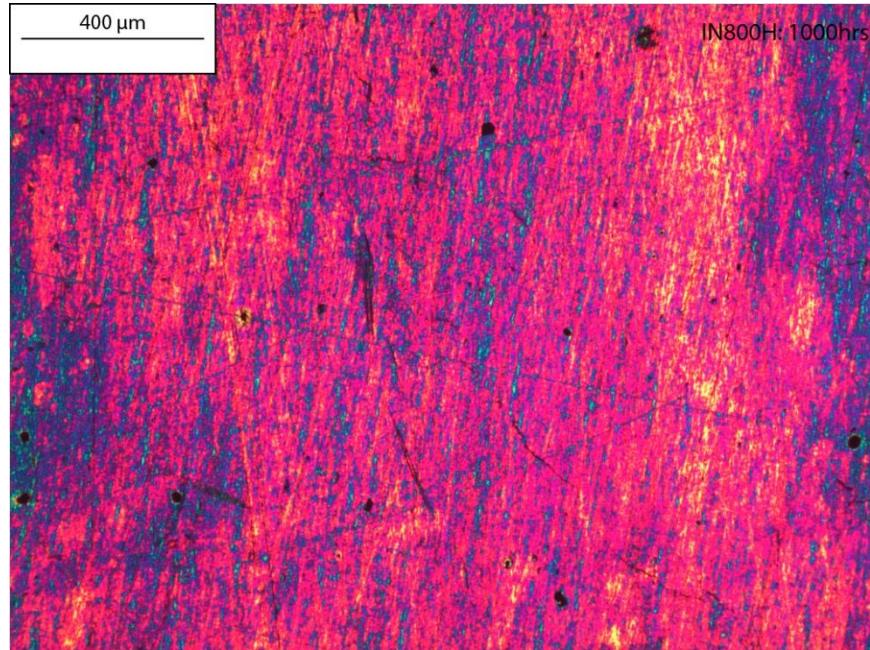
Surface analysis of 347ss and IN800H after exposure to Experiment 4 test conditions, conducted using SEM, found similar results to Experiment 3. Oxide layers were very uniform and fully adherent, with no signs of material loss. Islands of increased oxide growth observed on 374ss were similar to Experiment 3. Higher magnification imaging (*Fig. 75*) further ascertained that these oxide islands were generally twice the circumferential size after 1000 hours at 550°C than they were after 1200 hours at 450°C, consistent with the idea that higher temperatures are more readily oxidizing. Observation of increased oxide growth between Experiment 3 and Experiment 4 was less apparent in IN 800H. Only at increased magnifications (*Fig. 76*) was it apparent that the oxide covering IN 800H had developed.


Further investigation using optical microscopy found some development of the 347SS oxide islands along with a color change of the surface from generally blue to yellow/magenta (*Fig. 77*). Likewise, IN 800H displayed a color change from generally blue to magenta/yellow with exposure to Experiment 04 test conditions (*Fig. 78*). Oxide development on IN 800H was not as readily apparent from the micrographs as was 347SS when compared to

corresponding optical images taken after Experiment 3 exposure (*Fig. 66* and *Fig. 67*).


Observation of preferential attack on grain boundaries was not observed.



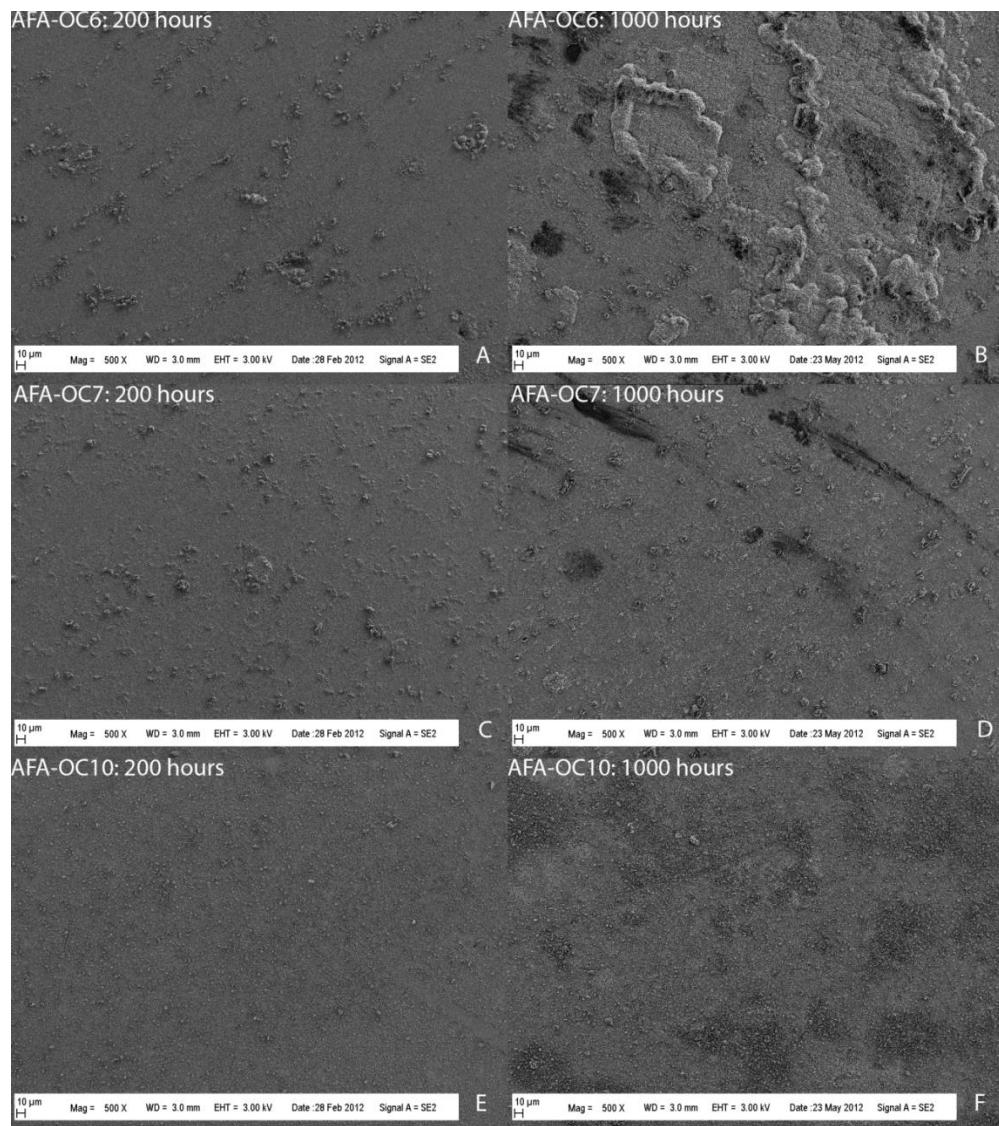

**Fig. 75:** Experiment 4 500x SEM images showing (A) 347SS after 200 hours, (B) 347SS after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours



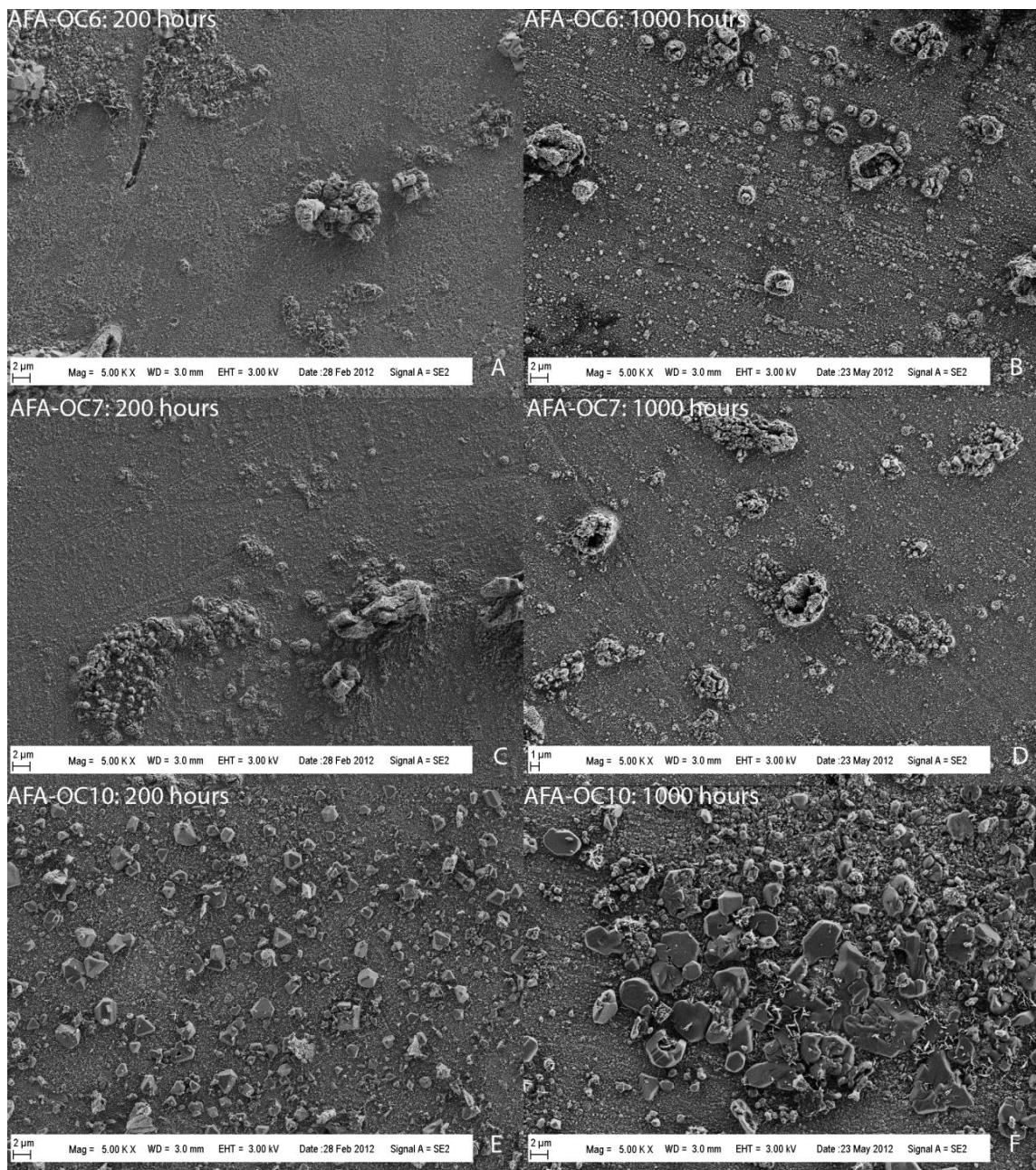
**Fig. 76:** Experiment 4 5000x SEM images showing (A) 347ss after 200 hours, (B) 347SS after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours



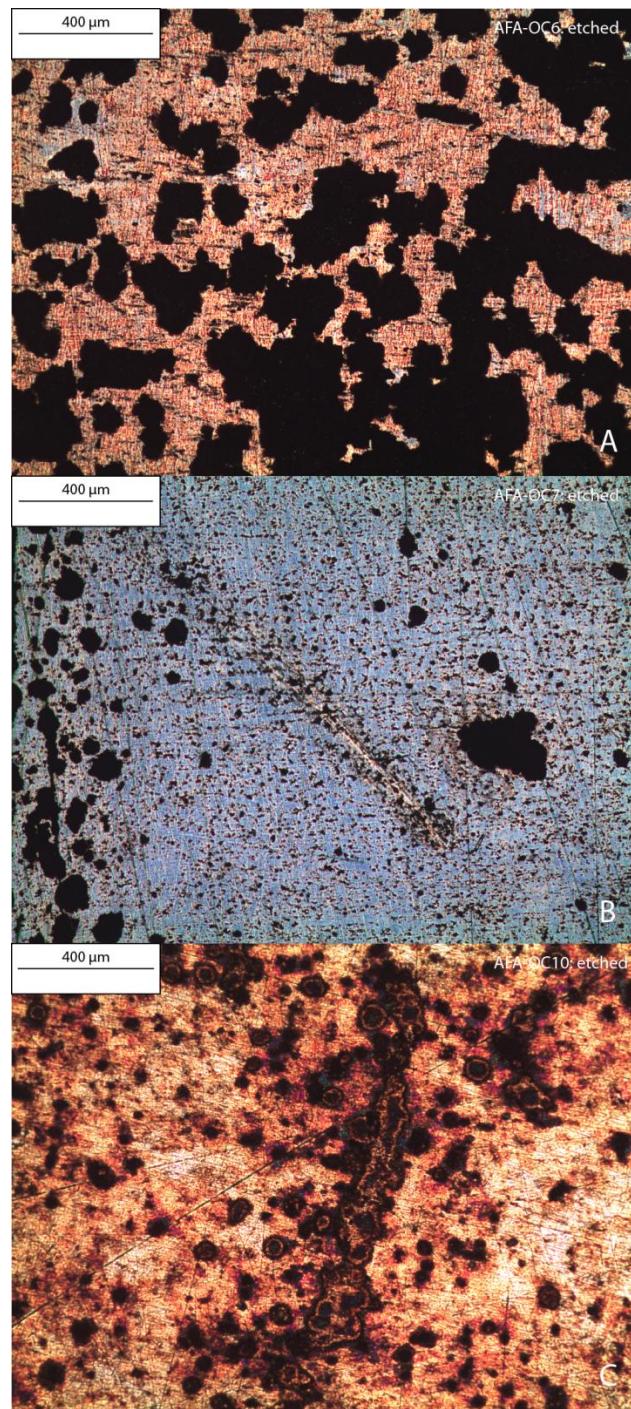
**Fig. 77:** Optical microscope image of 347SS exposed to Experiment 4 test conditions for 1000 hours




**Fig. 78:** Optical microscope image of IN 800H exposed to Experiment 4 test conditions for 1000 hours


SEM surface analysis of the three AFA materials was performed, and select images are shown in *Fig. 79*. As can be seen from the images, oxide islands on AFA-OC6 grew considerably from 200 to 1000 hours, whereas oxide growth for AFA-OC7 and AFA-OC10 was apparent, but not as pronounced. Areas of carbon were again visible after 200 hours, and generally increased in magnitude and quantity with increasing exposure. Imaging at increased magnification (*Fig. 80*) better illustrates the nucleation and growth of complex oxides on the AFA material.

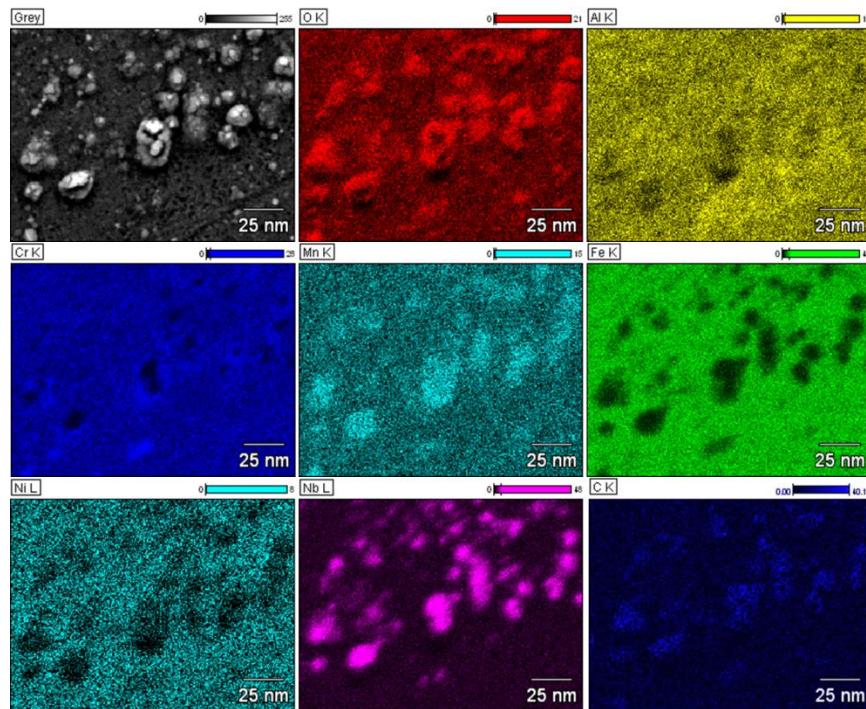
Images taken with the optical microscope (*Fig. 81*) depicted the extent of oxidation across the surface of the AFA materials. Like 347ss and IN 800H, color changes were observed on


the AFA samples: AFA-OC6 transitioned from generally blue to gold, AFA-OC7 went from darker blue to lighter blue with gold accents, and AFA-OC10 developed from a violet/blue hue to gold with red accents. The dark black/brown patches on the surface were areas where thick oxide developed.

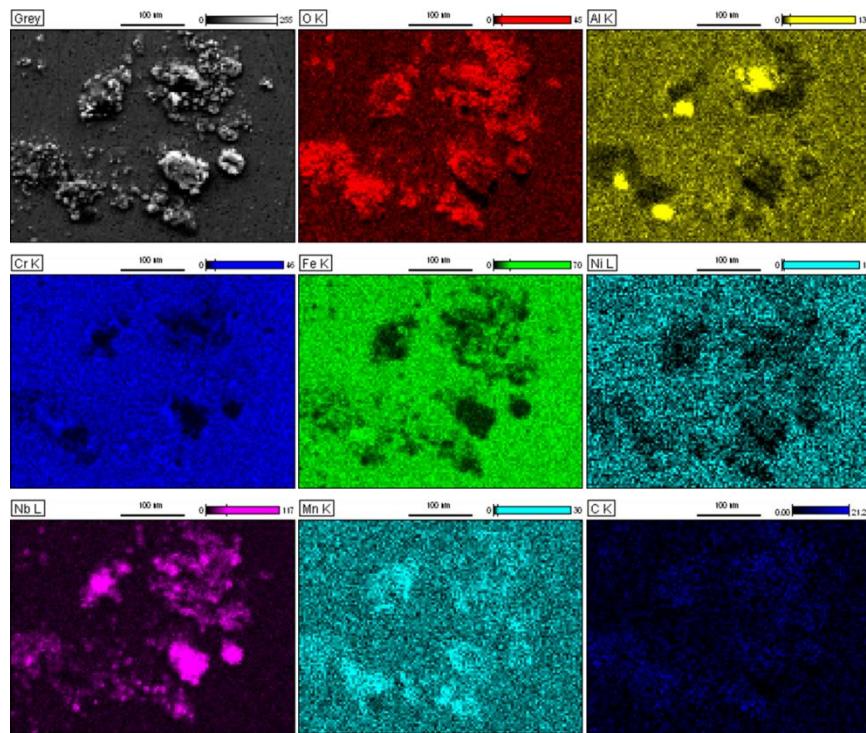


**Fig. 79:** Experiment 4 500x SEM images showing (A) AFA-OC6 after 200 hours, (B) AFA-OC6 after 1000 hours, (C) AFA-OC7 after 200 hours, (D) AFA-OC7 after 1000 hours, (E) AFA-OC10 after 200 hours, and (F) AFA-OC10 after 1000 hours

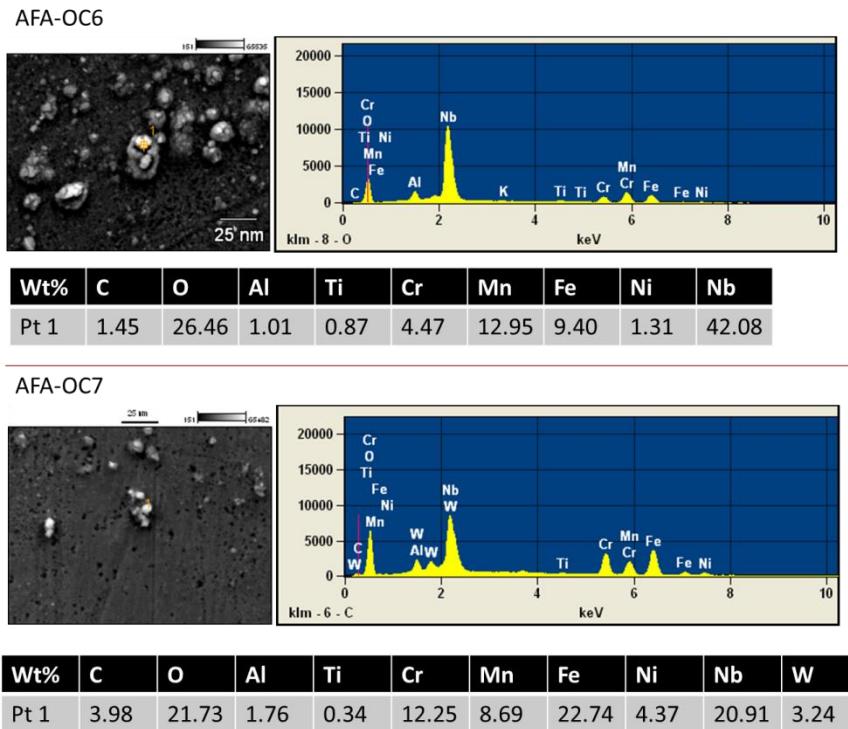



**Fig. 80:** Experiment 4 5000x SEM images showing (A) AFA-OC6 after 200 hours, (B) AFA-OC6 after 1000 hours, (C) AFA-OC7 after 200 hours, (D) AFA-OC7 after 1000 hours, (E) AFA-OC10 after 200 hours, and (F) AFA-OC10 after 1000 hours

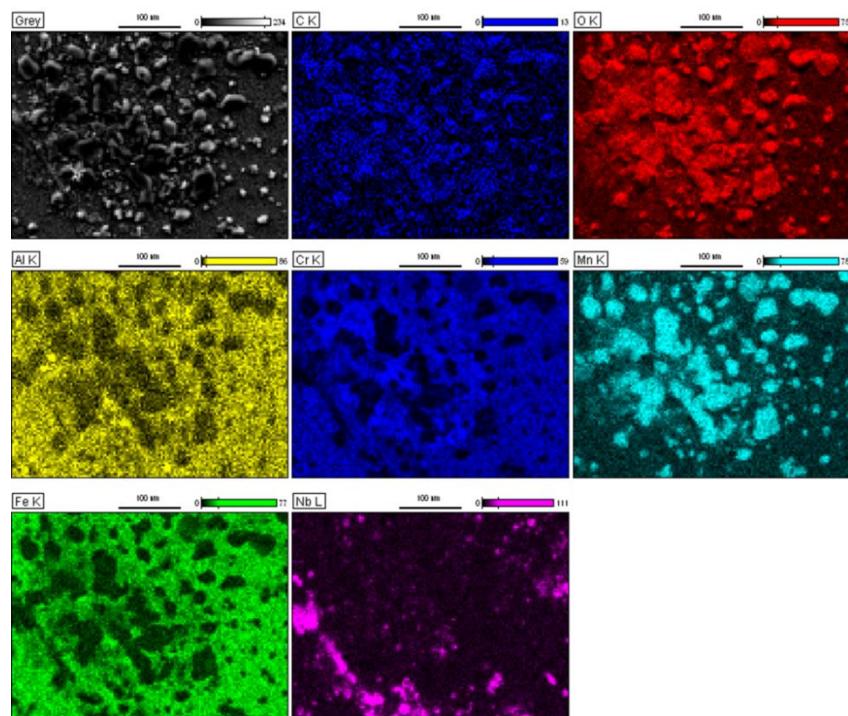



**Fig. 8I:** Optical microscope images of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 4 conditions

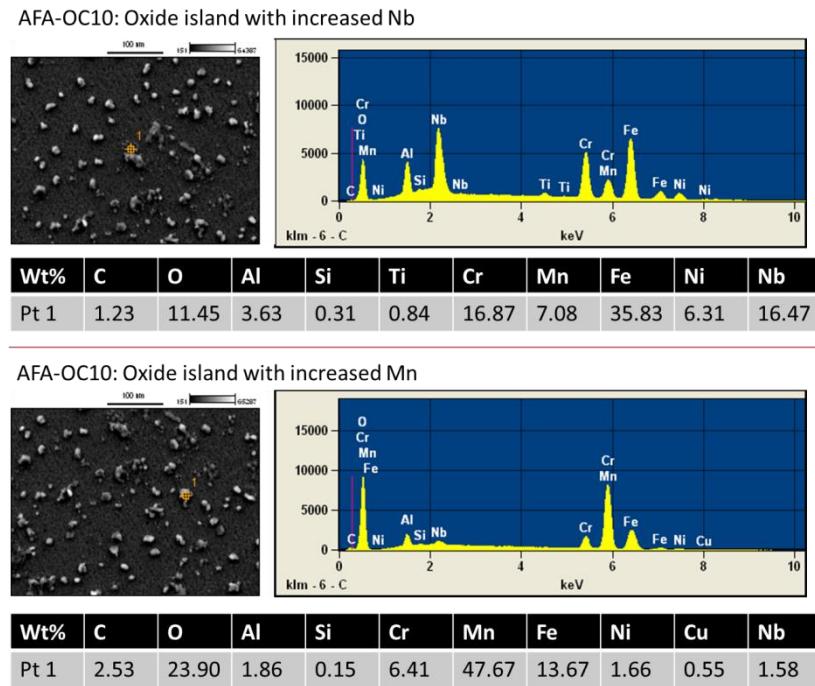
EDS analysis of the oxide islands on the AFA materials was performed. As can be seen from the EDS maps in *Fig. 82* and *Fig. 83*, AFA-OC6 and AFA-OC7 developed oxide islands with very similar compositions. Both displayed oxide islands which correlated to areas of higher niobium and carbon. EDS point analysis of characteristic oxide islands on both AFA-OC6 and AFA-OC7 (*Fig. 84*) reveal that oxide islands on AFA-OC7 generally had higher levels of Cr and Ni, and lower levels of Mn and Nb which indicate a more protective, slower growing oxide than those of AFA-OC6. While there is some indication that Mo is detrimental in the formation of protective oxide due in part to  $\text{MoO}_3$  volatilization at high temperatures, below approximately 875°C Mo can act like Si to prevent the diffusion of cations, slowing overall oxide development [59, 60].


EDS maps of AFA-OC10 (*Fig. 85*), indicated oxide islands were mostly developments of Mn oxide, with some additional oxide development that can be correlated to Nb. EDS point analysis confirms the nucleation of separate oxide islands with either high concentration of Nb or Mn (*Fig. 86*). Development of the oxide structure from that observed on samples exposed to the Experiment 03 test conditions would indicate that manganese oxide appeared to grow outward in a plate like structure (also seen from *Fig. 80e* to *Fig. 80f*).




**Fig. 82:** EDS maps taken of AFA-OC6 after exposure to Experiment 4 conditions indicating islands of increased oxidation correlate to areas of niobium and carbon

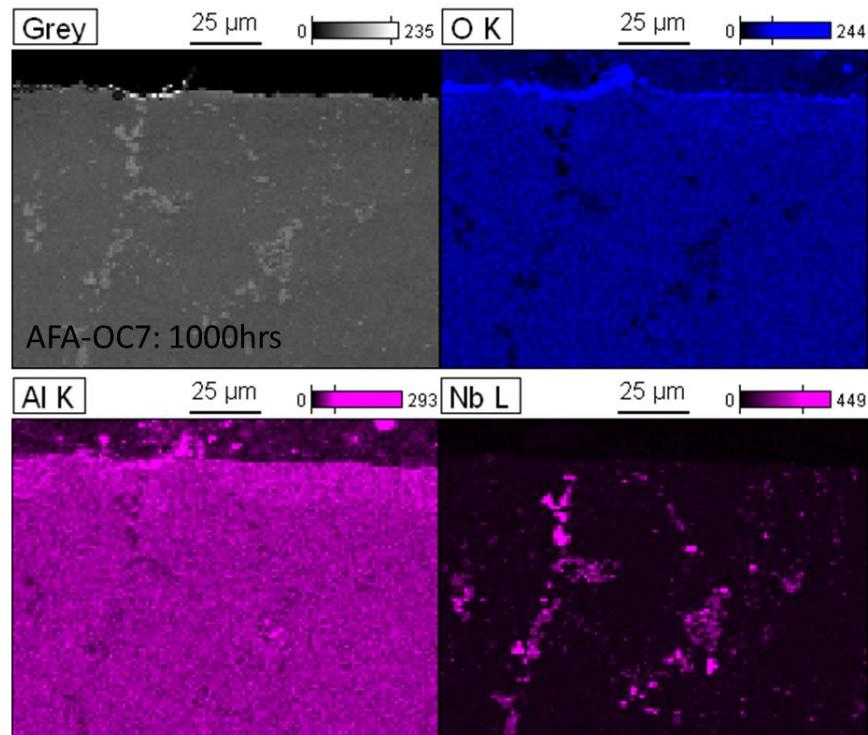



**Fig. 83:** EDS maps taken of AFA-OC7 after exposure to Experiment 4 conditions indicating islands of increased oxidation correlate to areas of niobium and carbon

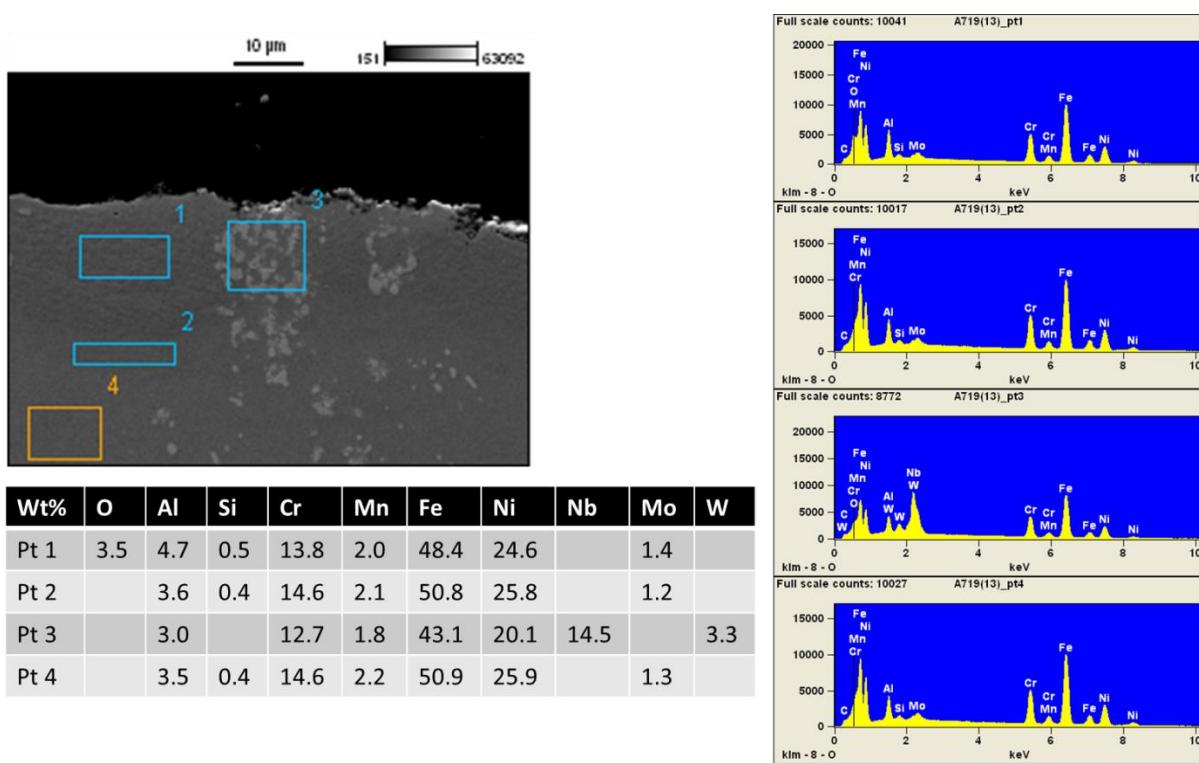


**Fig. 84:** EDS point analysis of (top) AFA-OC6, and (bottom) AFA-OC7 after exposure to Experiment 4 conditions

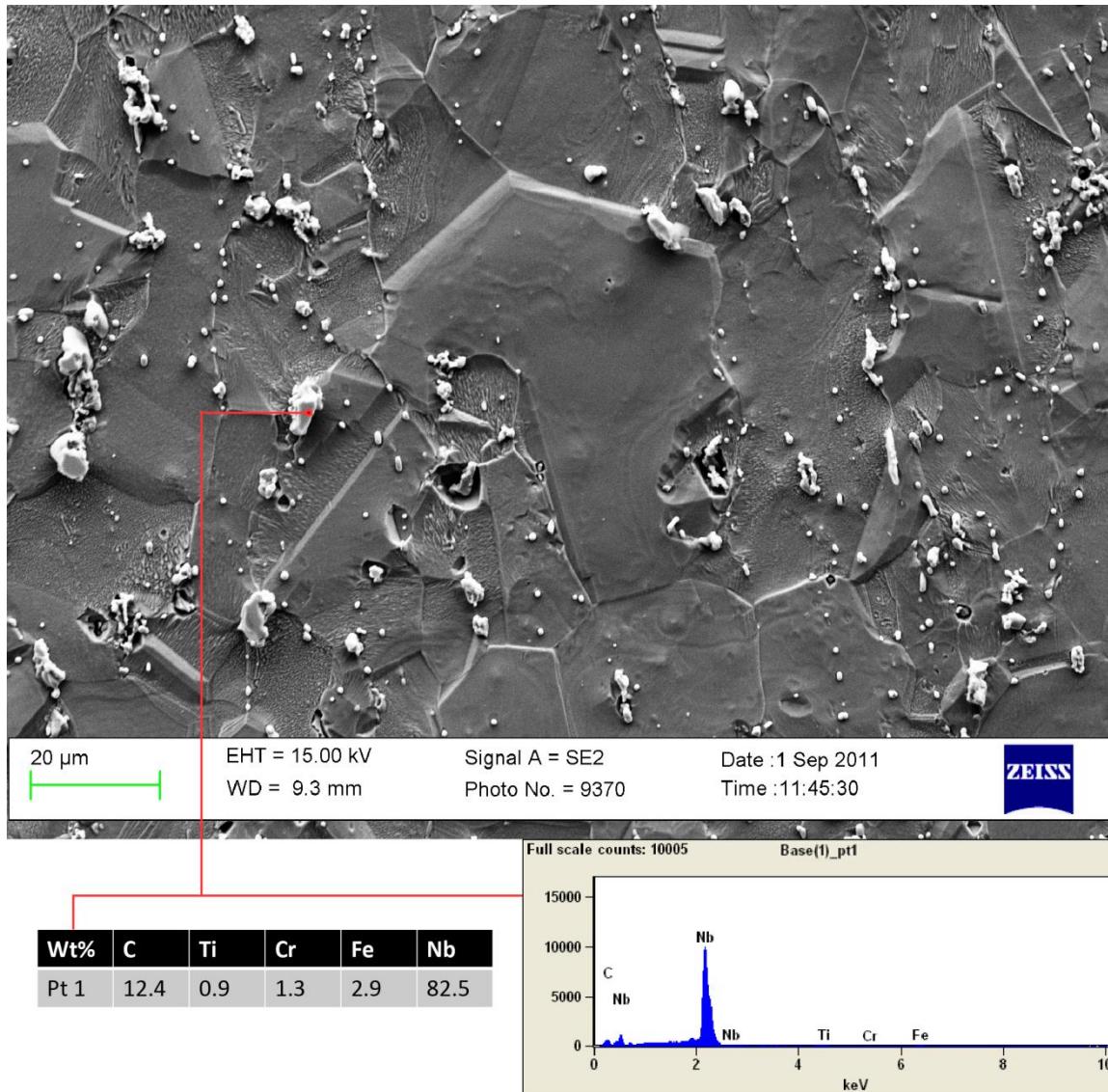



**Fig. 85:** EDS maps taken of AFA-OC10 after exposure to Experiment 4 conditions indicating islands of increased oxidation are mainly Mn




**Fig. 86:** EDS point analysis of AFA-OC10 after exposure to Experiment 4 conditions indicating (top) oxide islands with high concentrations of Nb, and (bottom) oxide islands with high concentrations of Mn

Cross-sections of the Experiment 4 AFA material after 1000 hours exposure found oxide layers to be thicker than those observed after 1000 hours exposure to Experiment 3 test conditions. An example of the increased oxidation is shown using AFA-OC7 in *Fig. 87*, along with more evidence of increased oxide growth above areas concentrated in Nb. Region of interest analysis (*Fig. 88*) would also seem to suggest that oxygen moved into the sample (point 1) and aluminum enriched near the surface, exhibiting an internal oxidation zone consistent with alumina formation. Furthermore, EDS profiles in the Nb rich vicinity illustrated in *Fig. 88* (point 3) indicated that there was no oxygen and less aluminum present along with the Nb, which may suggest that oxygen is not penetrating the surface and diffusing inward, but rather metal is diffusing out. These regions are also likely to be grain

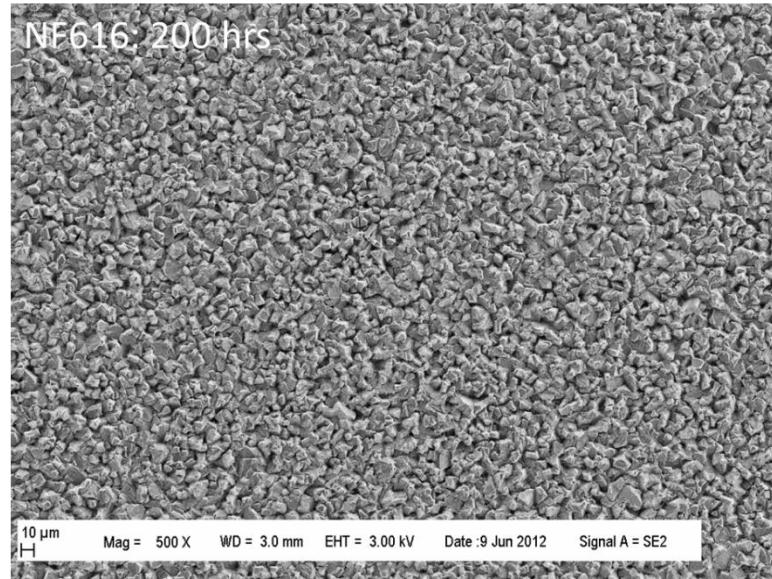

boundaries, as niobium in general precipitates out along grain boundaries (Fig. 89). Oxide layers on 347ss and IN 800H did not appear to greatly differ from those observed after 1000 hours exposure to Experiment 3.



**Fig. 87:** EDS maps of AFA-OC7 after 1000 hours exposure to Experiment 4 conditions indicating defined oxide layer and apparent increased surface oxidation above Nb concentrations



**Fig. 88:** EDS region of interest analysis of AFA-OC7 after 1000 hours exposure to Experiment 4 conditions



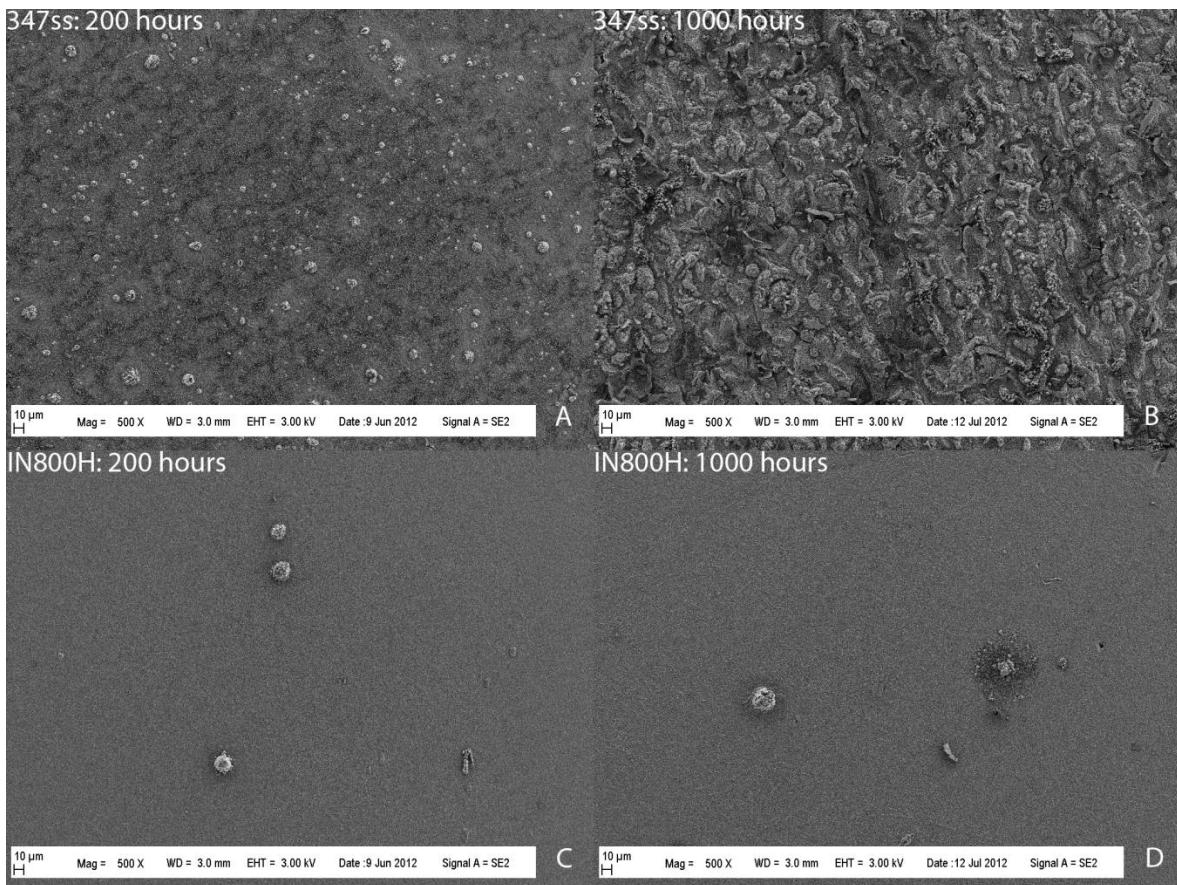

**Fig. 89:** SEM image of as-received AFA-OC7 etched with aqua regia revealing niobium carbide precipitation to grain boundaries


Testing for Experiment 5 was conducted at 650°C and 20MPa. The total duration of testing was chosen to be 1000 hours based on the performance observed at 550°C. Because of the poor performance observed in the ferritic material at 550°C it was anticipated that testing at

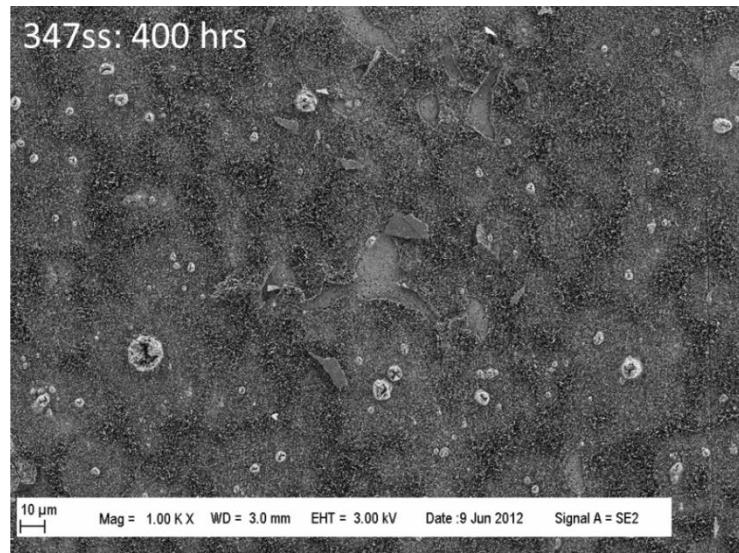
650°C would produce even worse results; however, two samples each of NF616 and HCM12A were tested for 200 hours to provide a data point for comparison.

Surface analysis of the ferritic materials revealed a definite difference in the oxide scale formed on NF616 compared to HCM12A. After 200 hours of exposure at 650°C and 20 MPa, NF616 displayed a relatively consistent outer layer of Magnetite (*Fig. 90*). By contrast, definite areas of chromia formed on the HCM12A material, which lead to a reduction in overall oxide development and subsequent lower weight gain than NF616 (*Fig. 91*). Further investigation of the ferritic materials was not conducted due to their poor performance. With the purpose of this investigation being to determine suitable material for use in the SC-CO<sub>2</sub> Brayton cycle, it can be concluded that ferritic materials produce an unacceptable level of oxidation at 650°C, 550°C, and even 450°C to be considered useful in high temperature long service life sections. Furthermore, thick oxide layers, like the ones that were observed to develop on the ferritic steels can detrimentally affect heat transfer properties, limiting the performance of ferritic material in heat exchanger components.

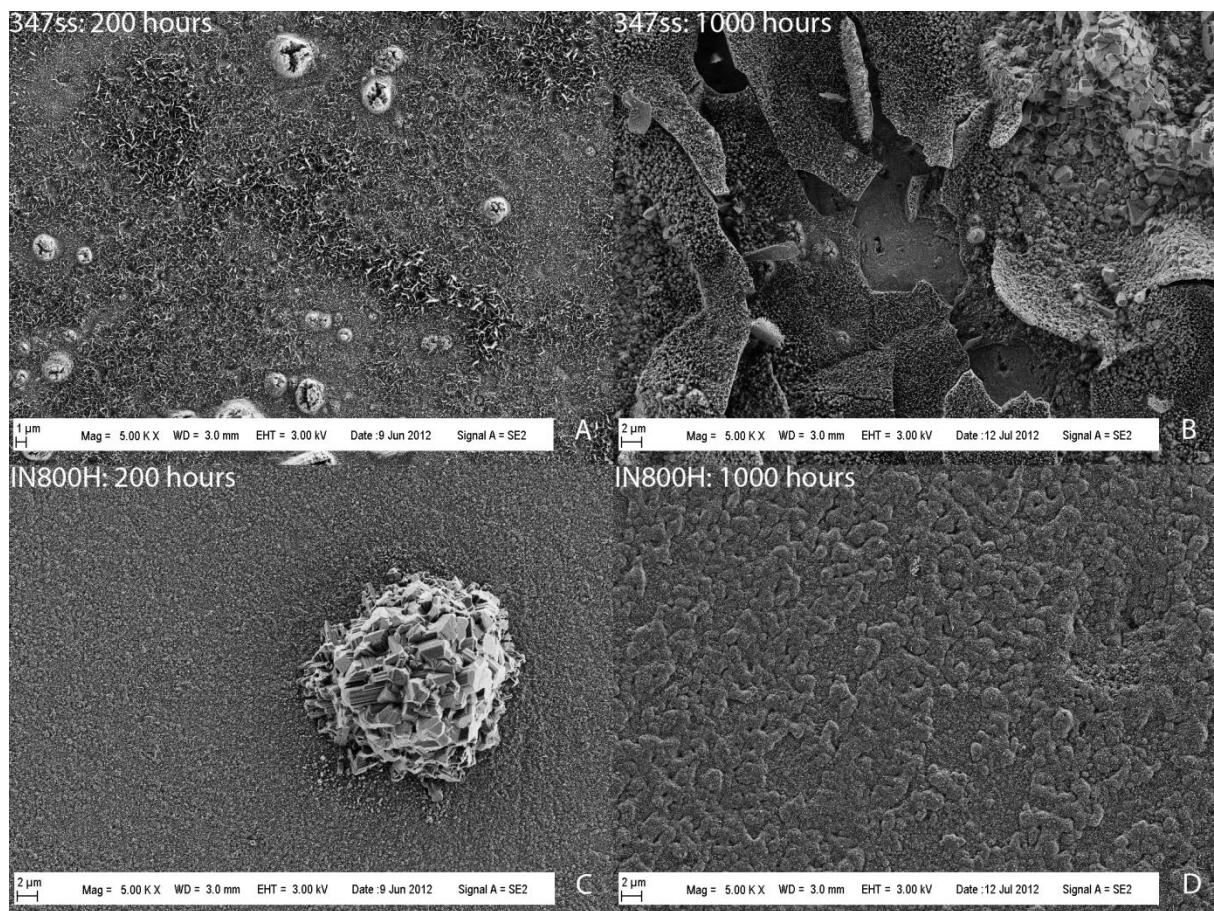



**Fig. 90:** Experiment 5 500x SEM image of NF616 showing general structure of the outer oxide layer consisting of iron oxide




**Fig. 91:** Experiment 5 5000x SEM image of HCM12A showing areas of chromium oxide formation in addition to the typical iron oxide

Select images from the surface analysis of 374ss and IN 800H, exposed to the conditions of Experiment 5, conducted using SEM are shown in *Fig. 92*. After 200 hours both samples


exhibited a fully adherent chromia layer; additionally, the oxide layer covering 347SS showed a more pronounced development compared to 347SS samples exposed to 200 hours in Experiment 3 or Experiment 4. Failure of the 347SS oxide layer became apparent after 400 hours as seen in *Fig. 93*. Chromia scale from 347SS after 1000 hours was observed to be detached from the surface of the sample (spallation), as illustrated in *Fig. 94b*; the exposed base material was then susceptible to further oxidation. This is consistent with the oxidation kinetics trend which exhibited exponential growth, indicating breakaway oxidation.



**Fig. 92:** Experiment 5 500x SEM images showing (A) 347ss after 200 hours, (B) 347ss after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours

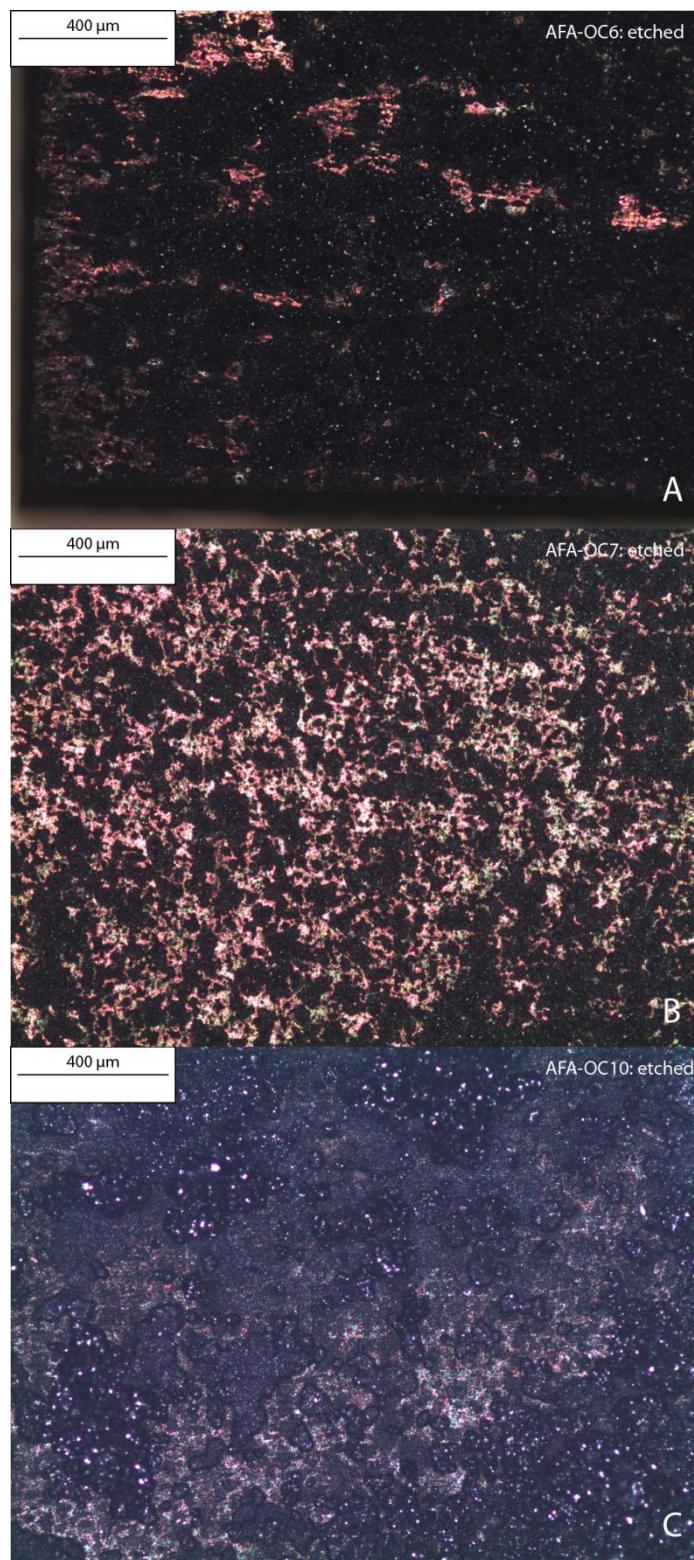


**Fig. 93:** Experiment 5 1000x SEM image of 347ss showing areas of chromia breaking free from the sample surface




**Fig. 94:** Experiment 5 5000x SEM images showing (A) 347ss after 200 hours, (B) 347ss after 1000 hours, (C) IN 800H after 200 hours, and (D) IN 800H after 1000 hours

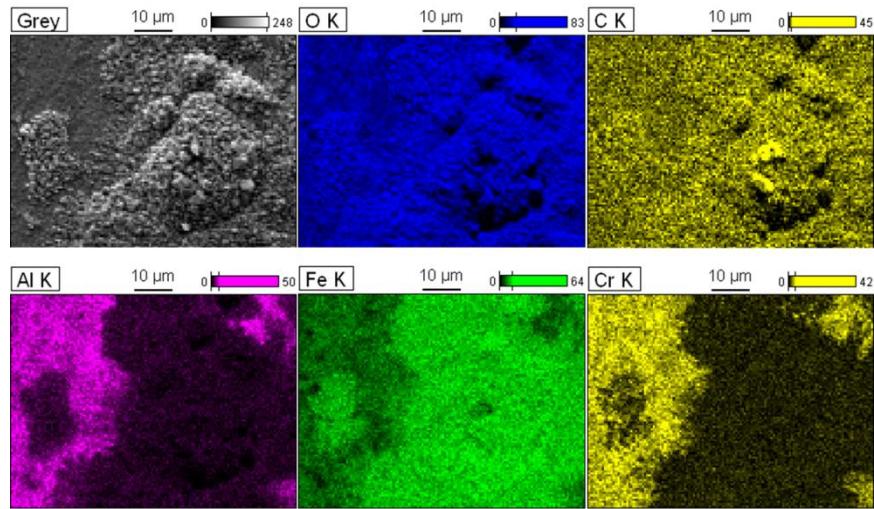
EDS analysis was performed on a number of the oxide fragments that had spalled from the surface of 347SS and overturned, allowing examination of the interface (*Fig. 95*). These overturned chromia fragments all displayed increased levels of carbon (*Fig. 95b*). EDS analysis performed on the exposed areas indicated no significant increase in carbon (*Fig. 95c*). The presence of carbon does not necessarily produce the observed spallation of the chromia layer, but it would certainly seem to be an influencing factor. If chromium carbides were formed as levels of carbon increased in the oxide layer, chromium available for protective oxide formation would be reduced. Both carbide formation and reduced protective oxide formation would lead to a greater ingress of oxygen into the metal, to the point where chromium would be consumed beyond the minimum concentration necessary for protective oxide formation. Voids formed beneath the oxide layer (visible in *Fig. 95a*) reduce adhesion of the outer oxide layer. Spallation of the outer chromia oxide occurs potentially aided by thermal expansion/contraction as the material was cycled from room temperature to testing conditions every 200 hours. Iron oxide would rapidly form and grow from the newly exposed sites.



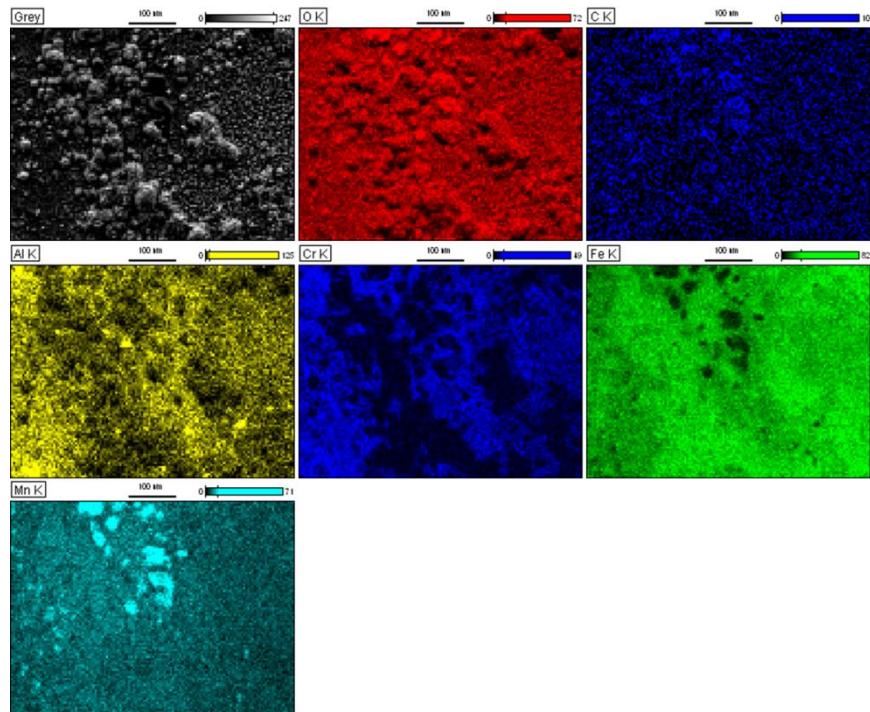

**Fig. 95:** 347SS after exposure to Experiment 5 conditions: (A) SEM image showing oxide spallation site with (B) EDS analysis performed on the overturned oxide layer that had broken free of the surface indicating increased carbon present at the interface, and (C) EDS analysis of the newly exposed surface.

Surface analysis of the AFA materials found surprisingly large amounts of oxide growth on AFA-OC10 after only 200 hours (*Fig. 96*), which continued to grow and develop into even larger oxide structures after 1000 hours. Optical imaging performed on AFA-OC10 after 1000 hours of exposure to Experiment 5 conditions, seen in *Fig. 97c*, found a highly oxidized surface, which would easily deteriorate upon the most delicate handling (manipulation with tweezers gave a crunchy sensation). Similarly, SEM and optical images of AFA-OC6 depicted large scale non-protective oxide growth (*Fig. 96* and *Fig. 97*). As the weight gain analysis would indicate, AFA-OC7 did not oxidize to the same extent as either AFA-OC6 or AFA-OC10, and the plateau in weight gain of AFA-OC7 after 600 hours could possibly indicate a stabilization of the protective oxide. Congruent to the idea of protective oxide stabilization, *Fig. 97b* indicated that while AFA-OC7 did develop large oxide islands, they did not coalesce into a single layer as was observed on AFA-OC6 and AFA-OC10 after 1000 hours. Further testing to longer durations would prove to be more conclusive in determining whether or not the oxide would continue to exhibit a low growth trend, or more rapidly oxidize like the other two AFA materials.




**Fig. 96:** Experiment 5 500x SEM images showing (A) AFA-OC6 after 200 hours, (B) AFA-OC6 after 1000 hours, (C) AFA-OC7 after 200 hours, (D) AFA-OC7 after 1000 hours, (E) AFA-OC10 after 200 hours, and (F) AFA-OC10 after 1000 hours

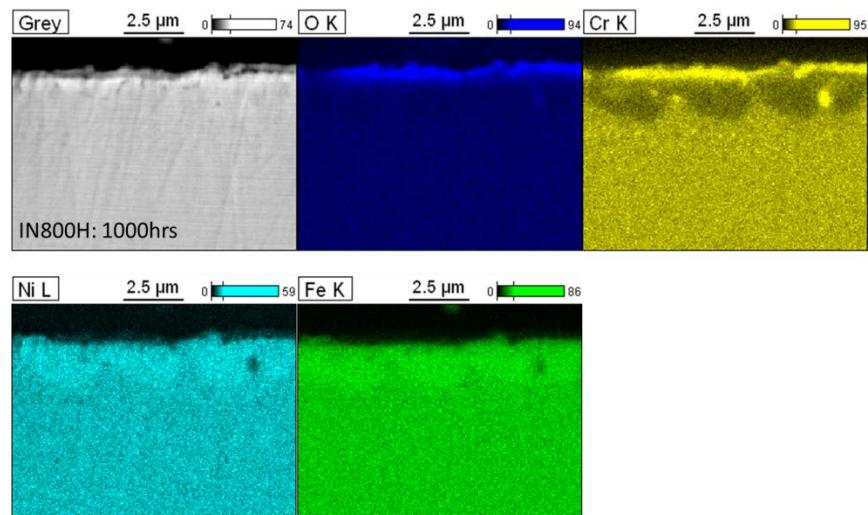



**Fig. 97:** Optical microscope images of (A) AFA-OC6, (B) AFA-OC7, and (C) AFA-OC10 after 1000 hours exposure to Experiment 5 conditions

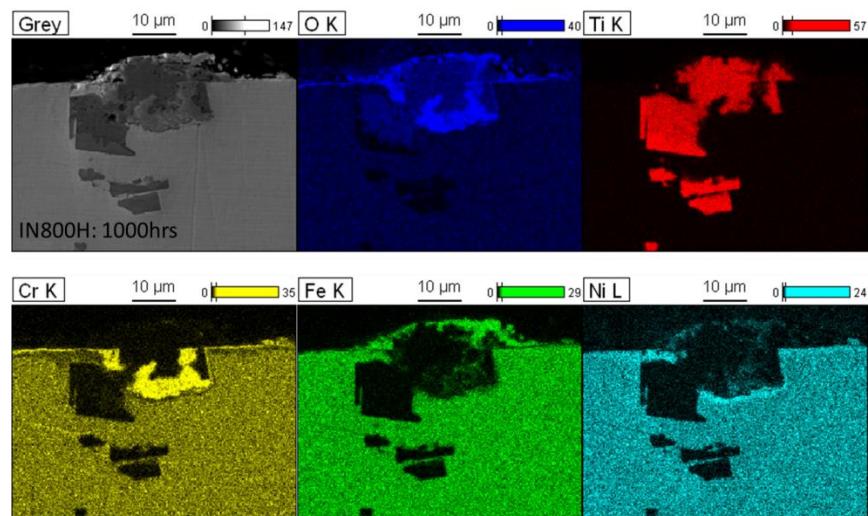
Analysis of the heavily oxidized areas present on the three AFA materials by EDS found generally high concentrations of iron. Heavily oxidized regions on AFA-OC10 were also found to contain areas of manganese. Both iron and manganese are poorly protective oxide layers; in particular, the formation and substantial outgrowth of iron points to the general failure of any protective oxide layer that may have formed on the material.

Area specific EDS analyses on AFA-OC6 and AFA-OC7 were performed in areas displaying increased oxide growth and areas displaying protective thin oxide. This investigation found that larger oxide growths were similar in composition on AFA-OC6 and AFA-OC7. The difference in the two materials came by increased levels of molybdenum found in the protective (thin) oxide on AFA-OC7. The protective oxide areas on AFA-OC6 which accounted for less surface area than AFA-OC7 contained no measurable amounts of Mo. By comparison of AFA-OC6 and AFA-OC7 both in composition and performance, it would seem that increased molybdenum could be correlated to increased corrosion resistance. More in-depth study of the exact composition of the protective oxides on AFA-OC7 is recommended to determine if molybdenum oxides are entirely responsible for the observed improvement in corrosion resistance.

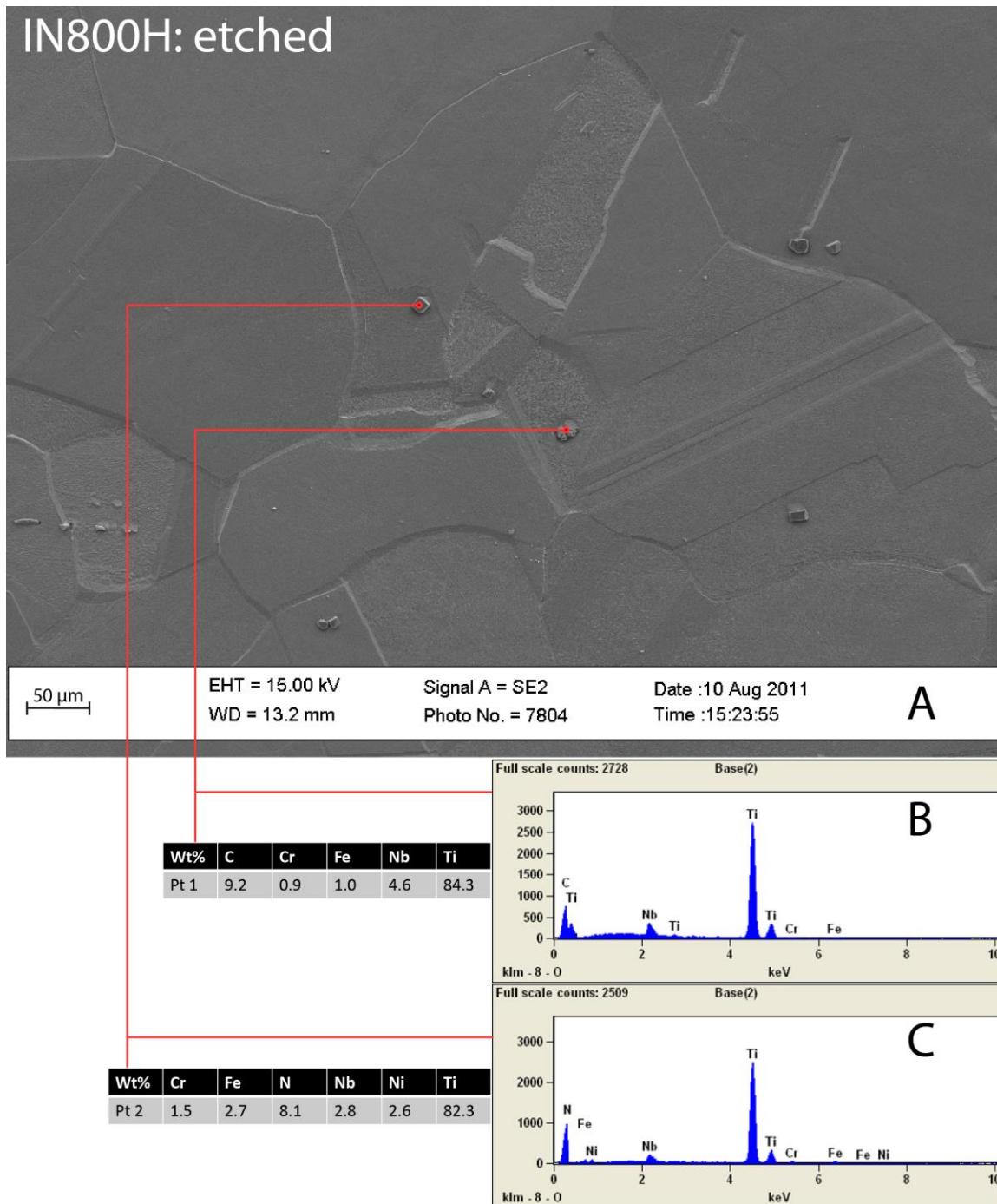



**Fig. 98:** EDS maps taken of AFA-OC6 after exposure to Experiment 5 conditions identify heavily oxidized areas as mostly iron oxide with some indication of increased carbon




**Fig. 99:** EDS maps taken of AFA-OC10 after exposure to Experiment 5 conditions find heavily oxidized areas contain manganese in addition to iron as well as some indication of increased carbon

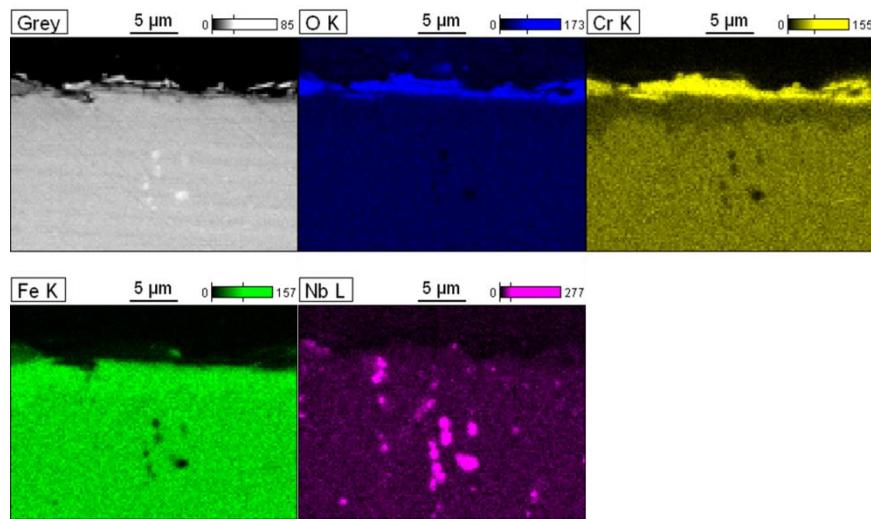
Cross-sectional analysis for IN 800H has not been shown up to this point because no considerable oxide layer developed on the surface. After exposure to 1000 hours at Experiment 5 conditions, IN 800H was observed to develop a consistently thin adherent outer chromium oxide layer (*Fig. 100*), which was observed to range in thickness from approximately 0.3 to 1 micron. An inner chromium depleted zone formed as a result of chromium moving outward to form the oxide layer. The observed inner chromium depleted zone ranged in thickness from approximately 1 to 3 microns.


Islands of increased oxidation on IN 800H, depicted in the surface analysis, were found to develop from titanium carbides or nitrides which protruded through the surface. These precipitates were not very numerous since IN 800H only contained 0.53 wt% Ti (*Fig. 102*). Luckily one such titanium particle was caught in the cross-section, affording EDS analysis (*Fig. 101*). Analysis indicated there was some oxidation of the titanium, as well as penetration of oxygen beneath the metal surface, where a chromium rich oxide layer developed. Iron oxide was observed to form around the outside of the titanium particle.

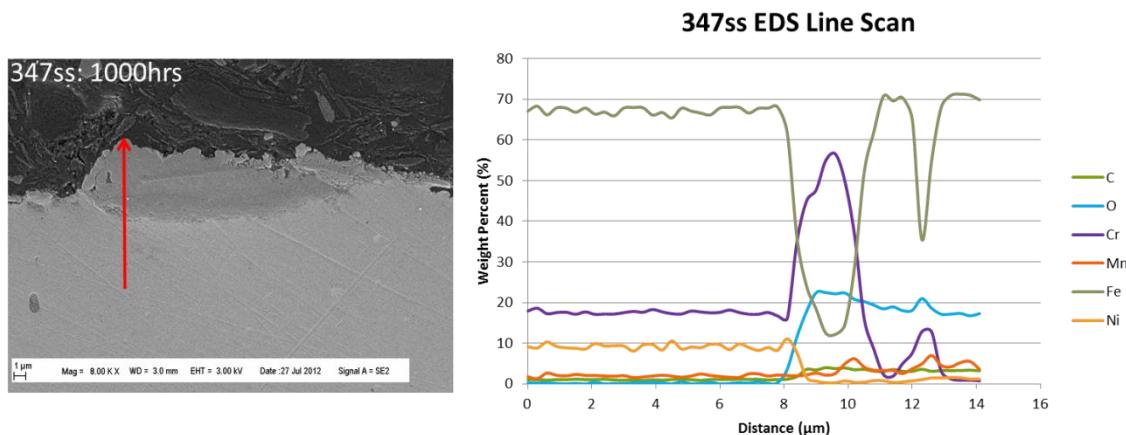


**Fig. 100:** EDS maps of IN 800H exposed to Experiment 5 conditions displaying protective outer chromia layer




**Fig. 101:** EDS maps of cross-sectioned titanium particle protruding to the surface of IN 800H after exposure to Experiment 5 conditions

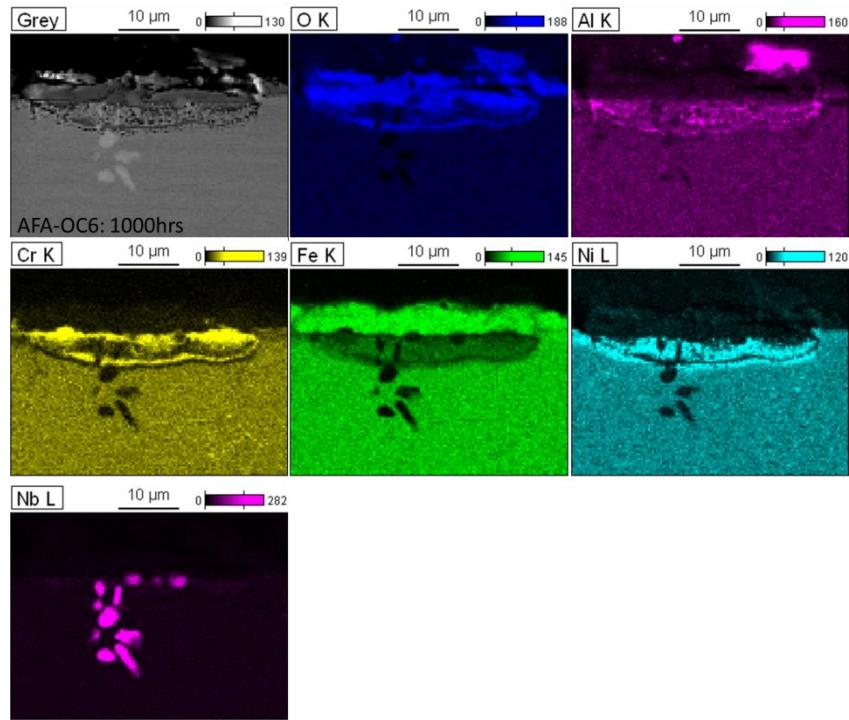



**Fig. 102:** (A) SEM image of as-received IN 800H etched with aqua regia revealing (B) titanium carbide and (C) titanium nitride precipitates

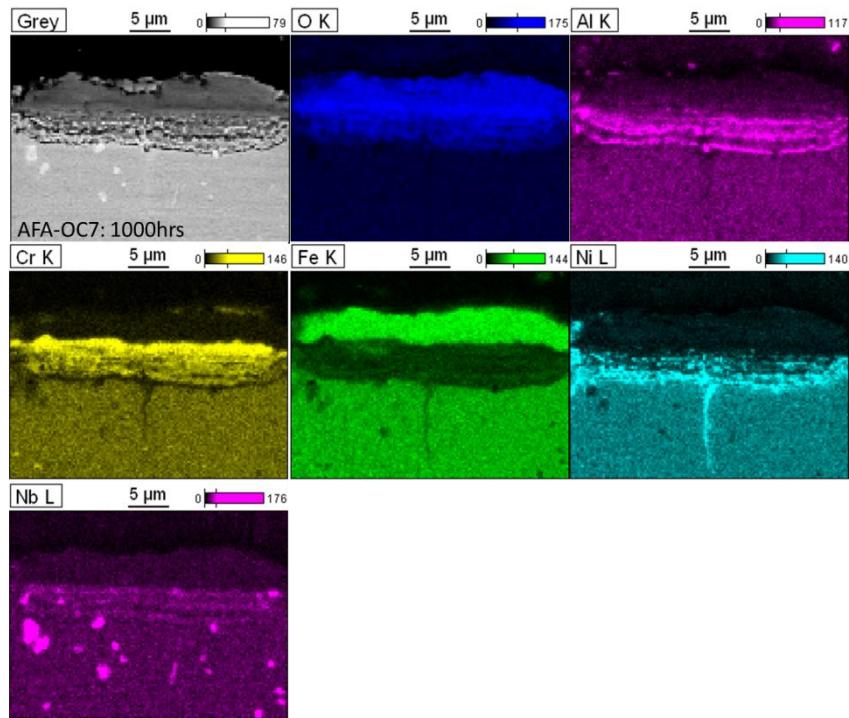
From cross-sections of 347SS material exposed to 1000 hours at Experiment 5 test conditions, chromium oxide thickness was found to exist in the range of 3 to 5 microns. Larger outgrowths of iron oxide were observed to occur where the protective chromia layer had apparently failed. EDS analysis of 347SS in cross-section (*Fig. 103*) found an outer chromium rich oxide layer (chromia), and a corresponding inner layer that was depleted of chromium (iron enriched). Chromium therefore diffused outward to form the protective chromia layer, leaving the adjacent bulk metal matrix depleted. As was previously described, failure of the outer oxide layer occurred in part because chromium was no longer available for protective oxide formation. Where the chromia layer failed, oxidation of iron was allowed to occur. Because of iron oxide's poor protective nature, it readily oxidized and grew. Given time, it is expected that an inner chromium rich protective oxide layer will form, and the outer iron oxide layer will break away, thus the observed oxidation process will likely reoccur.

Subsequent EDS line scans (*Fig. 104*) of the larger oxide formations starting in the chromium depleted zone indicated iron oxide had mostly developed as the outer layer. Increased levels of carbon were also found to occur in the outer oxide layer, consistent with the analyses performed on the interfacial size of the spalled outer chromia layers observed on the surface of the 347SS samples.

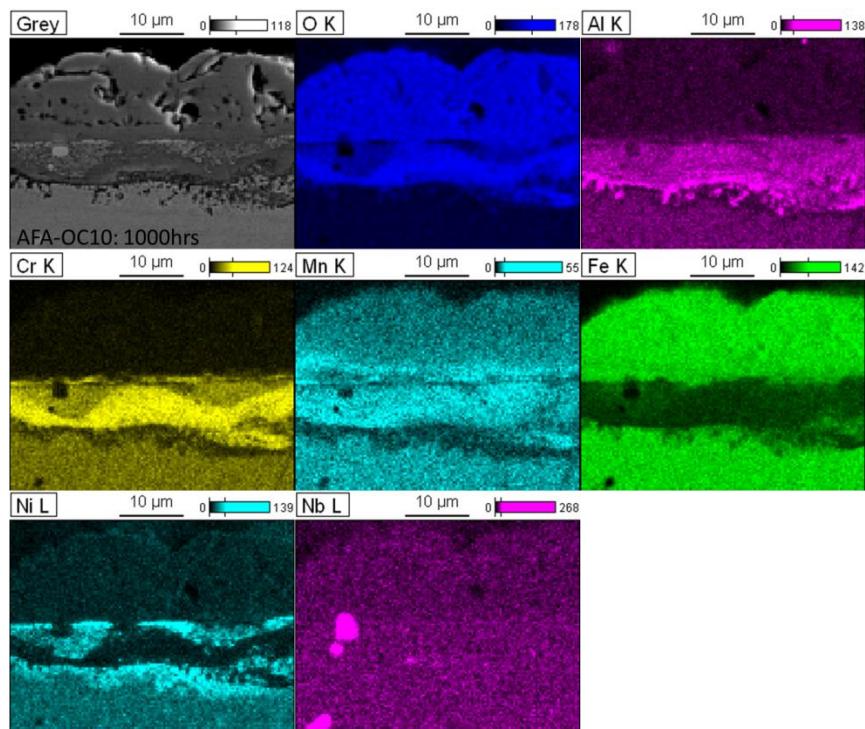



**Fig. 103:** EDS maps of 347SS after exposure to Experiment 5 conditions reveal outer chromia layer and corresponding inner layer deplete in chromium




**Fig. 104:** EDS line scan through large oxide outgrowth on 347SS after 1000 hours exposure to Experiment 5 conditions

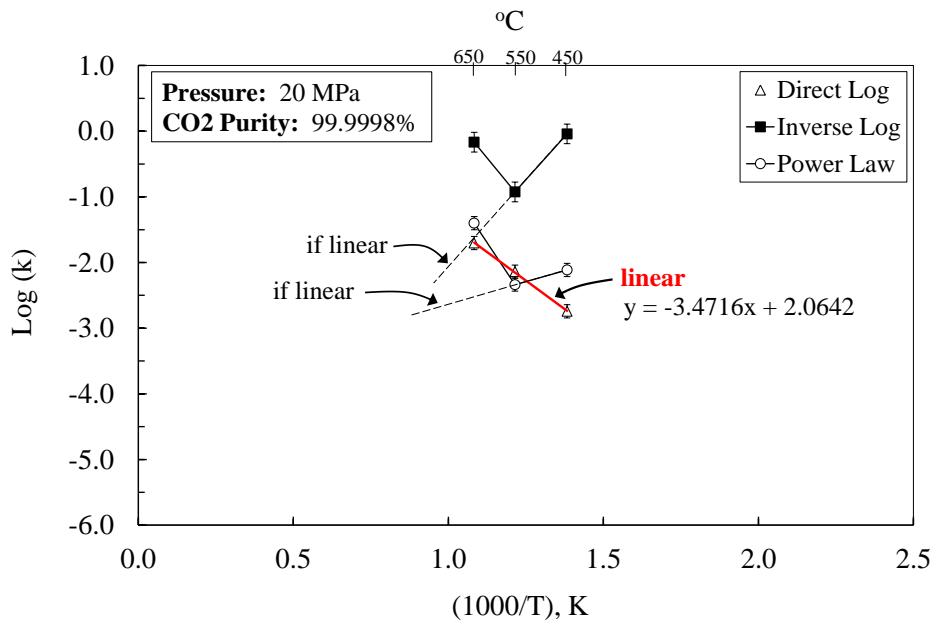
Cross-sectional analysis of the AFA materials corroborated the results of surface analysis representing notable oxide development nucleated at sites containing increased concentrations of niobium (Fig. 105, Fig. 106, and Fig. 107). These cross-sectional EDS maps also revealed outer layers of iron rich oxide, and inner oxide layers consisting of


aluminum and chromium. AFA-OC10 additionally contained a noticeable presence of manganese, consistent with manganese oxide development.

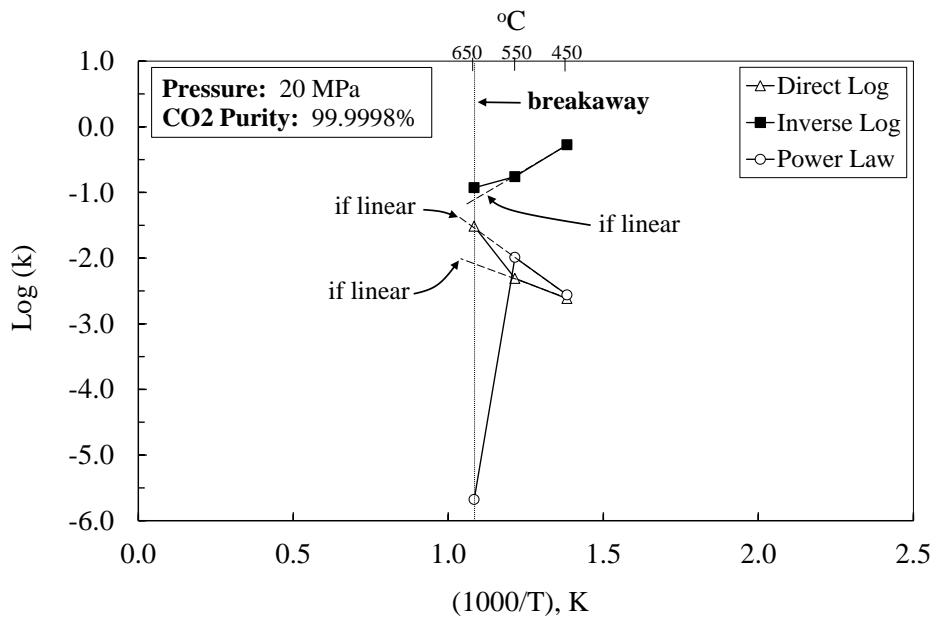


**Fig. 105:** EDS maps of AFA-OC6 after exposure to Experiment 5 conditions reveal large oxide growth to be associated with niobium

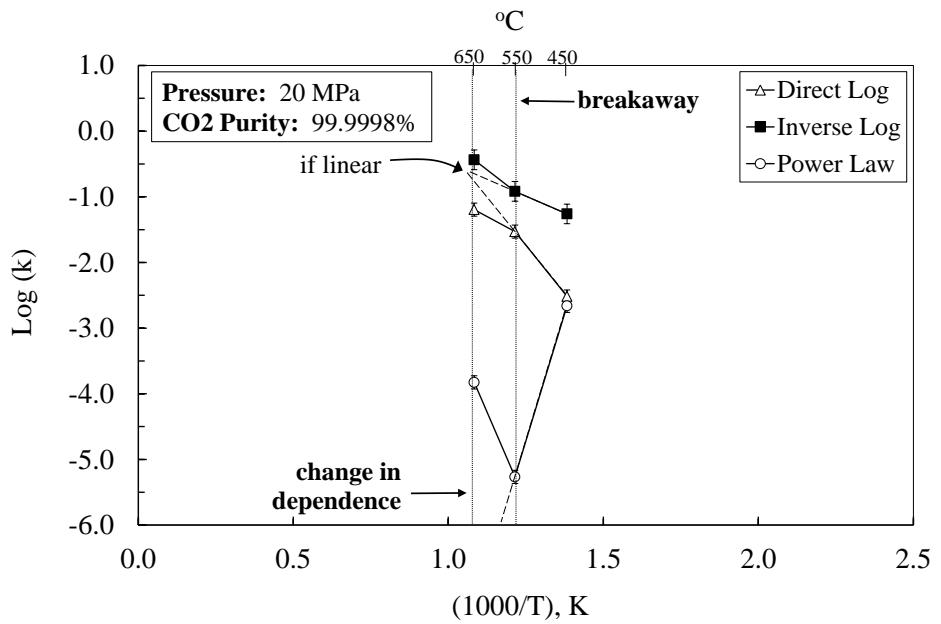



**Fig. 106:** EDS maps of AFA-OC7 after exposure to Experiment 5 conditions reveal large oxide growth to be associated with niobium

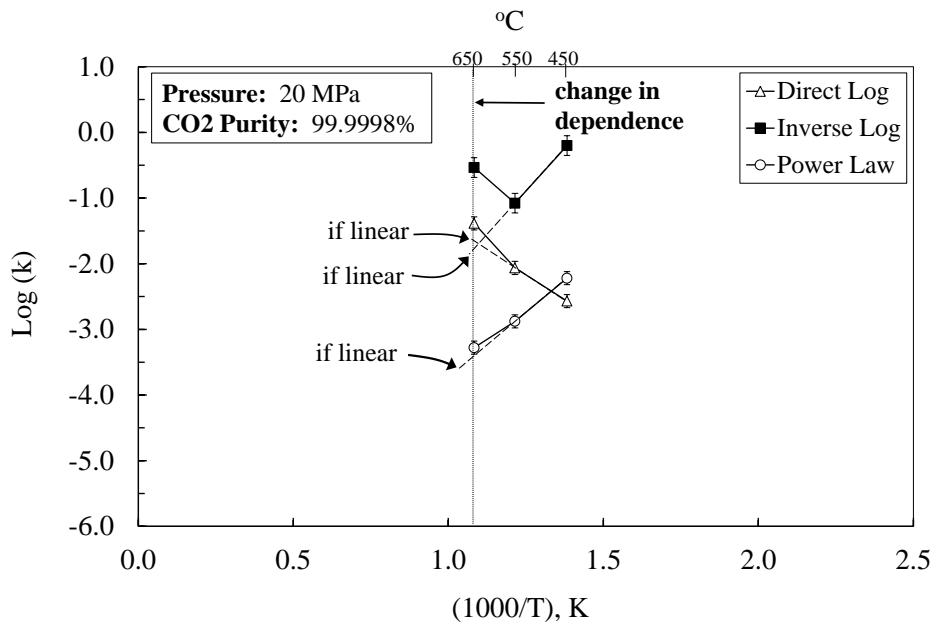



**Fig. 107:** EDS maps of AFA-OC10 after exposure to Experiment 5 conditions reveal large oxide growth to be associated with niobium

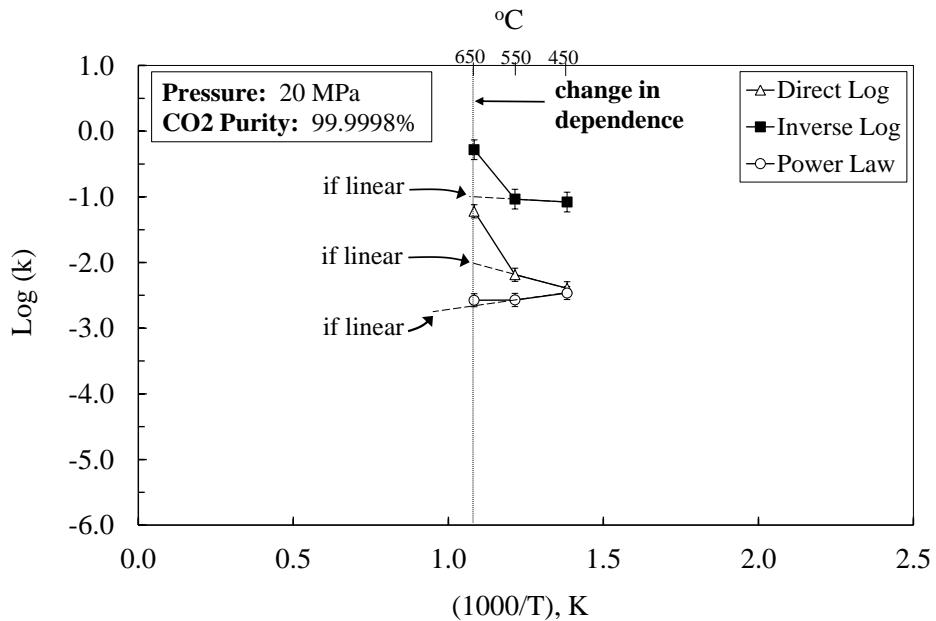
### 5.3.1 Temperature Dependence and Activation Energy


Many oxidation reactions have shown empirically that the temperature dependence of oxidation rate constants obey the Arrhenius law, enabling determination of activation energies (Q). Thus, the Matlab code described in Sec. 5.3 was also written to output correlation coefficients ( $R^2$ ) and oxidation rate constants (k) for each respective rate equation. For the reasonable generated curves that described the reaction kinetics,  $R^2$  and k values are shown below in Table 8. In many instances, the  $R^2$  value was deemed unreasonable as a fit to the data and those rate equations were discarded for consideration. Careful analysis revealed that the oxidation kinetic rate could be most aptly described by either the parabolic, direct logarithmic, and indirect logarithmic equations which are shown in Table 8 for comparison. Using (2) and (3), the k value calculated at each temperature for each of the reasonable equations was plotted on the same curve to assess which rate equation might illustrate occurrence of linear temperature dependence. Arrhenius plots for alloys tested in phase I are shown below in *Fig. 108* through *Fig. 112*.




**Fig. 108:** Oxidation Constants of IN800H in RG-CO<sub>2</sub>




**Fig. 109:** Oxidation Constants of 347SS in RG-CO<sub>2</sub>



**Fig. 110:** Oxidation Constants of AFA-OC6 in RG-CO<sub>2</sub>

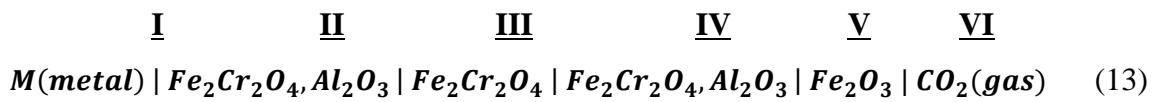


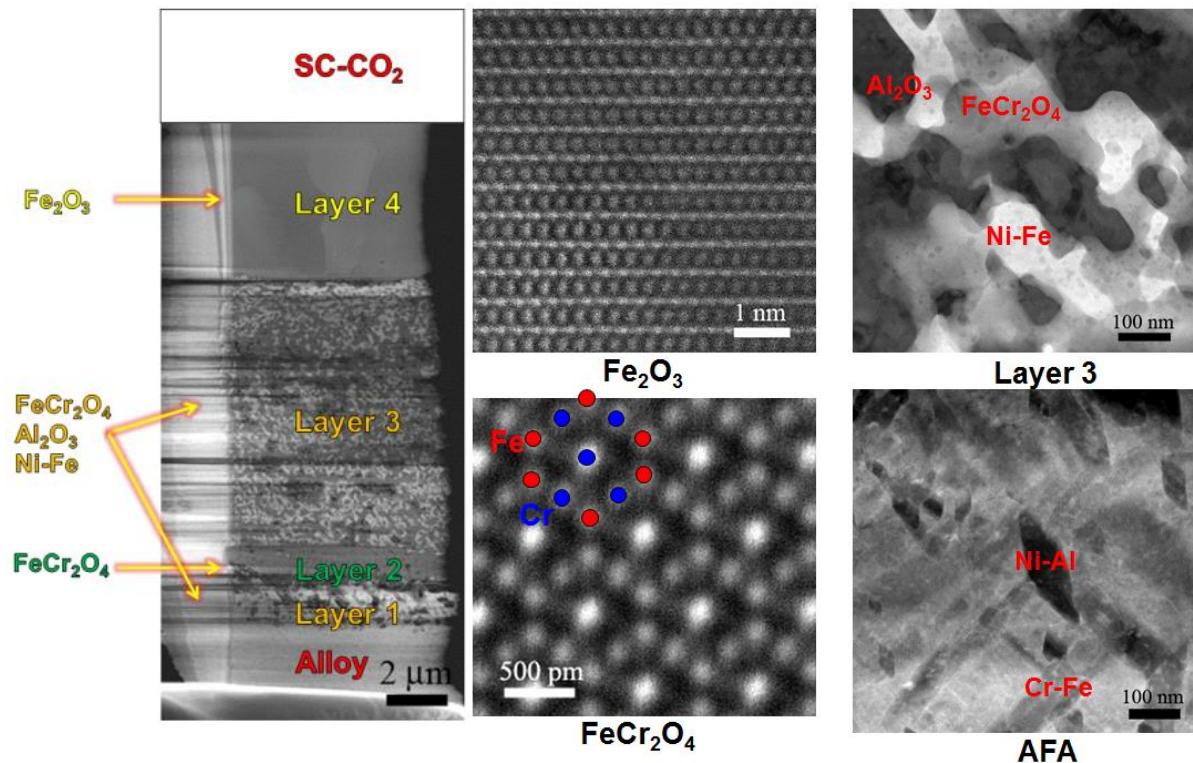
**Fig. 111:** Oxidation Constants of AFA-OC7 in RG-CO<sub>2</sub>



**Fig. 112:** Oxidation Constants of AFA-OC10 in RG-CO<sub>2</sub>

It is noteworthy to mention that oxidation curves were singularly fit to the data at 450°C and 550°C. However, only IN800H had oxidation curves that singularly fit the data through 650°C (Fig. 49). All other alloys tested in RG-CO<sub>2</sub> at 650°C could best be described by a combination of rate equations. This is not all too surprising since even pure and binary metals have shown a deviation in temperature dependence at high temperature, resulting in two lines of differing slopes. According to Kofstad, over the temperatures where there is a linear dependence, the activation energy remains constant as long as the same rate-determining (single diffusion) mechanism prevails, and changes in temperature dependence may therefore signify changes in the oxidation (diffusion) mechanism. Also, if the oxidation follows different rate equations but has the same activation energy, the same basic mechanism is not operative in both [35]. It is also possible that two or more diffusion mechanisms may operate simultaneously, known as the two-mechanism hypothesis,

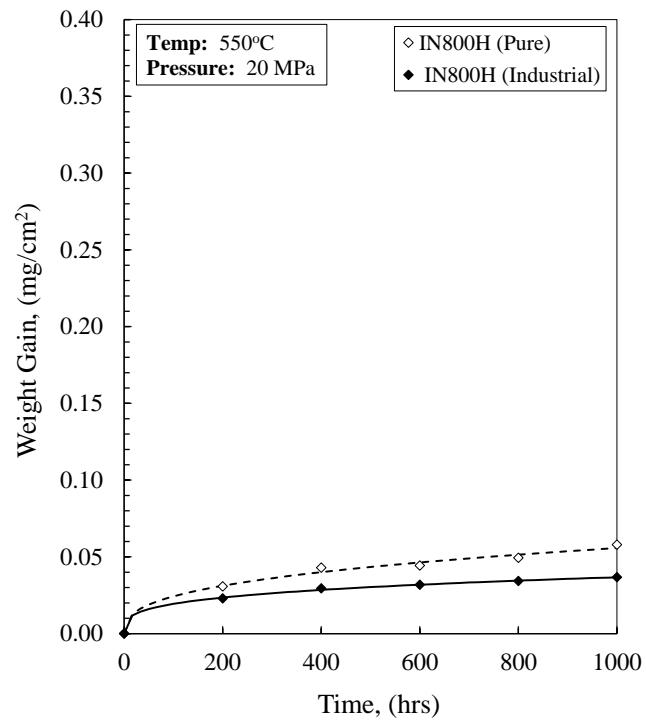

postulated thermodynamically by Gibbs [62, 63]. In the Arrhenius plots above, only IN800H demonstrated linear temperature dependence, and it did so by a direct logarithmic fit. From the slope of the best fit line, IN800H was found to have an activation energy of 28.8 kJ/mol. In other supercritical environments, such as supercritical water (SCW), Was and Teysseyre have mentioned that virtually no free radical reaction rates follow an Arrhenius law [64].


**Table 8:** Calculated Rate Constants of Alloys at 450°C, 550°C, and 650°C in RG-CO<sub>2</sub>

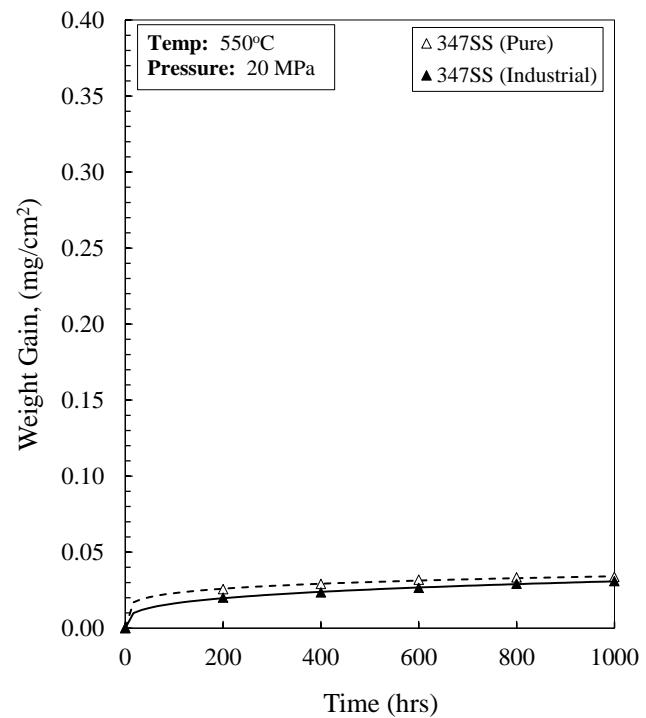
| Material        | Temp. | Power-law                                                        |      |                | Direct Log                                                        |      |                | Inverse Log                                                        |     |                | Combination |     |
|-----------------|-------|------------------------------------------------------------------|------|----------------|-------------------------------------------------------------------|------|----------------|--------------------------------------------------------------------|-----|----------------|-------------|-----|
|                 |       | $k_p$<br>(mg <sup>2</sup> cm <sup>-4</sup><br>hr <sup>-1</sup> ) | n    | R <sup>2</sup> | $k_{log}$<br>(mg <sup>2</sup> cm <sup>-4</sup> hr <sup>-1</sup> ) | n    | R <sup>2</sup> | $k_{ilog}$<br>(mg <sup>2</sup> cm <sup>-4</sup> hr <sup>-1</sup> ) | n   | R <sup>2</sup> |             |     |
| <b>HCM12A</b>   | 450°C | 2.26E-01                                                         | 0.29 | 1.000          | -                                                                 | -    | -              | -                                                                  | -   | -              | -           | -   |
| <b>NF616</b>    | 450°C | 1.07E-01                                                         | 0.40 | 1.000          | -                                                                 | -    | -              | -                                                                  | -   | -              | -           | -   |
| <b>347SS</b>    | 450°C | 2.76E-03                                                         | 0.27 | 0.995          | 2.42E-03                                                          | 1.00 | 0.98           | 5.32E-01                                                           | 77  | 0.91           | -           | -   |
| <b>AFA-OC6</b>  | 450°C | 2.19E-03                                                         | 0.34 | 0.994          | 3.04E-03                                                          | 1.00 | 0.95           | 5.49E-02                                                           | 169 | 0.99           | -           | -   |
| <b>AFA-OC7</b>  | 450°C | 6.03E-03                                                         | 0.16 | 0.962          | 2.69E-03                                                          | 1.00 | 0.96           | 6.29E-01                                                           | 69  | 0.93           | -           | -   |
| <b>AFA-OC10</b> | 450°C | 3.43E-03                                                         | 0.32 | 0.987          | 4.05E-03                                                          | 1.00 | 0.95           | 8.33E-02                                                           | 115 | 0.98           | -           | -   |
| <b>IN800H</b>   | 450°C | 7.69E-03                                                         | 0.29 | 1.000          | 1.81E-03                                                          | 1.00 | 0.97           | 9.09E-01                                                           | 95  | 0.98           | -           | -   |
| <b>347SS</b>    | 550°C | 1.03E-02                                                         | 0.17 | 0.999          | 4.91E-03                                                          | 1.00 | 1.00           | 1.74E-01                                                           | 69  | 1.00           | -           | -   |
| <b>AFA-OC6</b>  | 550°C | 5.43E-06                                                         | 1.61 | 0.987          | 2.95E-02                                                          | 0.98 | 0.46           | 1.21E-01                                                           | 60  | 1.00           | -           | -   |
| <b>AFA-OC7</b>  | 550°C | 1.32E-03                                                         | 0.58 | 0.969          | 8.63E-03                                                          | 0.99 | 0.81           | 8.36E-02                                                           | 96  | 0.98           | -           | -   |
| <b>AFA-OC10</b> | 550°C | 2.68E-03                                                         | 0.43 | 0.997          | 6.51E-03                                                          | 0.99 | 0.91           | 9.21E-02                                                           | 94  | 0.99           | -           | -   |
| <b>IN800H</b>   | 550°C | 4.60E-03                                                         | 0.36 | 0.990          | 7.26E-03                                                          | 1.00 | 0.94           | 1.19E-01                                                           | 76  | 0.99           | -           | -   |
| <b>347SS</b>    | 650°C | -                                                                | -    | -              | -                                                                 | -    | -              | -                                                                  | -   | -              | -           | Yes |
| <b>AFA-OC6</b>  | 650°C | -                                                                | -    | -              | -                                                                 | -    | -              | -                                                                  | -   | -              | -           | Yes |
| <b>AFA-OC7</b>  | 650°C | -                                                                | -    | -              | -                                                                 | -    | -              | -                                                                  | -   | -              | -           | Yes |
| <b>AFA-OC10</b> | 650°C | -                                                                | -    | -              | -                                                                 | -    | -              | -                                                                  | -   | -              | -           | Yes |
| <b>IN800H</b>   | 650°C | 3.97E-02                                                         | 0.18 | 0.999          | 1.98E-02                                                          | 1.00 | 1.00           | 6.78E-01                                                           | 17  | 1.00           | -           | -   |

**Note:** Calculated values based on 1000 hours of exposure, except for HCM12A and NF616 at 450°C, which were tested up to 800 hours.

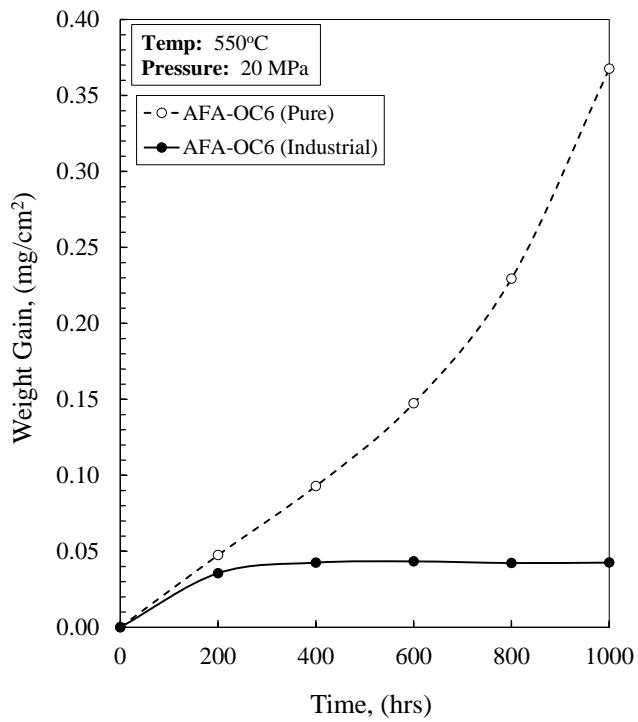
The oxide layer of AFA-OC6 at 450°C was mainly composed of continuous and protective  $\text{Al}_2\text{O}_3$  and  $\text{Cr}_2\text{O}_3$  layers, whereas at 550°C the oxide layer exhibited non-protective oxidation at a linear to exponential rate, characterized by definition as breakaway oxidation. The mechanism of breakaway oxidation relates to the depletion of Al and Cr arising from their selective oxidation. Intrinsic chemical failure develops when the Al and Cr concentration within the alloy at the oxide/metal interface is less than those in equilibrium with  $\text{Al}_2\text{O}_3$  and  $\text{Cr}_2\text{O}_3$ . The oxides will change to the less protective  $\text{FeCr}_2\text{O}_4$ . At 650°C, the oxidation curve was more S-shaped with a rapid growth (ballooning effect) shown by weight gain and thickness of the oxide layer up to 600 hour, after which some healing of the oxide layer took effect, but to a degree that left it still in an unprotective state. Investigation into the surface morphology of the tarnishing (thin) layer on AFA-OC6 at 650°C revealed several individual layers, comprising a multilayer series of  $\text{M}/\text{FeCr}_2\text{O}_4/\text{Fe}_2\text{O}_3/\text{CO}_2$ . Considering the identification of  $\text{Al}_2\text{O}_3$  and Ni-Fe particles, a more detailed arrangement of the layers is given below as (see also *Fig. 113*):



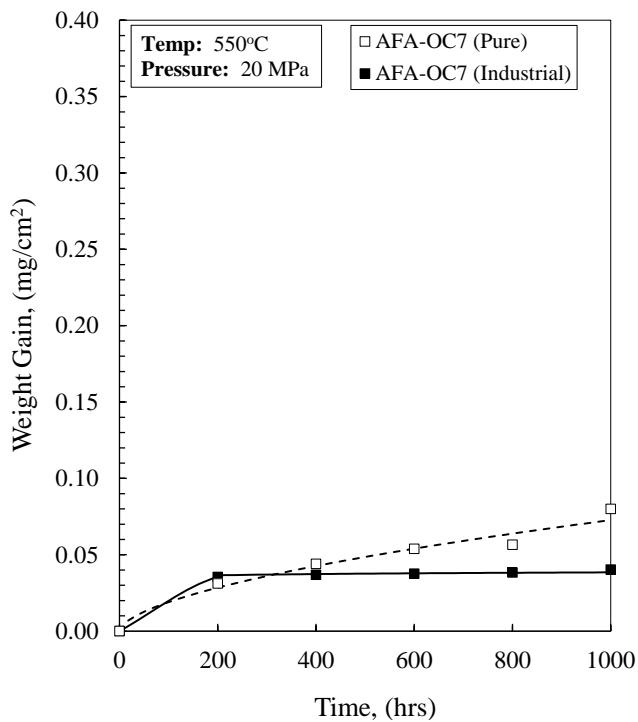




**Fig. 113:** STEM Cross-Section showing multi-oxide layers on AFA-OC6.  
Surface after 600 hours in RG-CO<sub>2</sub> at 650°C, 20 MPa.

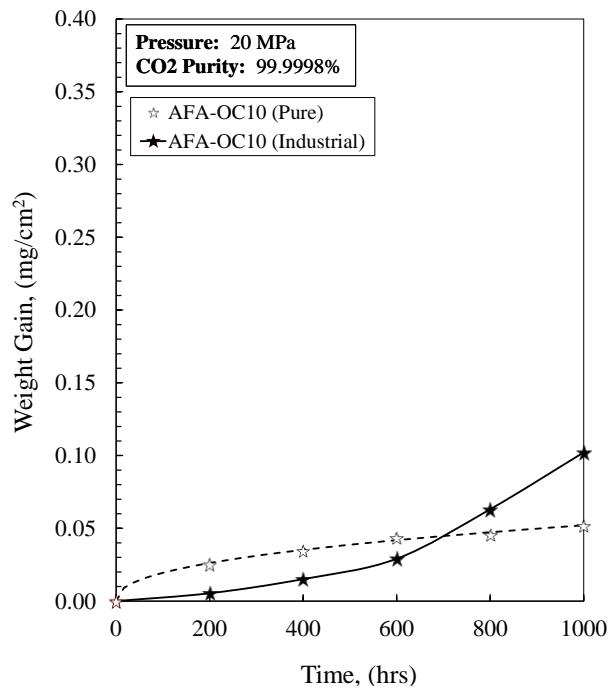
#### 5.4. Effect of Gas Purity – Experiments 6 through 8


The purpose of this phase is to study the effect of different bulk supplied commercial CO<sub>2</sub> purity grades on corrosion performance. Industrial CO<sub>2</sub> (99.85%) and Bone Dry CO<sub>2</sub> were selected since these compositions can be supplied in bulk and are closer to what could be anticipated for use in plant operation. *Fig. 114* through *Fig. 118* below show weight gain results in IG-CO<sub>2</sub> compared to RG-CO<sub>2</sub> for each alloy. This is referenced as Expt. 6 in Table 5.




**Fig. 114:** Comparison of IN800H in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa

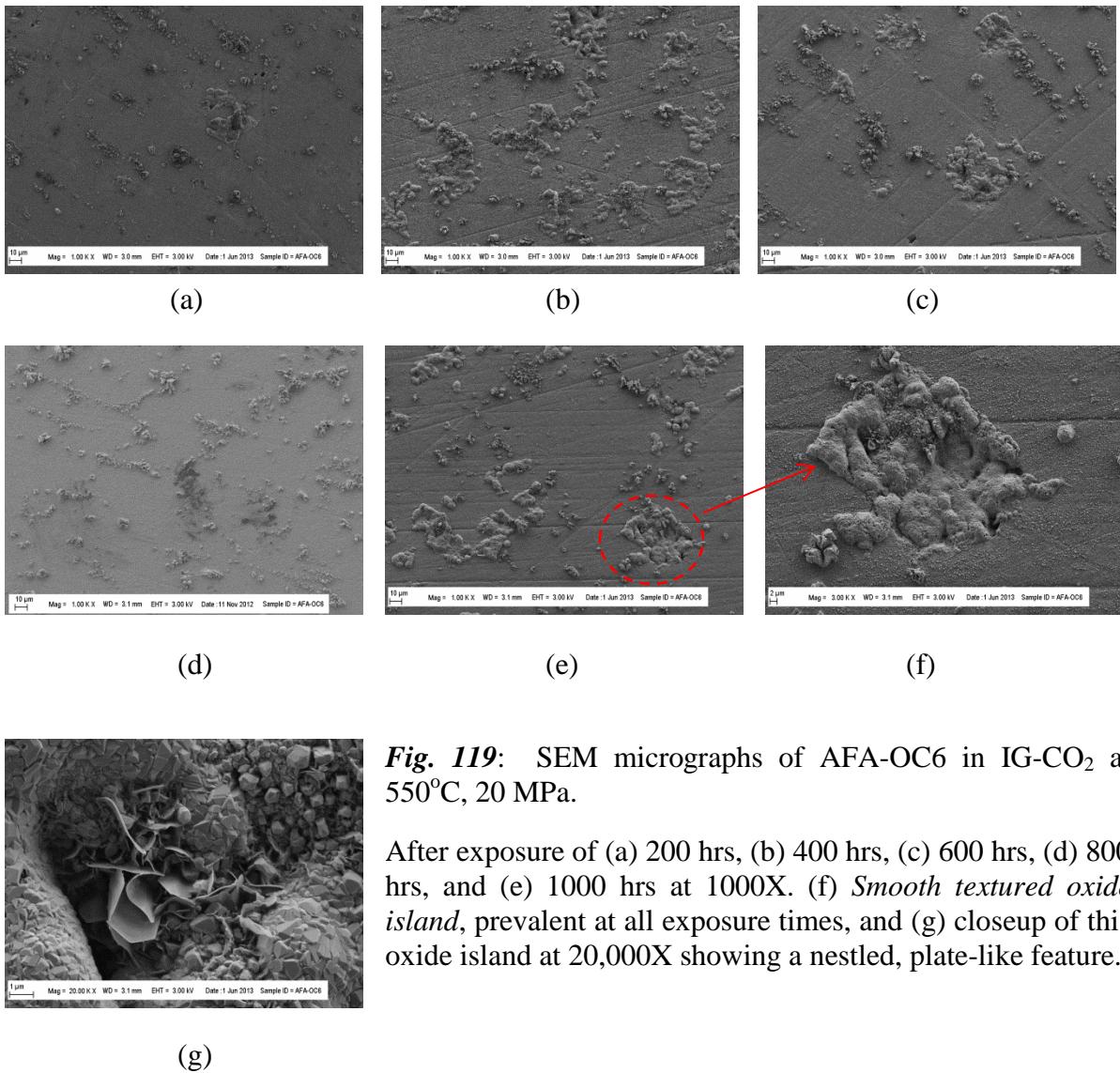



**Fig. 115:** Comparison of 347SS in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa



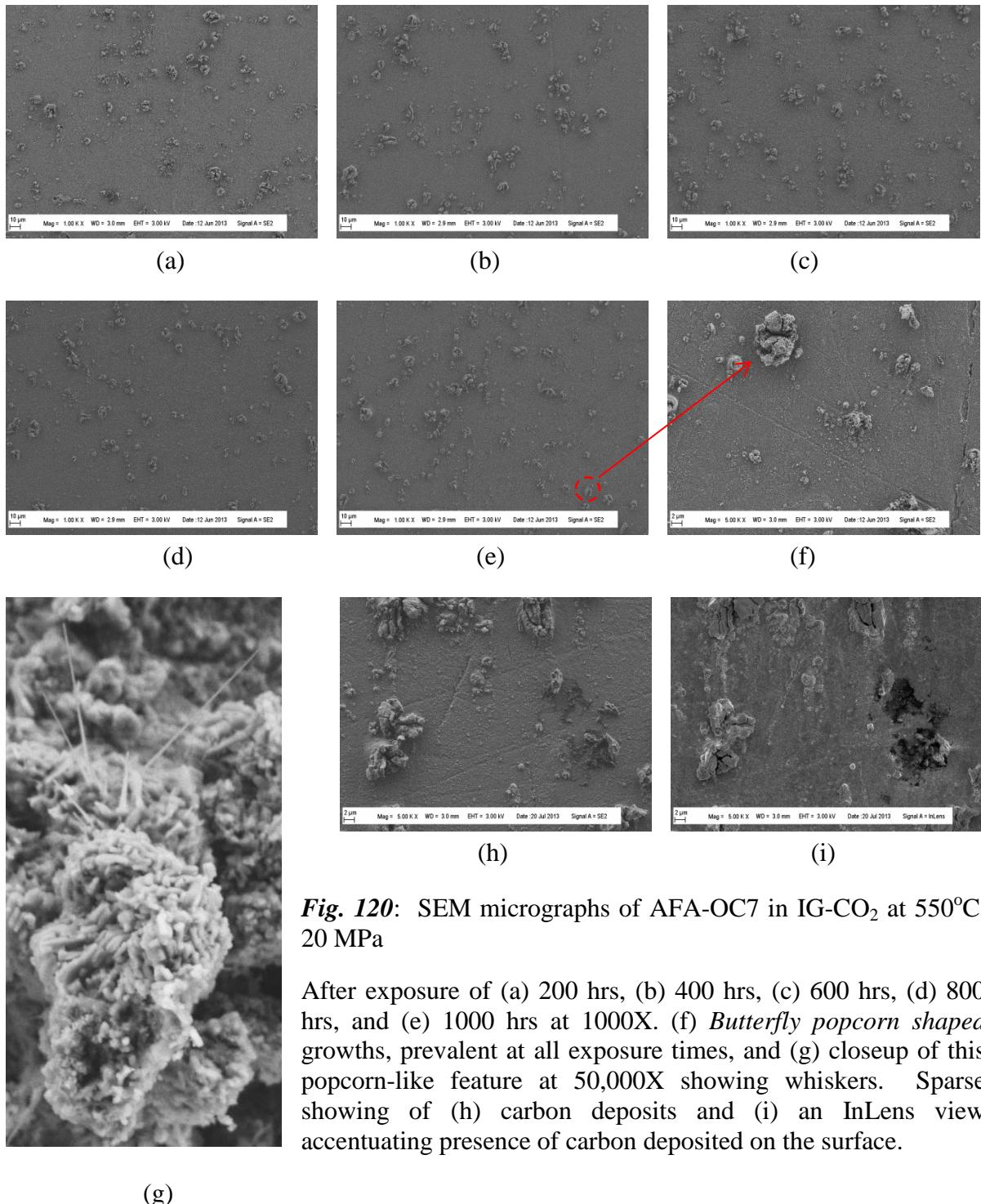
**Fig. 116:** Comparison of AFA-OC6 in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa




**Fig. 117:** Comparison of AFA-OC7 in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa



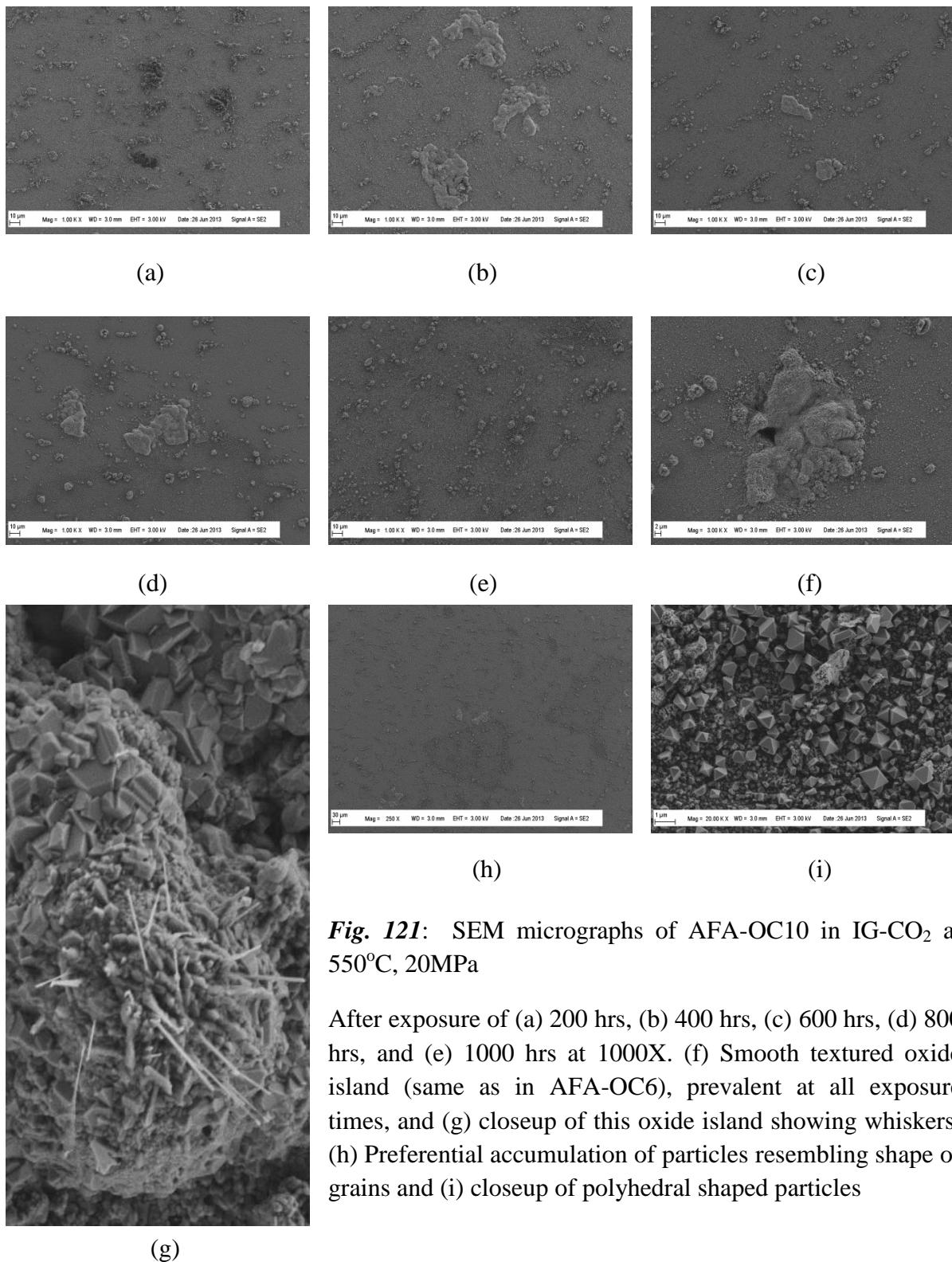
**Fig. 118:** Comparison of AFA-OC10 in RG-CO<sub>2</sub> and IG-CO<sub>2</sub> at 550°C, 20MPa


Results generally indicate lower weight gains, which may imply that of the competing species, the oxygen content is rate determining and helps suppress oxide growth by formation of a thin protective layer. Further testing is needed to ascertain reaction products at the outlet compared to RG-CO<sub>2</sub> to verify this. This was not the case for AFA-OC6, which appears to have an inflection point at 600 hours and is experiencing breakaway oxidation with the inability to form a protective layer at earlier exposures. A marked improvement in weight gain is observed for AFA-OC6 (Fig. 116). But the biggest change in oxidation was observed by the FM steels. T92 (9%Cr) had a much larger weight gain than T122 (12%Cr) and the nature of the oxide scale formed in IG-CO<sub>2</sub> was significantly different than that formed in RG-CO<sub>2</sub>. In IG-CO<sub>2</sub>, the scale was a dark burgundy, lightly adherent, thick powdery textured scale which did not spall off (Fig. 122g). However, T122 showed the beginnings

on the surface of oxide spots similar in color to T92, but the formation of thick oxide scale was either suppressed or merely spalled off, owing to its much lower weight gain. It is plausible that in this particular case, the surface finish characteristics of T122 were more ground (may have been 600 grit opposed to 800 grit) than T92 which enhanced the Cr-diffusion, enabling faster formation of  $\text{Cr}_2\text{O}_3$  to form a protective layer. Grabke has described how different surface finishes affect Cr-diffusion on ferritics and austenitics in synthesis gas [65]. SEM micrographs of T122 in *Fig. 123* clearly show how oxide has preferentially formed along polishing lines.

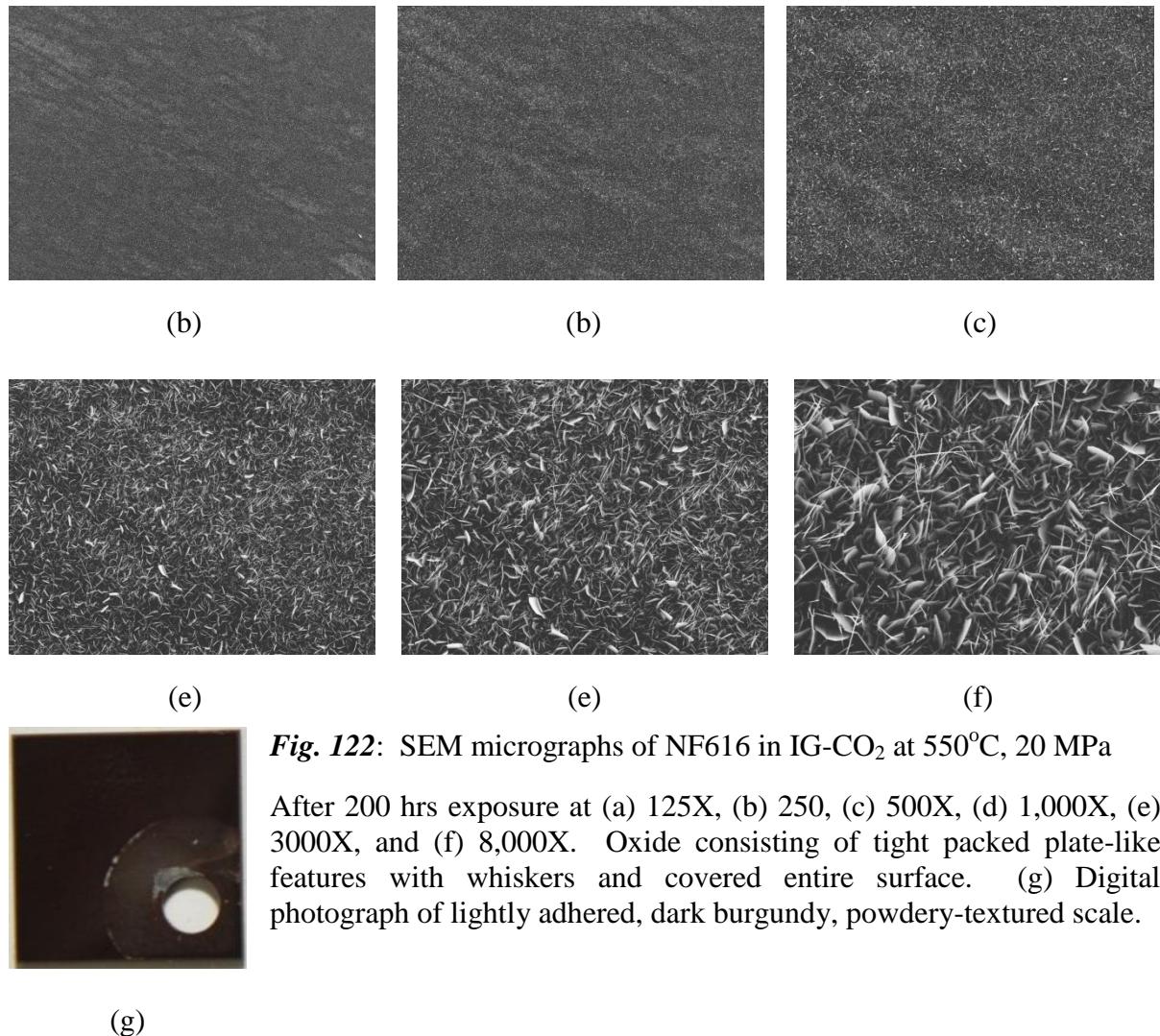


**Fig. 119:** SEM micrographs of AFA-OC6 in IG-CO<sub>2</sub> at 550°C, 20 MPa.


After exposure of (a) 200 hrs, (b) 400 hrs, (c) 600 hrs, (d) 800 hrs, and (e) 1000 hrs at 1000X. (f) *Smooth textured oxide island*, prevalent at all exposure times, and (g) closeup of this oxide island at 20,000X showing a nestled, plate-like feature.

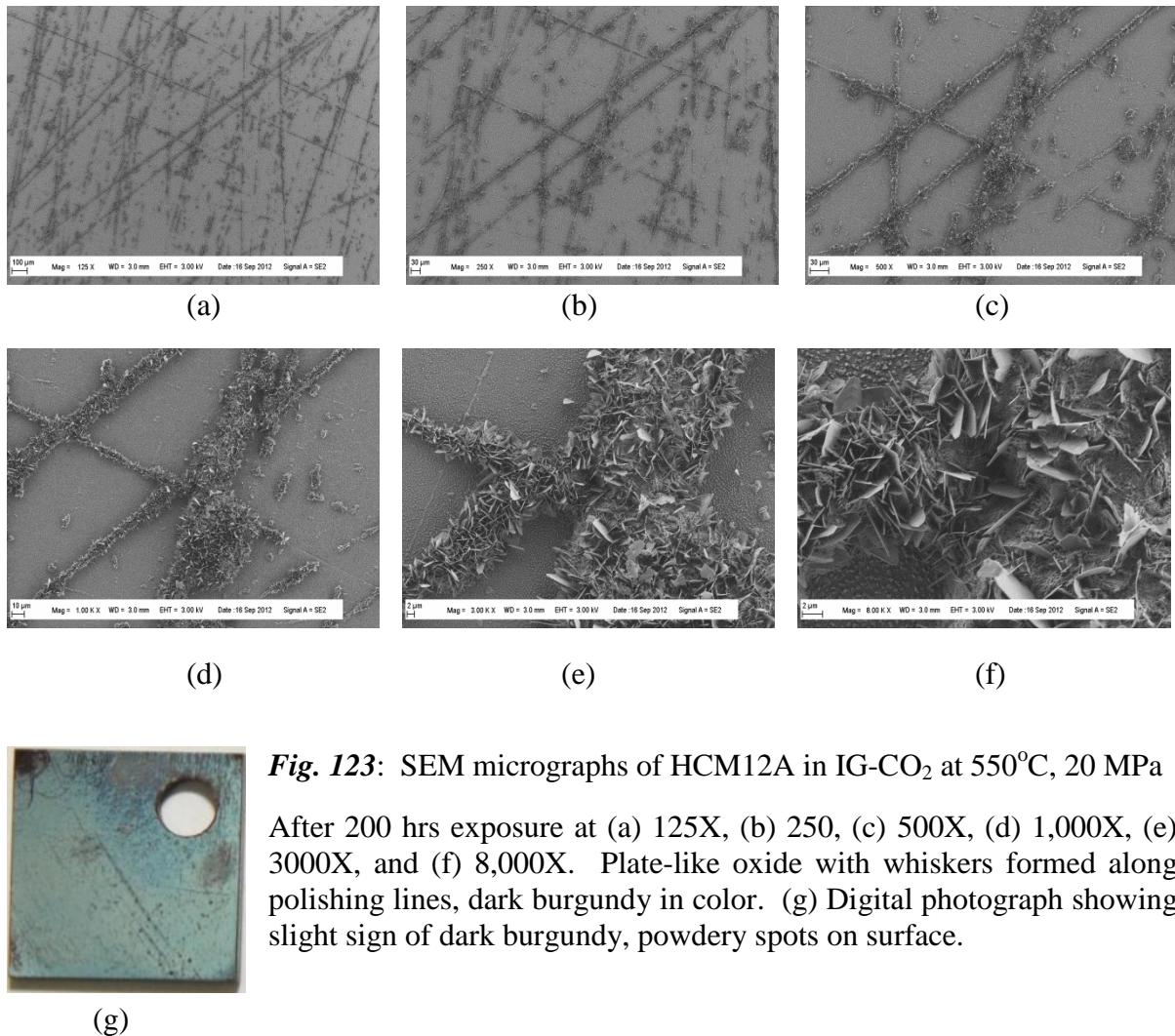


**Fig. 120:** SEM micrographs of AFA-OC7 in IG-CO<sub>2</sub> at 550°C, 20 MPa


After exposure of (a) 200 hrs, (b) 400 hrs, (c) 600 hrs, (d) 800 hrs, and (e) 1000 hrs at 1000X. (f) *Butterfly popcorn shaped* growths, prevalent at all exposure times, and (g) closeup of this popcorn-like feature at 50,000X showing whiskers. Sparse showing of (h) carbon deposits and (i) an InLens view accentuating presence of carbon deposited on the surface.

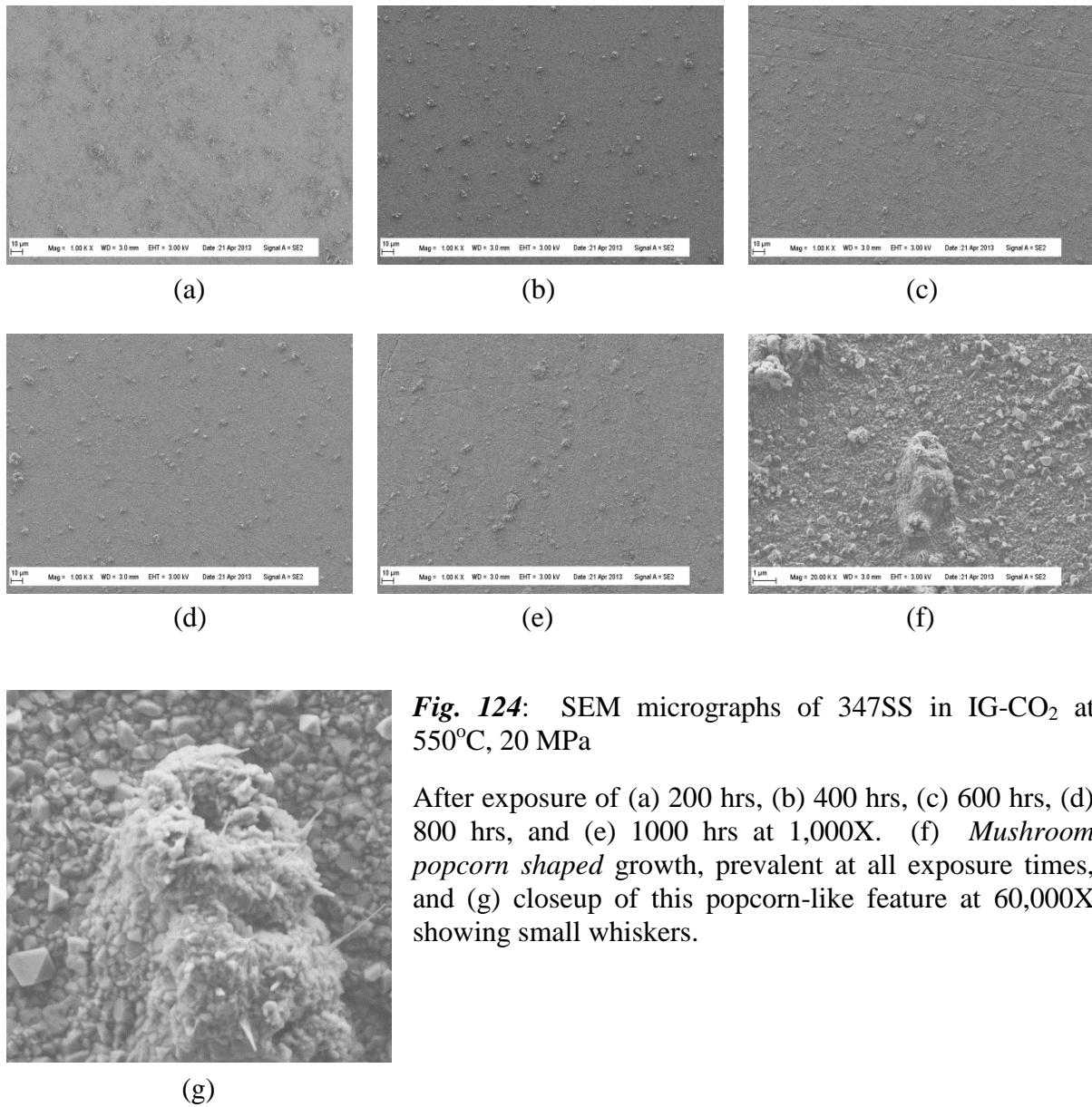
(g)




**Fig. 121:** SEM micrographs of AFA-OC10 in IG-CO<sub>2</sub> at 550°C, 20MPa

After exposure of (a) 200 hrs, (b) 400 hrs, (c) 600 hrs, (d) 800 hrs, and (e) 1000 hrs at 1000X. (f) Smooth textured oxide island (same as in AFA-OC6), prevalent at all exposure times, and (g) closeup of this oxide island showing whiskers. (h) Preferential accumulation of particles resembling shape of grains and (i) closeup of polyhedral shaped particles

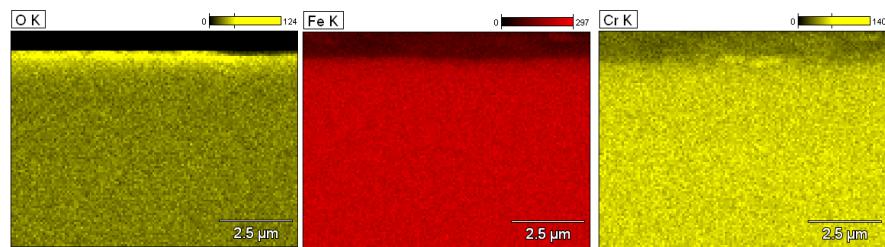



**Fig. 122:** SEM micrographs of NF616 in IG-CO<sub>2</sub> at 550°C, 20 MPa

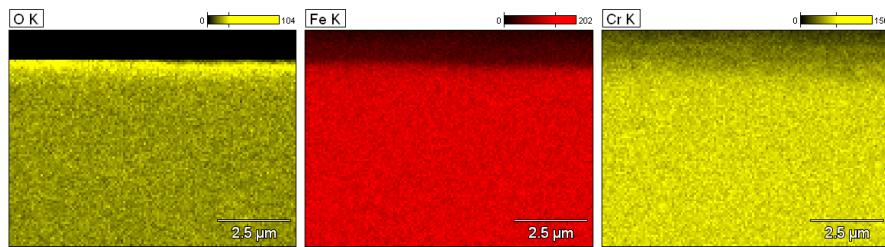
After 200 hrs exposure at (a) 125X, (b) 250, (c) 500X, (d) 1,000X, (e) 3000X, and (f) 8,000X. Oxide consisting of tight packed plate-like features with whiskers and covered entire surface. (g) Digital photograph of lightly adhered, dark burgundy, powdery-textured scale.



**Fig. 123:** SEM micrographs of HCM12A in IG-CO<sub>2</sub> at 550°C, 20 MPa

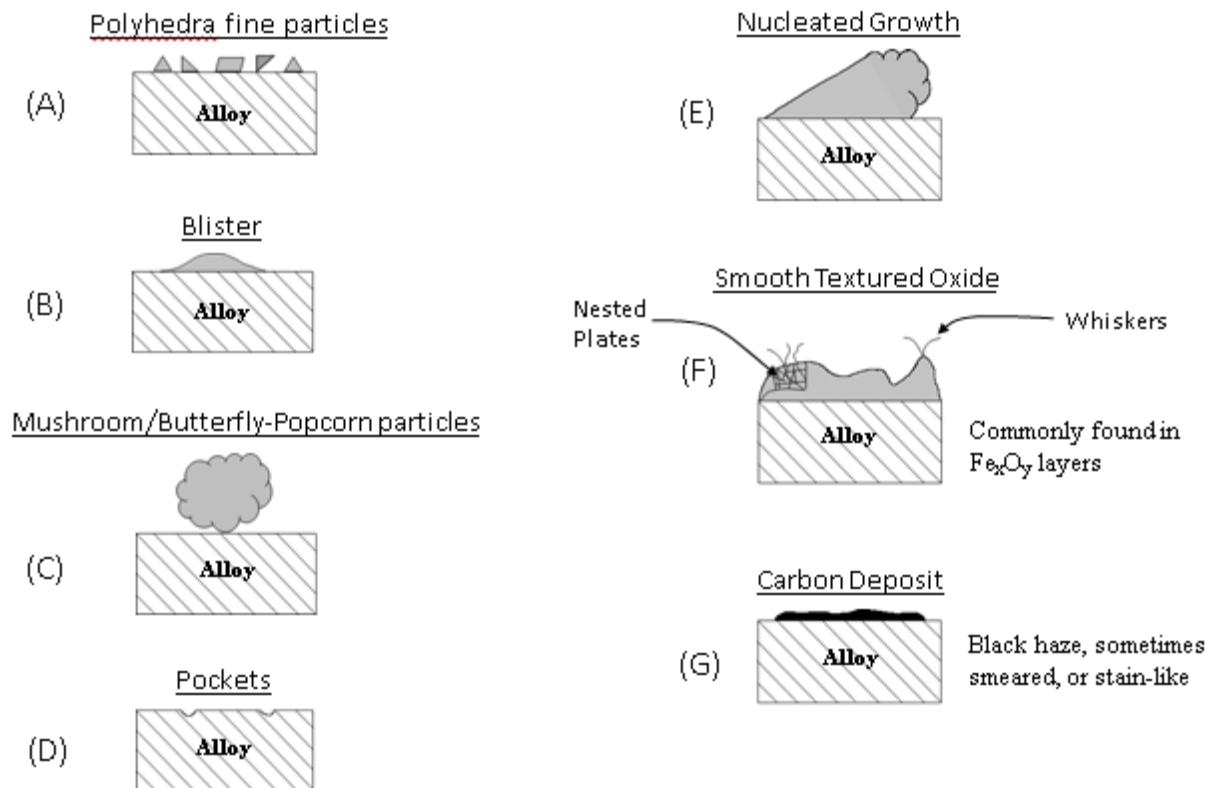

After 200 hrs exposure at (a) 125X, (b) 250, (c) 500X, (d) 1,000X, (e) 3000X, and (f) 8,000X. Plate-like oxide with whiskers formed along polishing lines, dark burgundy in color. (g) Digital photograph showing slight sign of dark burgundy, powdery spots on surface.



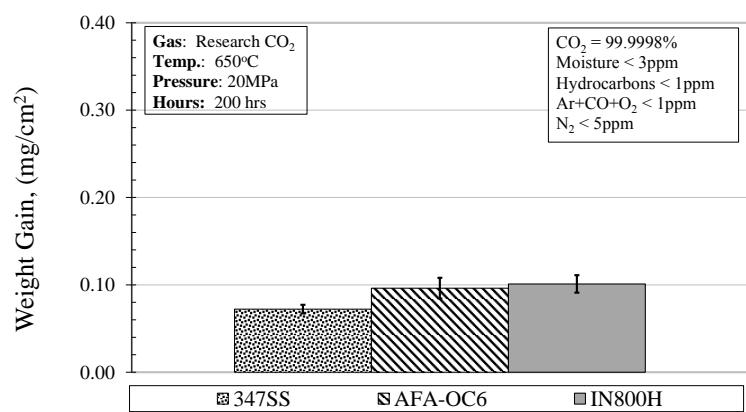

**Fig. 124:** SEM micrographs of 347SS in IG-CO<sub>2</sub> at 550°C, 20 MPa

After exposure of (a) 200 hrs, (b) 400 hrs, (c) 600 hrs, (d) 800 hrs, and (e) 1000 hrs at 1,000X. (f) *Mushroom popcorn shaped* growth, prevalent at all exposure times, and (g) closeup of this popcorn-like feature at 60,000X showing small whiskers.

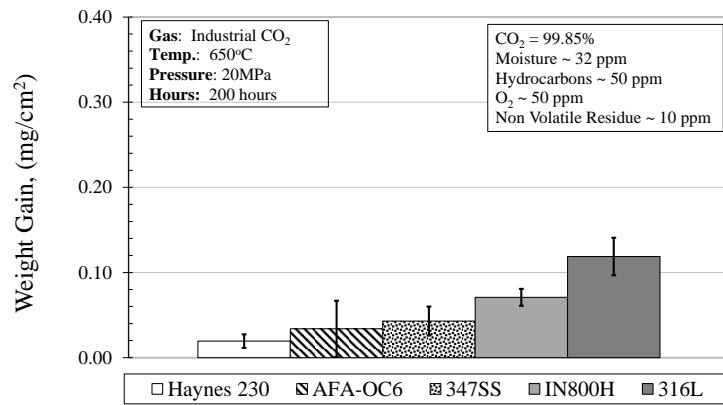
Cross-sections were evaluated for 316L and IN800H after 200 hours exposure, and are provided below in *Fig. 125* and *Fig. 126*. The cross-sections show a very thin oxide layer with display of little other discernible activity beneath in the substrate. Consequently, cross-sections were not evaluated at higher exposure times due to reaction kinetics demonstrating protective oxidation.



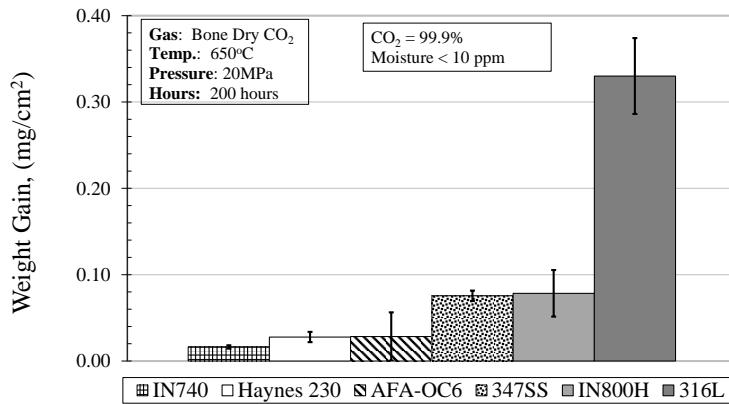

**Fig. 125:** Cross-Section of 316L at 550°C after 200 hours in IG-CO<sub>2</sub> (30,000X)




**Fig. 126:** Cross-Section of IN800H at 550°C after 200 hours in IG-CO<sub>2</sub> (30,000X)


The different morphological features observed on alloys tested in IG-CO<sub>2</sub> are shown below in *Fig. 127*.




**Fig. 127:** Salient Morphological Features in IG-CO<sub>2</sub> at 550°C, 20MPa



**Fig. 128:** Weight Gain of Alloys after 200 hours in RG-CO<sub>2</sub> at 650°C, 20MPa



**Fig. 129:** Weight Gain of Alloys after 200 hours in IG-CO<sub>2</sub> at 650°C, 20MPa



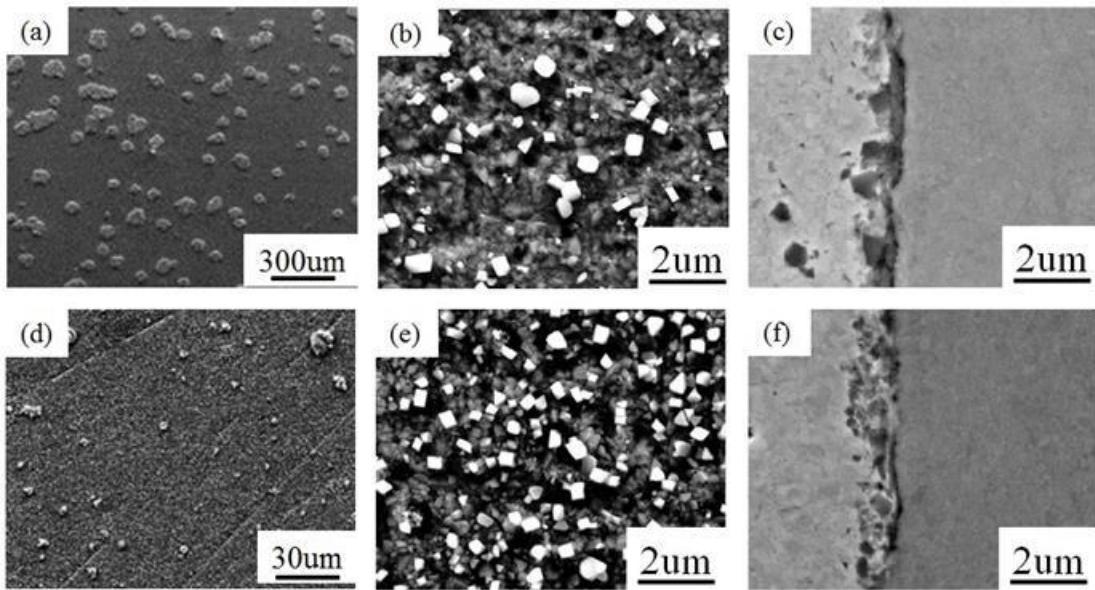
**Fig. 130:** Weight Gain of Alloys after 200 hours in BDG-CO<sub>2</sub> at 650°C, 20MPa

For Expt. 7 and Expt. 8 at the upper limit temperature of 650°C, formations of different kinds of oxides were confirmed by SEM/EDS. The evidence of carburization of alloys in these experiments at 650°C after 200 hours in different purity CO<sub>2</sub> levels has not been fully clarified. The summary of oxide types, approximate size, and number density in all tested alloys after corrosion in SCCO<sub>2</sub> of different impurity level are listed in Table 9.

**Table 9:** Assessment of Oxide Morphological Features in Different CO<sub>2</sub> Grades

|           | Research CO <sub>2</sub> (650C, 200hr) |                                    | Bone Dry CO <sub>2</sub> (650C, 200hr)     |                                     | Industrial CO <sub>2</sub> (650C, 200hr) |                |
|-----------|----------------------------------------|------------------------------------|--------------------------------------------|-------------------------------------|------------------------------------------|----------------|
| Alloys    | Oxide                                  | Number Density                     | Oxide                                      | Number Density                      | Oxide                                    | Number Density |
| IN740     | To be tested                           |                                    | Elongated Nb-Ti rich oxide cluster (50um)  | Low                                 | To be tested                             |                |
|           |                                        |                                    | Cr rich oxide (<1um)                       | High                                |                                          |                |
| Haynes230 | To be tested                           |                                    | Elongated W rich oxide cluster (30um)      | Medium                              | Elongated W rich oxide cluster (30um)    | Medium         |
|           |                                        |                                    | Cr rich oxide (<1um)                       | High                                | Cr rich oxide (<1um)                     | High           |
| AFA-OC6   | To be analyzed                         |                                    | Nb oxide (<10um)                           | High                                | Nb oxide (<5um)                          | High           |
|           |                                        |                                    | Cr-Mn rich oxide (<1um)                    | Very high                           | Cr-Mn rich oxide (<1um)                  | Very high      |
|           |                                        |                                    | Fe oxide (<10um)                           | Low                                 | Fe oxide(<10um)                          | Medium         |
| 347SS     | Nb oxide (<1um)                        | Medium                             | Nb oxide (5um)                             | Low                                 | Nb oxide (5um)                           | Low            |
|           | Needle Cr-Mn rich oxide scale          | Whole surface with some spallation | Polyhedral Cr-Mn rich oxide scale          | Whole surface with a few spallation | Cr-Mn rich oxide (<1um)                  | Very high      |
|           | Polyhedral Fe oxide cluster (20um)     | High                               | Porous polyhedral Fe oxide cluster (20um ) | Medium                              |                                          |                |
| IN800H    | Ti oxide cluster (20um)                | Low                                | Ti oxide cluster (20um)                    | Low                                 | Ti oxide cluster (20um)                  | Low            |
|           | Cr-Mn rich oxide (<1um)                | High                               | Cr-Mn rich oxide (<1um)                    | High                                | Cr-Mn rich oxide (<1um)                  | High           |

Alloys are ranked from top to bottom in the sequence of increasing weight gain (only exception is that in RG-CO<sub>2</sub>, AFA-OC6 has a slightly higher weight gain than 347SS).


Since only plan views were examined in most of the samples, the results are represented in a qualitative way. It should also be pointed out that by looking at SEM plan view, it is difficult to distinguish whether continuous oxide layers are being formed or just distributions of high number density nano-sized oxides are forming on sample surfaces, especially due to the short

exposure time of 200 hours. Therefore, only oxide scale in samples that showed strong evidence of existing scales are listed and there could also be thin oxide scales existing in other samples, which require further investigation. Table 9 provides us a fundamental understanding of oxidation behavior of the tested alloys and seems to be consistent with the weight change data. Cr-rich oxides always showed very small size or form stable scales and are considered to be beneficial for corrosion resistance. Fe-oxides tended to have the largest size, which greatly increases the weight gain when forming, indicating poor corrosion resistance. From Table 9, it can be seen that 316L has the largest amount of Fe-oxide clusters and weight change data. It also shows that it has the highest weight gain of the austenitic stainless steels. Results of 347SS, IN800H, and 316L, clearly show that formation of Fe-oxides is greatly affected by the impurity level of  $\text{SCCO}_2$ . In alloys containing Nb and Ti, their oxides were clearly detected, however owing to their lower concentrations of these elements, their oxidation does not contribute significantly to weight gain.

Generally speaking, Cr and Ni are good for corrosion resistance, and alloys with higher Cr and Ni content showed lower weight gain, as mentioned in the above section. One exception is IN800H, which has higher content of both Cr and Ni than 347SS, but shows higher weight gain. This may be attributable to the short exposure time used in this experiment. Further experiments at longer exposure times are needed to confirm this conclusion.

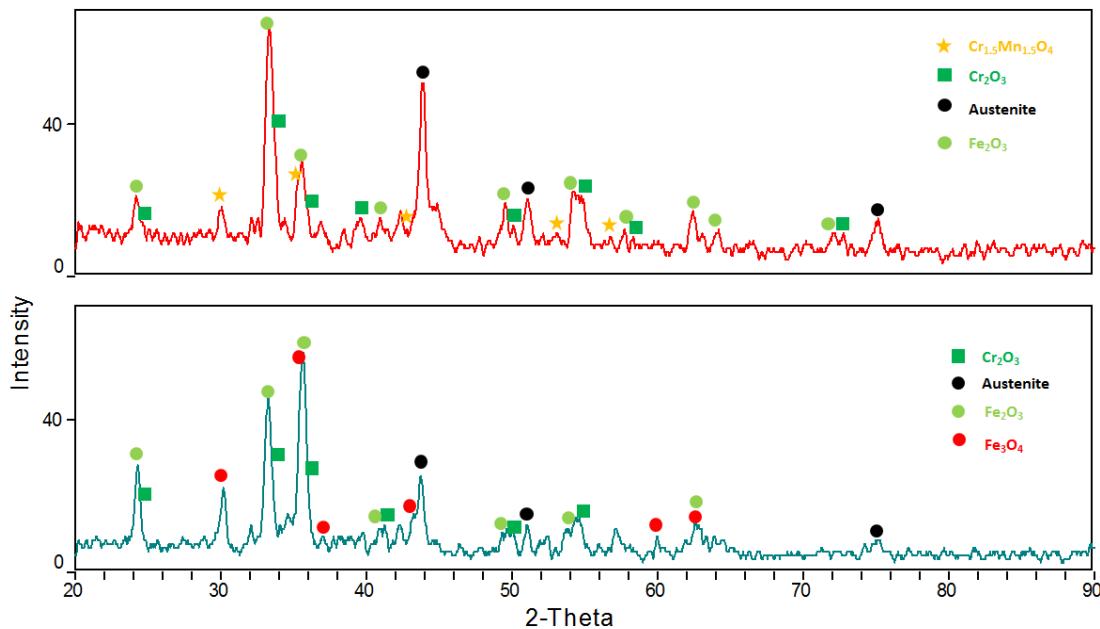
In this experiment, the composition diversity in tested alloys was very large, such that the effect of specific elements is hard to be obtained by directly comparing two alloys. Additionally, alloy microstructure will also affect the corrosion behavior. 316L and 347SS were selected for detailed comparison because they have very close chemical composition

and similar as-received microstructure, but showed notable differences in weight gain. 347SS has niobium additions which may reduce any sensitization effects by scavenging any residual carbon.

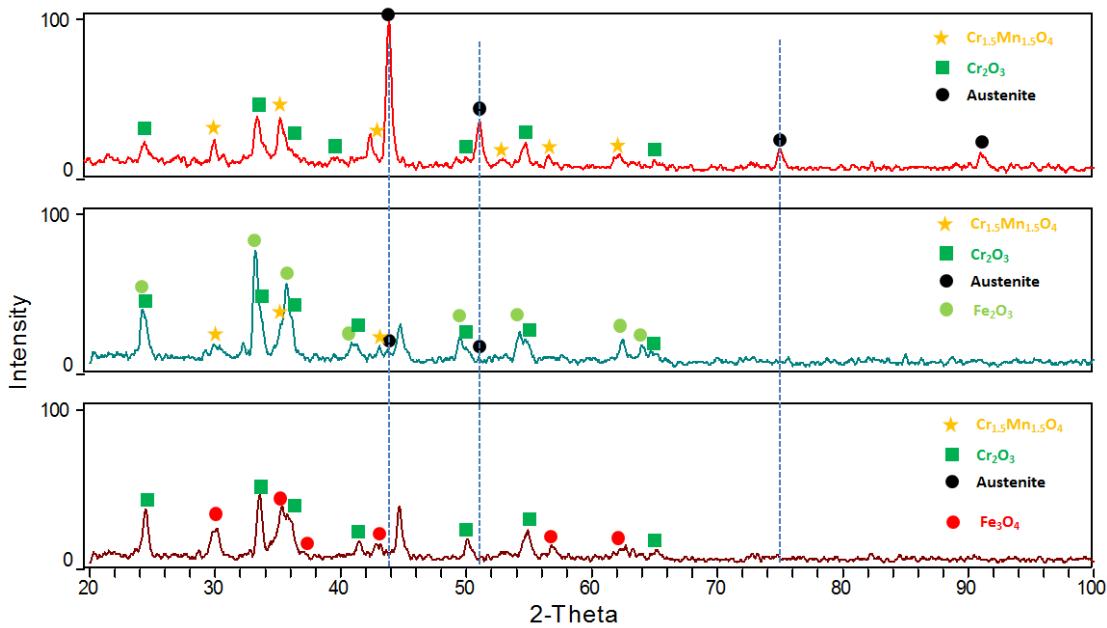


**Fig. 131:** Surface Morphology of 316L and 347SS at 650°C after 200 hours in IG-CO<sub>2</sub>

(a) plan view distribution of oxide nuclei, (b) magnified view of particles dispersed between and amongst those nuclei, and (c) cross-sectional view of oxide scale. Similarly, surface morphology of **347SS** showing (d) plan view distribution of oxide nuclei, (e) magnified view of particles dispersed between and amongst those nuclei, and (f) cross-sectional view of oxide scale.


As it is shown in Fig. 131a, oxide clusters with a size of about 100μm were uniformly distributed on 316L stainless steel surface after exposure in IG-CO<sub>2</sub>, and EDS results confirmed that those were Fe-oxide clusters. On the contrary, no Fe-oxide was found in 347SS, but rather Nb-oxide smaller than 10μm was found to be the major oxide in this alloy (Fig. 131d). Higher magnification plan-view (Fig. 131b, Fig. 131e) show that in both alloys, Cr-Mn rich oxide grains with size less than 1μm (bright dot in figures) were uniformly

distributed, and in the initial stages of formation of a Cr-Mn oxide scale. The size of these clusters in 316L was larger than that in 347SS, whereas their number density was lower. From the cross-section photos (*Fig. 131c, Fig. 131f*) it can be seen that the oxide scale in both has not yet completely formed, and the scale in 347SS was denser than in 316L. It can be concluded that, the higher weight gain of 316L was mainly caused by forming these large Fe-oxide clusters.

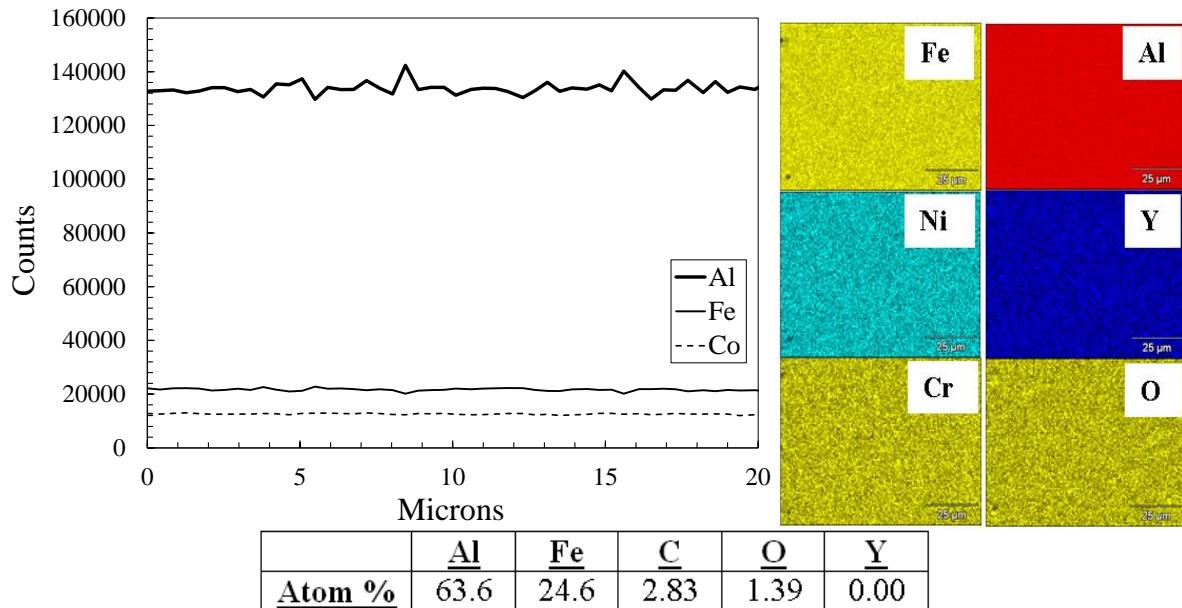

*Fig. 132* shows a grazing incidence x-ray diffraction (GIXRD) pattern for 316L showing phases comprising the oxide. Developing a Cr-Mn rich oxide scale is effective suppressing the formation of Fe-oxide, and because 347SS has a slightly higher Cr and Mn content than 316L (~1wt% higher in Cr and ~0.4wt% in Mn), it formed a denser protective scale, thus preventing the Fe-oxide formation. 347SS contains 0.7wt% Nb (not contained in 316L), which combines with oxygen readily to form stable Nb-oxide and precludes Fe-oxide formation. This also improves corrosion resistance of 347SS.

SEM and EDS analysis of cross-sections revealed what could be classified as thin oxide layers on many of the samples from IG-CO<sub>2</sub> and BDG-CO<sub>2</sub>. It is difficult to say at which point the film thickness may be considered thin or thick, and Mott and Cabrera [66] had attempted to give description on thin layers in his theory and a critical thickness. Since the thickness of the oxide was thin, conventional XRD measurements of thin films (< 1000 nm) using a 2θ/ω scan method over the coupon surface produced weak signals from the film, significantly masked by the level of the background. Thus, grazing incidence X-ray diffraction (GIXRD) measurements were performed with a fixed low-incident angle ( $\omega=1^\circ$ ) to maximize the signal from the thin film layer. Thin films are sometimes very difficult to

analyze due to their small diffracting volumes, which result in low diffracted intensities compared to the substrate and background. For this study, conventional XRD measurements were conducted using a scan from 10-105° and a step size of 0.04 and time of 10 seconds. GIXRD measurements were made using a scan from 20-105° and a step size of 0.04 and *minimum* time of 12 seconds. The yttrium coated samples however required a longer measurement time (15-20sec) to resolve identifiable peaks from the thin oxide layer and aid in comparison to other GIXRD patterns. The orientation of the coupon was kept consistent and the same for all tests. *Fig. 132* below shows a GIXRD pattern of 316L in both IG-CO<sub>2</sub> and BDG-CO<sub>2</sub>. *Fig. 133* shows a GIXRD pattern for 347SS in all three different grades of CO<sub>2</sub>.



**Fig. 132:** GIXRD Patterns of 316L.  
 (a) IG-CO<sub>2</sub> and (b) BDG-CO<sub>2</sub> after 200 hours at 650°C, 20MPa



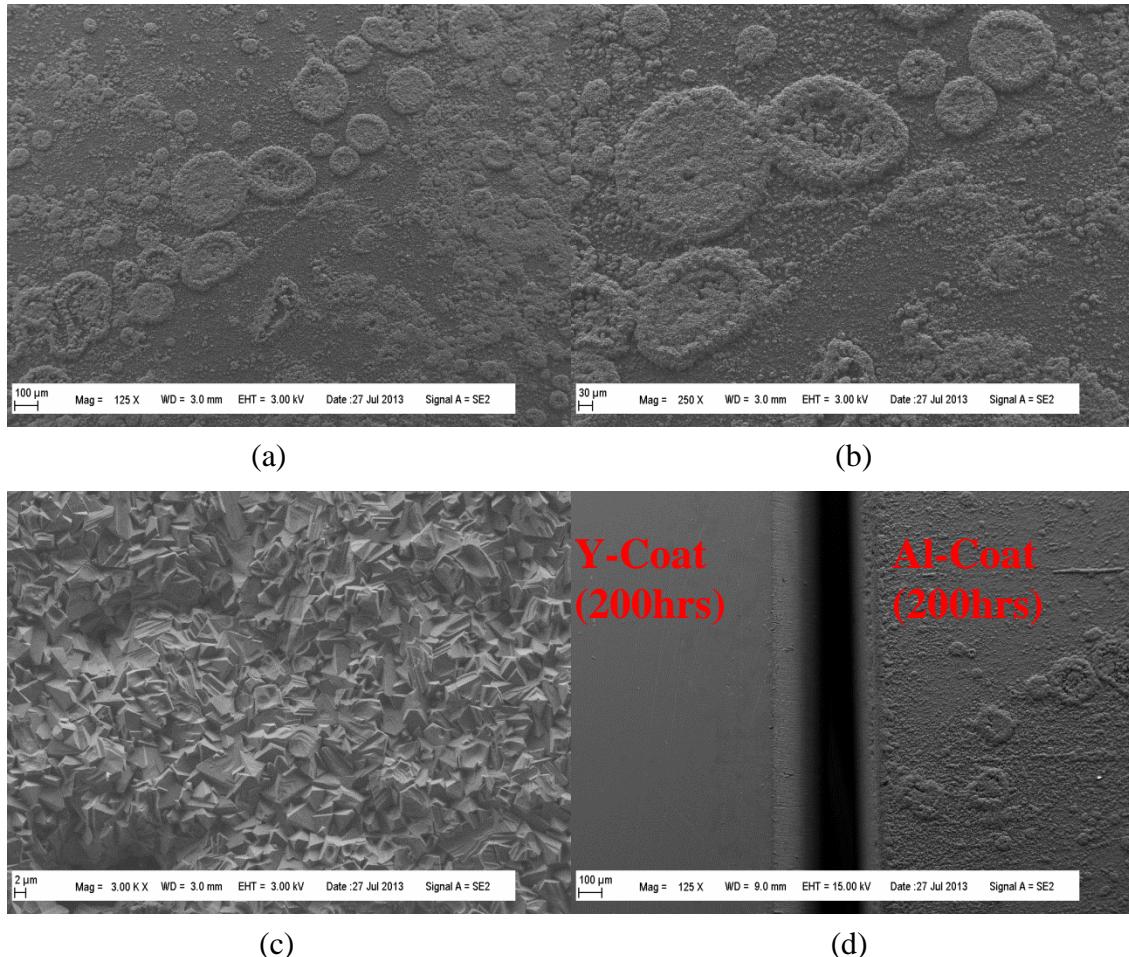

**Fig. 133:** GIXRD Patterns of 347SS.  
 (a) IG-CO<sub>2</sub>, (b) BDG-CO<sub>2</sub>, and (c) RG-CO<sub>2</sub> after 200 hours at 650°C, 20MPa

## 5.5. Effect of Surface Treatment – Experiment 9

### 5.5.1. Single Element Al Coating on 9-12%Cr Ferritic-Martensitics

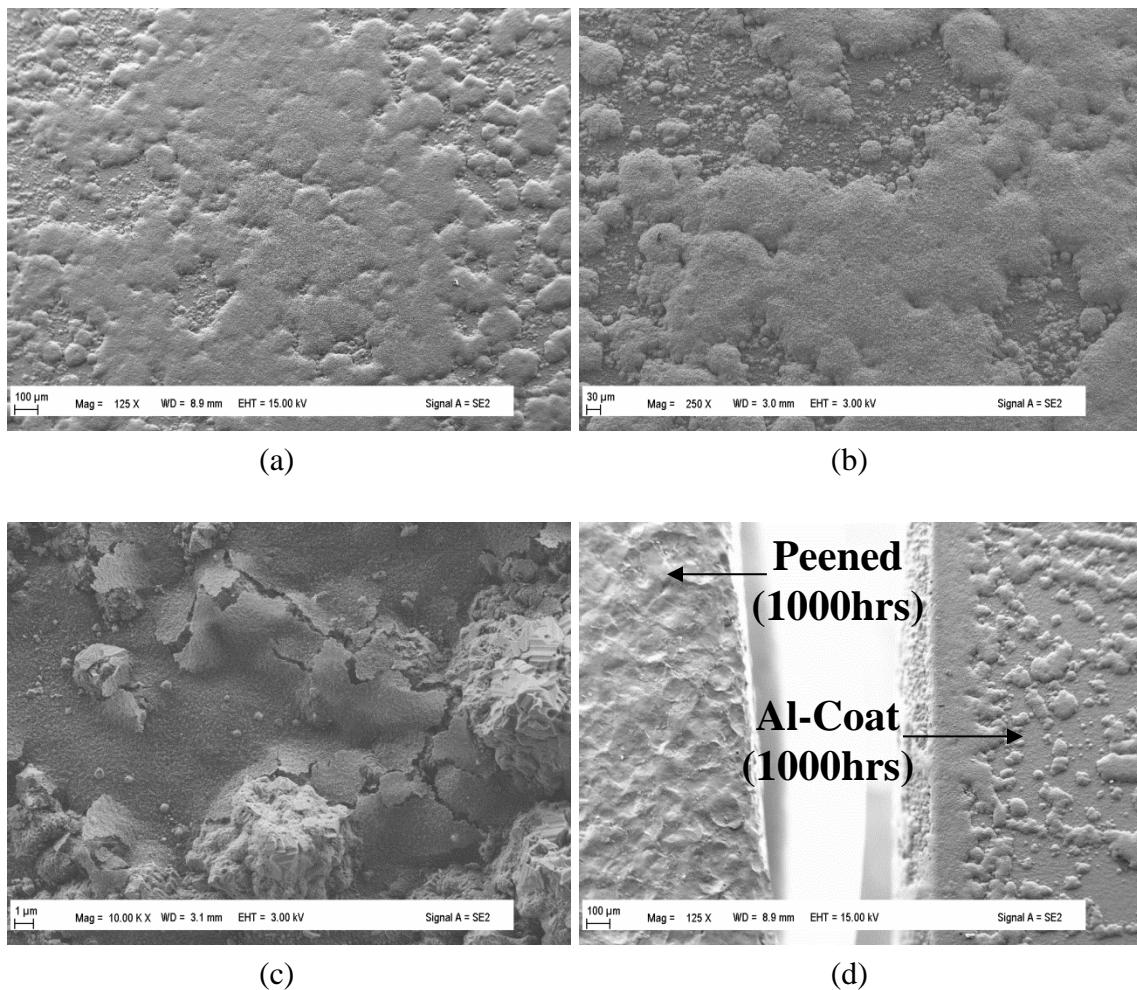
Coated coupons were examined after sputtering to evaluate the deposition of aluminum onto the substrate. *Fig. 134* below shows a SEM/EDS analysis on the aluminum coated substrate after deposition and before testing.




**Fig. 134:** SEM/EDS of Al Coated NF616 before exposure

The metallic Al coating nominal thickness was about 500 nm. A strong signal for aluminum was detected for the aluminum coating. Aluminum is highly conductive (2.37 W/cm-K at room temperature). Aluminum coated samples were also found to be slightly magnetic. SEM cross-sections seem to suggest that the coating itself is quite irregular in thickness, which is likely due to compressive stresses exerted on the coating surface during specimen mounting in Cu for examination. SEM micrographs shown later on for heavily oxidized coated samples at 1000 hours show a more uniform layer, suggesting the coating layer was also uniform. This is discussed in more detail for the 1000 hours cross-sections. Measurements made after coating deposition on half-coated coupons to determine thickness were performed using a Tencor AlphaStep 200 surface profilometer ( $\pm 5\text{nm}$  resolution), which uses a contacting stylus scanned across the surface to acquire step height. Measured

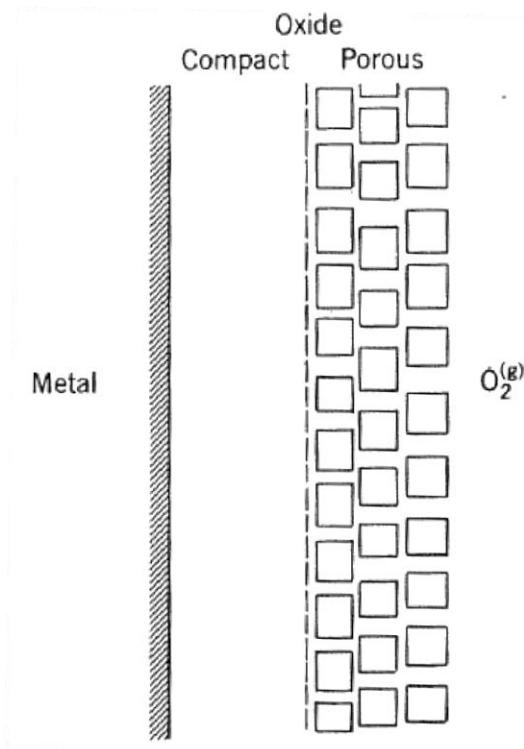
thickness is provided in Table 10. The coating surface weight was determined by taking the difference in measured weight of the samples before and after coating deposition, assuming the surface area to be constant since the film applied is thin.


Coating porosity and adhesion were not measured, but the total porosity can be measured using the Archimedes technique referenced in ASTM C373-88 as done by Su et al [67], and the adhesion can be measured by the tape peel test in ASTM D3359. Results from Alvarez et al [68] suggest that the quality of the coatings, particularly their density and adhesion, are more important than the thickness of the layer deposited for effective protection against metal dusting.

The morphology of the oxide structure of aluminum coated coupons after 200 hours exposure in RG-CO<sub>2</sub> as seen by SEM micrographs (*Fig. 135*) formed differently in shape. Donut-shaped oxide rings formed during the initial rapid stage and were observed across much of the surface with a high number density, and were approximately 75-350um in diameter. It is presumed that the growth initiates with polyhedral shaped nuclei that rapidly grow preferentially by a flat annular shape until the entire inside is covered with additional oxide, and proceeds in this fashion migrating outward.

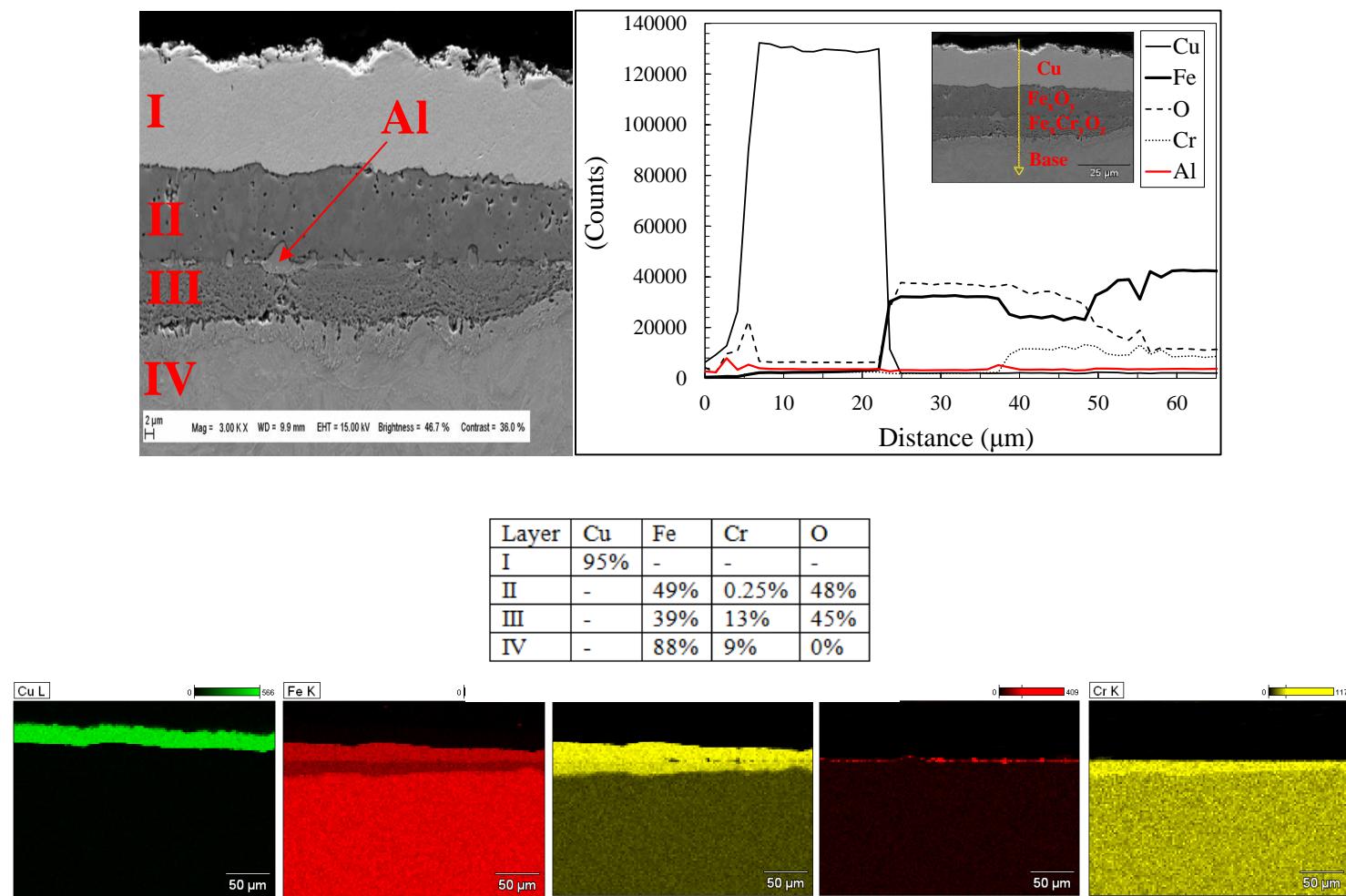


**Fig. 135:** SEM micrographs of **Al Coated NF616** in Research CO<sub>2</sub> at 550°C, 20 MPa. After 200 hrs exposure at (a) 125X, (b) 250, (c) 3,000X, and (d) 125X.

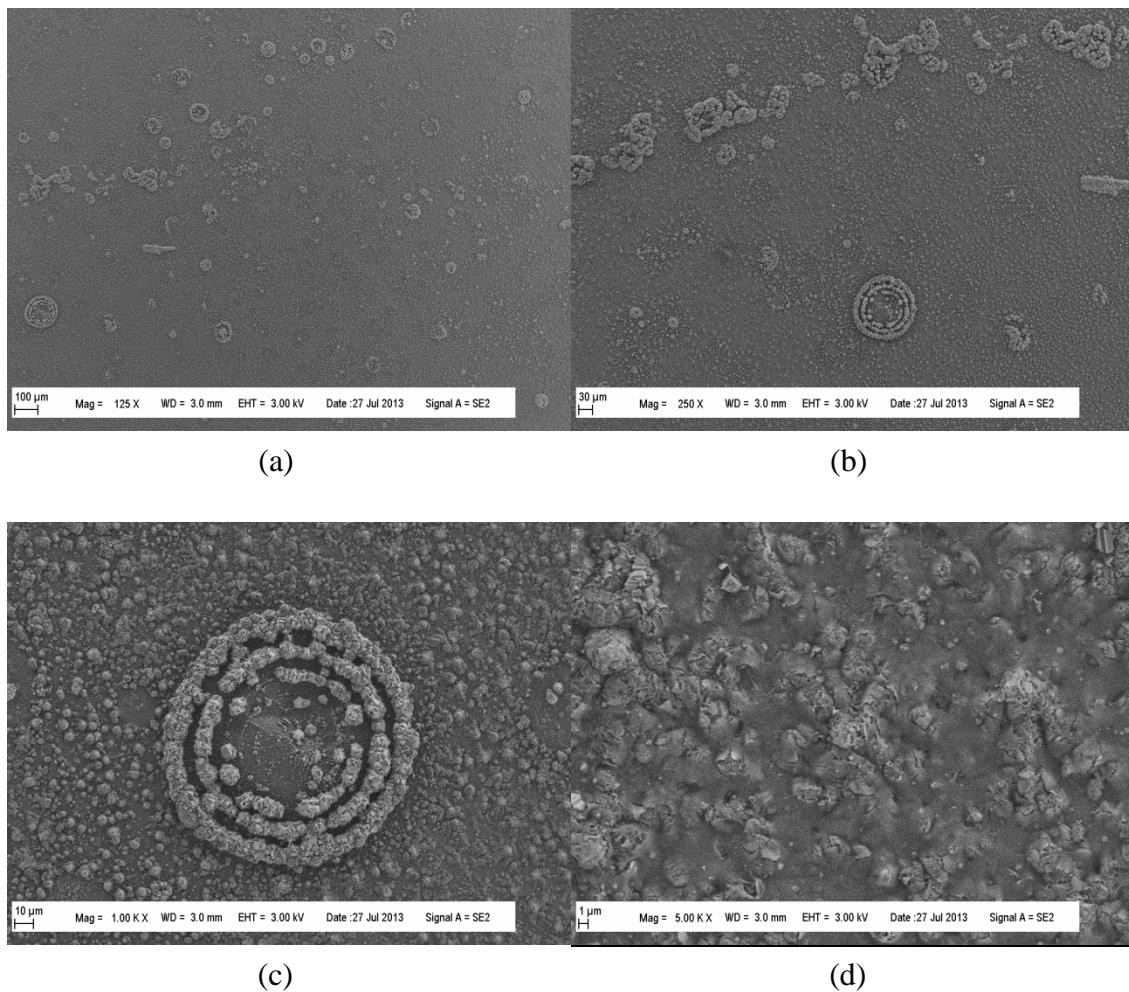

After 1000 hours of exposure, a significant amount of the surface appears entirely covered with a thick oxide scale about 20-30 $\mu$ m in thickness and about 35  $\mu$ m at the edges. *Fig. 136* show SEM micrographs of the developed oxide observed at low magnifications. *Fig. 136c* was taken of an area not exhibiting large oxide growth and shows blistering of the aluminum coating and its eventual cracking.



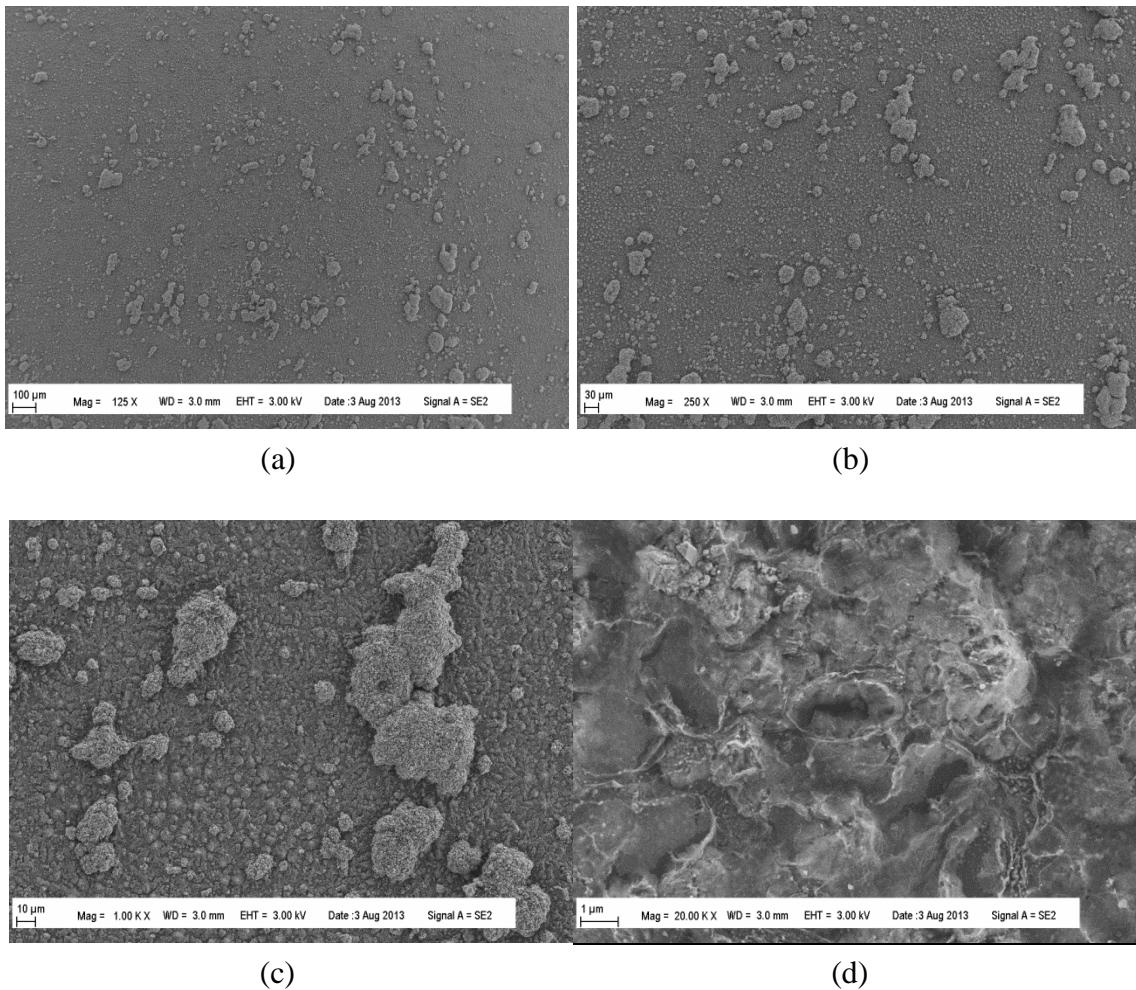
**Fig. 136:** SEM micrographs of Al-Coated T92 in Research CO<sub>2</sub> at 550°C, 20 MPa. After 1000 hrs exposure at (a) 125X, (b) 250, (c) 10,000X, and (d) 125X.


Exposed coupons were electroplated with Cu to retain the features of the oxide and provide a visual contrast between possible differing features when mounted for cross-section. Cross-sections for Al-coated T92 and T122 after 1000 hours exposure are shown below in *Fig. 138* and *Fig. 141*, respectively. EDS concentration profiles of the cross-sections show two different oxide phases containing Fe and O in the outer layer and Fe, Cr, and O in the bottom layer, with a higher concentration of Fe in the outer layer. Selective analysis was performed by choosing 3 points in each differing contrasted layer and taking the atomic fraction average in each layer, respectively. EDS provided quant results of the atomic fraction (%) where the outer layer (II) displays the right stoichiometry for  $\text{Fe}_2\text{O}_3$  (hematite), an n-type semiconductor. The bottom layer appears to have a stoichiometry not quite equivalent to that of  $\text{FeCr}_2\text{O}_4$  spinel, but it's non-stoichiometry of  $\text{Fe}_x\text{Cr}_y\text{O}_z$  is similar in structure to that spinel, which perhaps is changing at a non-linear rate. Raman analysis was not performed, but could be performed to support these findings, similar to what Roulliard did for T91 [69]. *Fig. 145* shows a schematic of the duplex oxide scale formation on the Al-coated samples. *Fig. 143* shows the GIXRD patterns of Al-coated T92 and T122, confirming the oxide scale characterized by SEM/EDS cross-sections. It is difficult to say for certain, but closer examination shows what one could interpret to be a higher density of holes or pores in the bottom layer than in the top layer. Rouillard referred to these holes at the oxide-metal interface as voids. Also, the bottom layer texture differs from the top, where the top appears to be more solid and dense and the bottom more loose and porous. Based on weight gain data, it may be that initially through 200 hours the rate of oxidation is parabolic but becomes linear and essentially remains linear, a combined reaction rate termed paralinear oxidation. Kofstad describes such a system and proposes a model, whereby a compact scale growing at

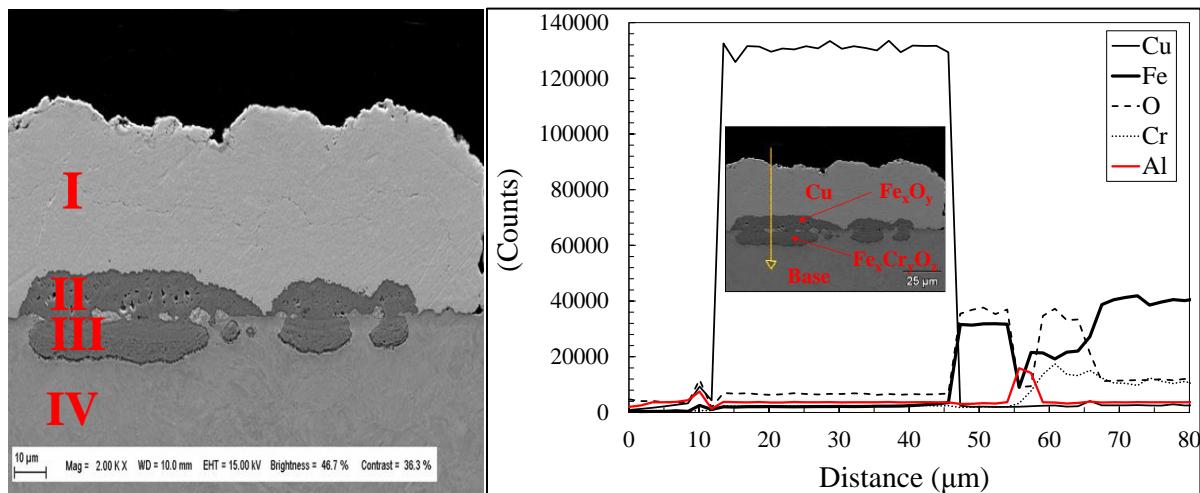
a parabolic rate transforms at a linear rate to an outer porous and non-protective oxide layer if a diffusion layer is depleted by sublimation of oxide (*Fig. 137*). Supposedly, the inner layer approaches a stationary thickness such that it grows at the same rate at which it is consumed by the linear depletion. But the stoichiometry and surface features when evaluated together seem to favor what may be in this case a compact dense outer layer and a more loose and porous bottom layer.



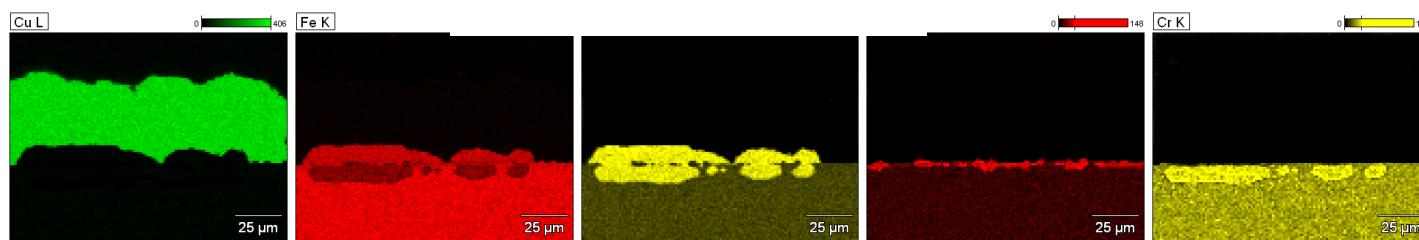

**Fig. 137:** Model for paralinear oxidation growth of duplex scale [35].


An inner compact scale (parabolic) which at a linear rate is converted to an outer, porous, nonprotective scale.

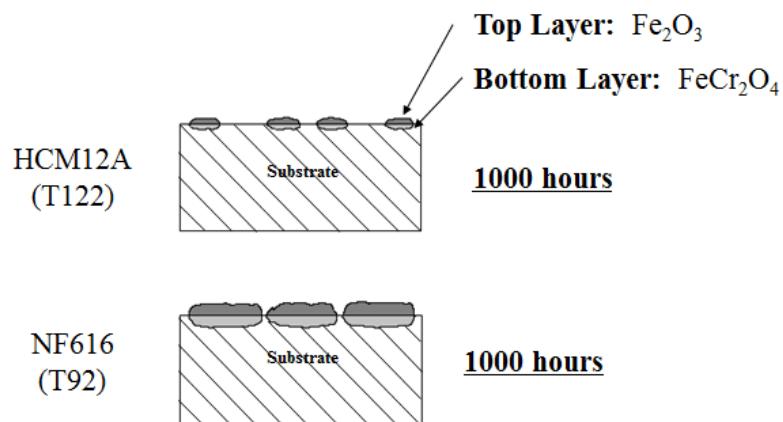



**Fig. 138:** Cross-Section of Al-Coated T92 after **1000** hours in RG-CO<sub>2</sub>/550°C/20MPa. Electroplated with Cu for enhanced characterization. **Top Left:** Atom % of layers hinting dual density Fe-Oxide layer formation (taken at 3000X). **Top Right:** EDS linescan through layers showing lower Fe, higher Cr content in bottom layer. **Bottom:** Spectral maps of key elements.

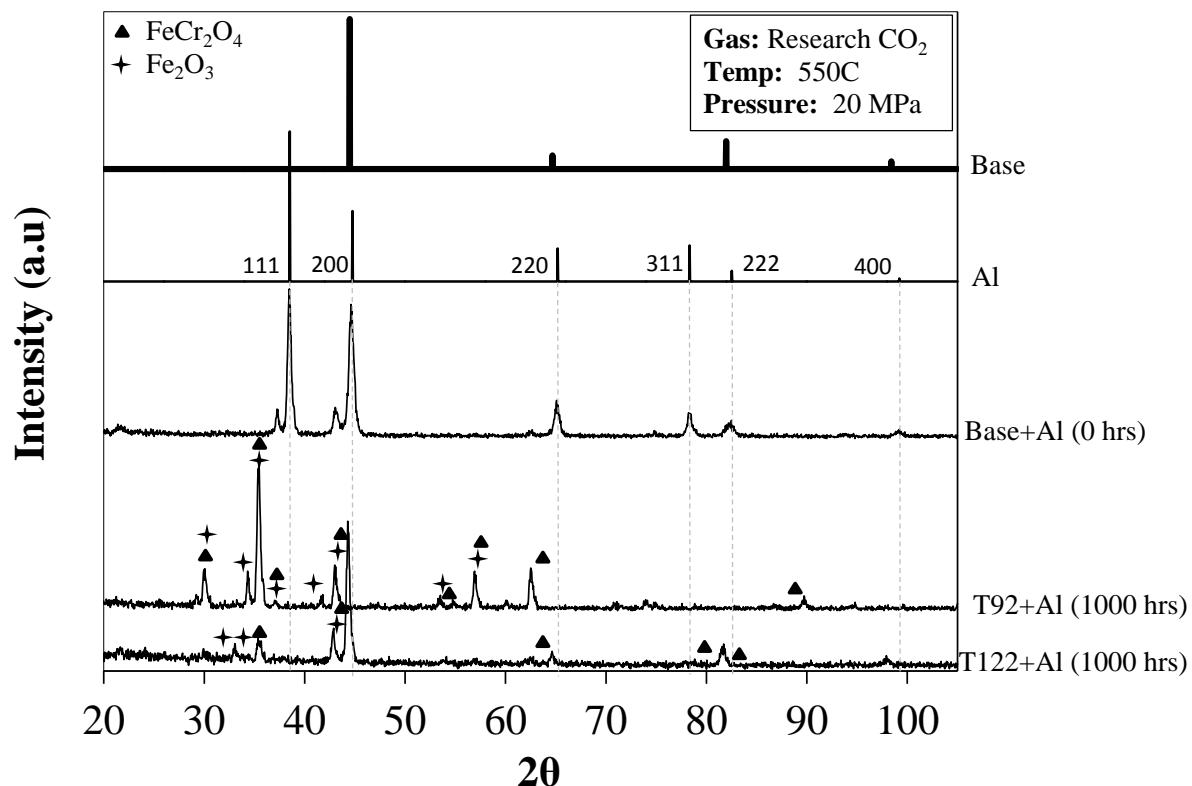



**Fig. 139:** SEM micrographs of **Al Coated HCM12A** in Research  $\text{CO}_2$  at  $550^\circ\text{C}$ , 20 MPa After 200 hrs exposure at (a) 125X, (b) 250, (c) 1,000X, and (d) 5,000X.




**Fig. 140:** SEM micrographs of Al-Coated T122 in Research CO<sub>2</sub> at 550°C, 20 MPa After **1000** hrs exposure at (a) 125X, (b) 250, (c) 1,000X, and (d) 20,000X.

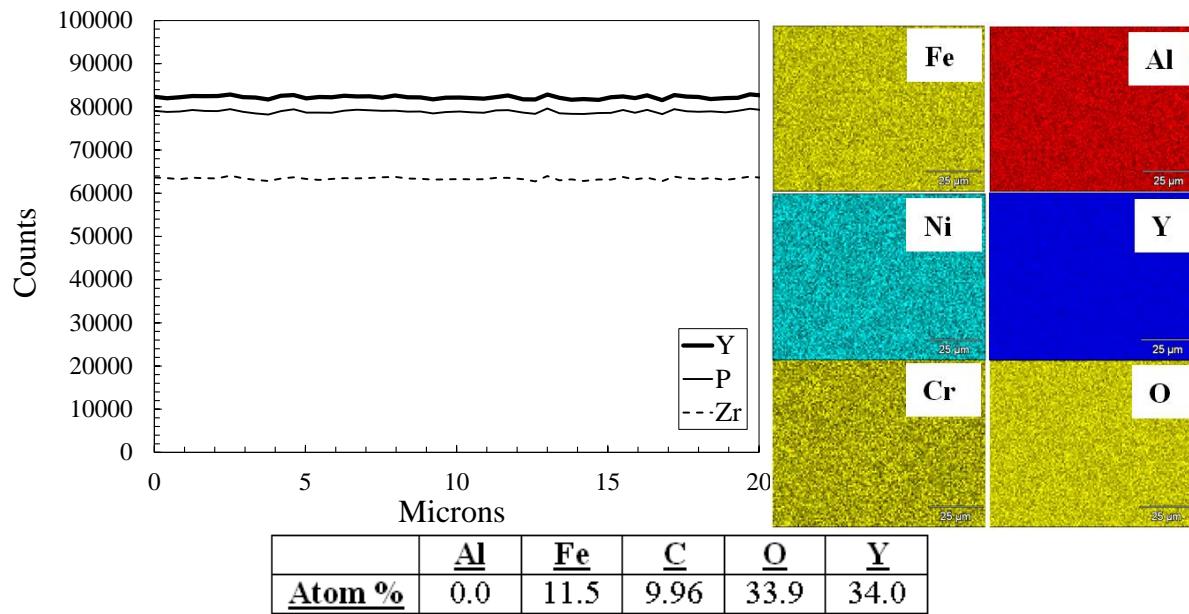



| Layer | Cu  | Fe  | Cr    | O   |
|-------|-----|-----|-------|-----|
| I     | 98% | -   | -     | -   |
| II    | -   | 60% | 0.50% | 35% |
| III   | -   | 35% | 16%   | 45% |
| IV    | -   | 85% | 11%   | 0%  |



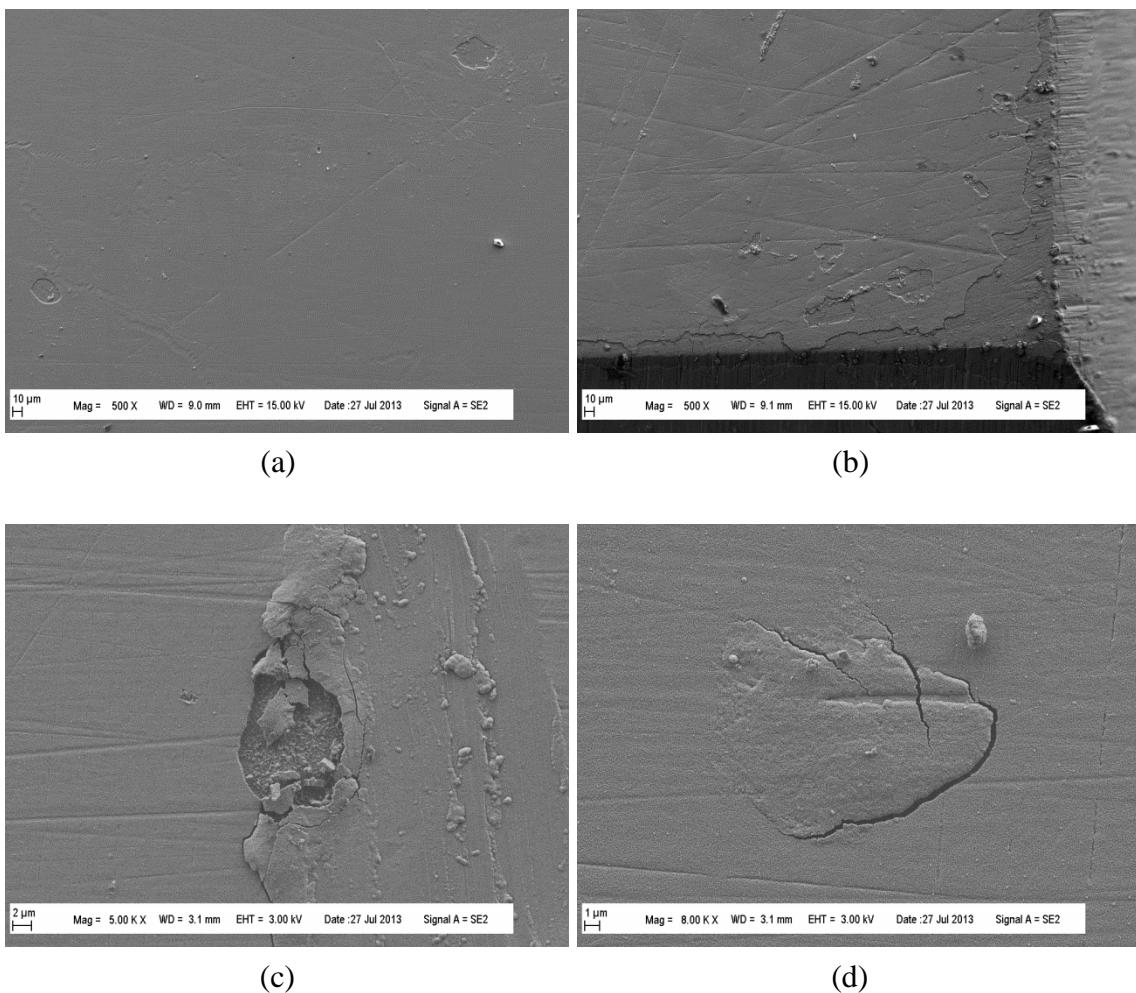
**Fig. 141:** Cross-Section of Al-Coated T122 after 1000 hours in RG-CO<sub>2</sub> at 550°C, 20MPa. Electroplated with Cu for enhanced characterization. **Top Left:** Atom % of layers hinting dual density Fe-Oxide layer formation (taken at 3000X). **Top Right:** EDS linescan through layers showing lower Fe, higher Cr content in bottom layer. **Bottom:** Spectral maps of key elements.



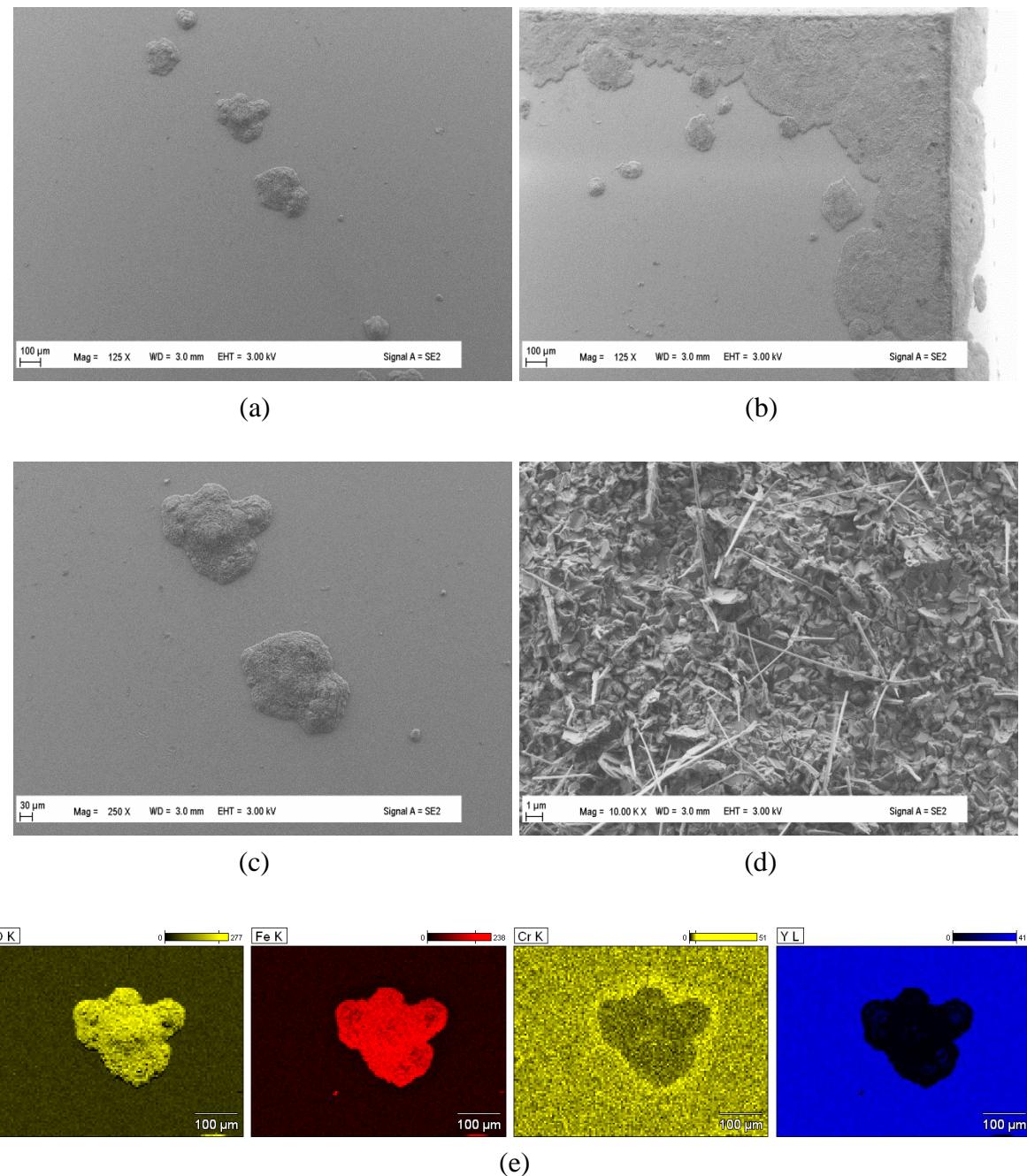

**Fig. 142:** Schematic Representation of Duplex Oxide Formation on Al-Coated FM Steels



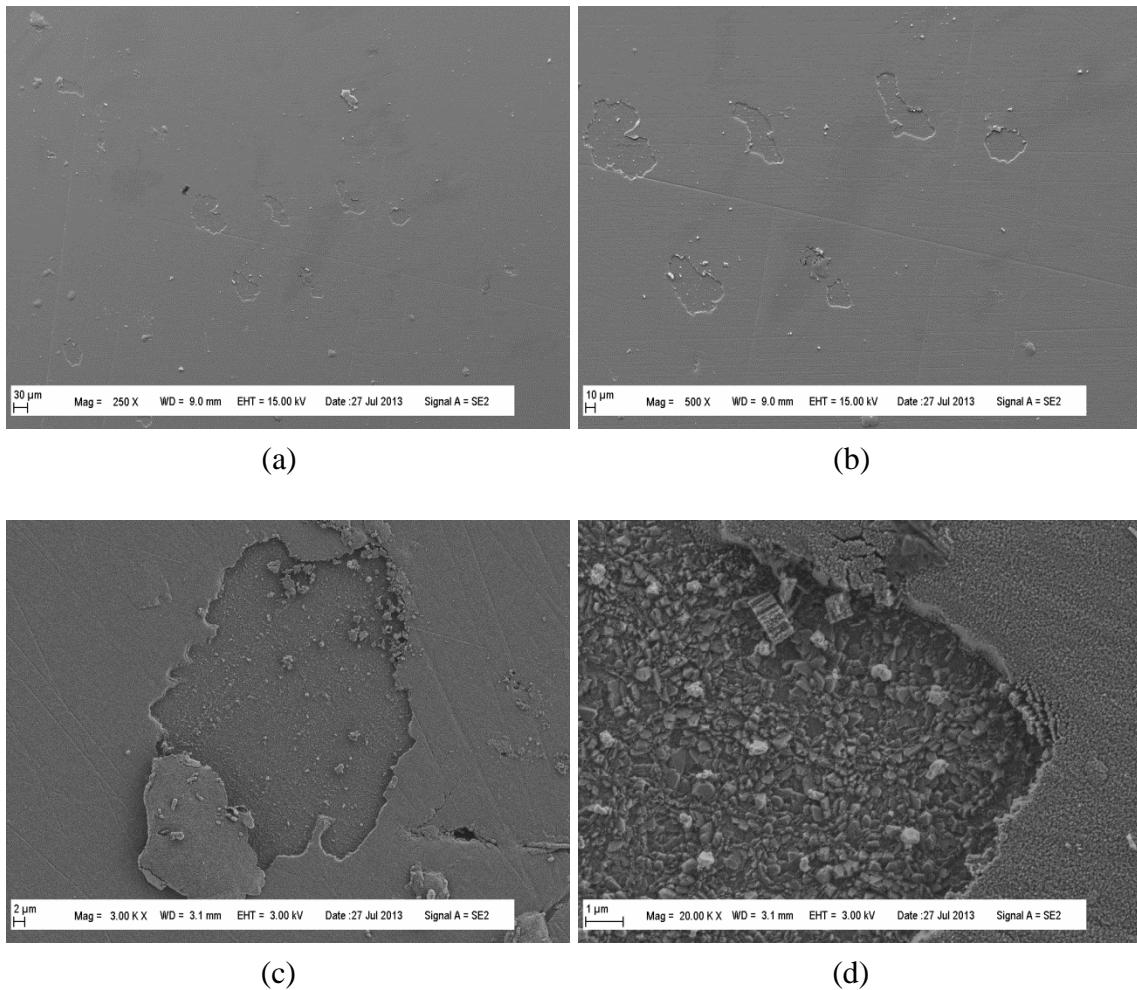
**Fig. 143:** GIXRD patterns of Al-Coated NF616 (T92) and HCM12A (T122)  
After 1000 hours exposure.


### 5.5.2. Single Element Y Coating on 9-12%Cr Ferritic-Martensitics

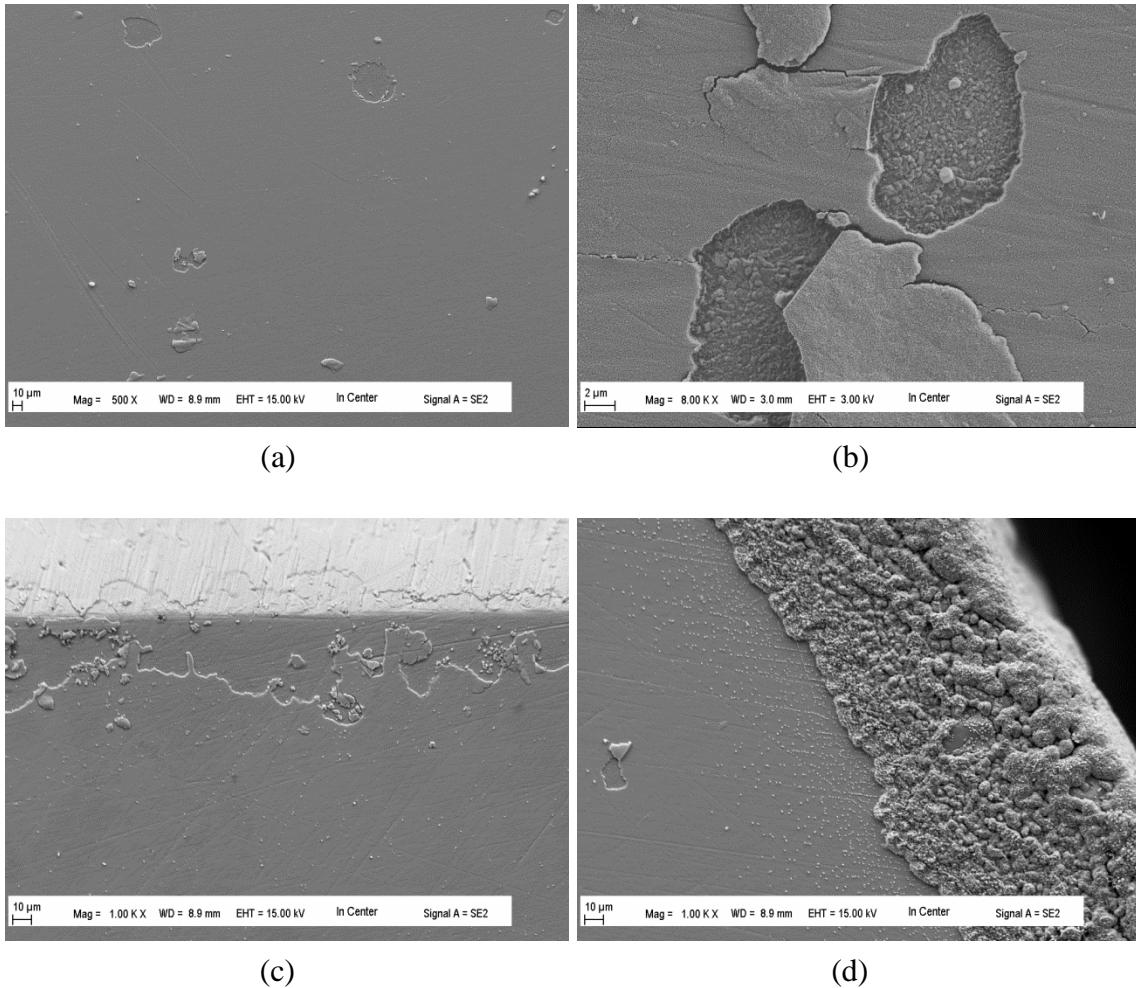
Coated coupons were examined after sputtering to evaluate the deposition of yttrium onto the substrate. *Fig. 144* below shows a SEM/EDS analysis on the yttrium coated substrate after deposition and before testing. The linescan shows high levels of P and Zr in addition to yttrium, and are likely detected due to the nature of the inner workings of the EDS system. This is confirmed by point and shoot analysis, where the atomic fraction (%) points toward a balanced content of yttrium and oxygen.




*Fig. 144:* SEM/EDS of Y Coated NF616 FM Steel (0hrs)


SEM micrographs of Y-coated NF616 (*Fig. 145, Fig. 146*) and HCM12A (*Fig. 147, Fig. 148*) both displayed preferential lifting of the coating near the edges, as well as significant oxide growth at a few sparse areas small in size., not to be confused for occurrence around the entire edge for this was not the case. Images also show small pockets toward the center of the coupon the experienced cracks and pockets of missing coating that were also scarce and few and number. Small oxide islands were observed and found to be rich in Fe and O, depleted in Cr and Y.

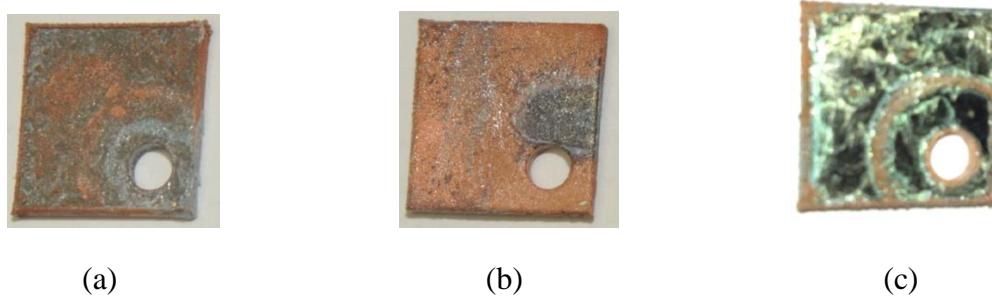



**Fig. 145:** SEM micrographs of **Y-Coated NF616** in Research CO<sub>2</sub> at 550°C, 20 MPa After 200 hrs exposure at (a) 500X, (b) 500X near the corner edge, (c) 5,000X, and (d) 8,000X.



**Fig. 146:** SEM micrographs of **Y-Coated NF616** in Research  $\text{CO}_2$  at  $550^\circ\text{C}$ , 20 MPa After **1000** hrs exposure at (a) 125X, (b) 125X near the corner edge, (c) 500X, (d) 10,000X, and (e) spectral maps of nucleated oxide growths on surface rich in Fe and O.



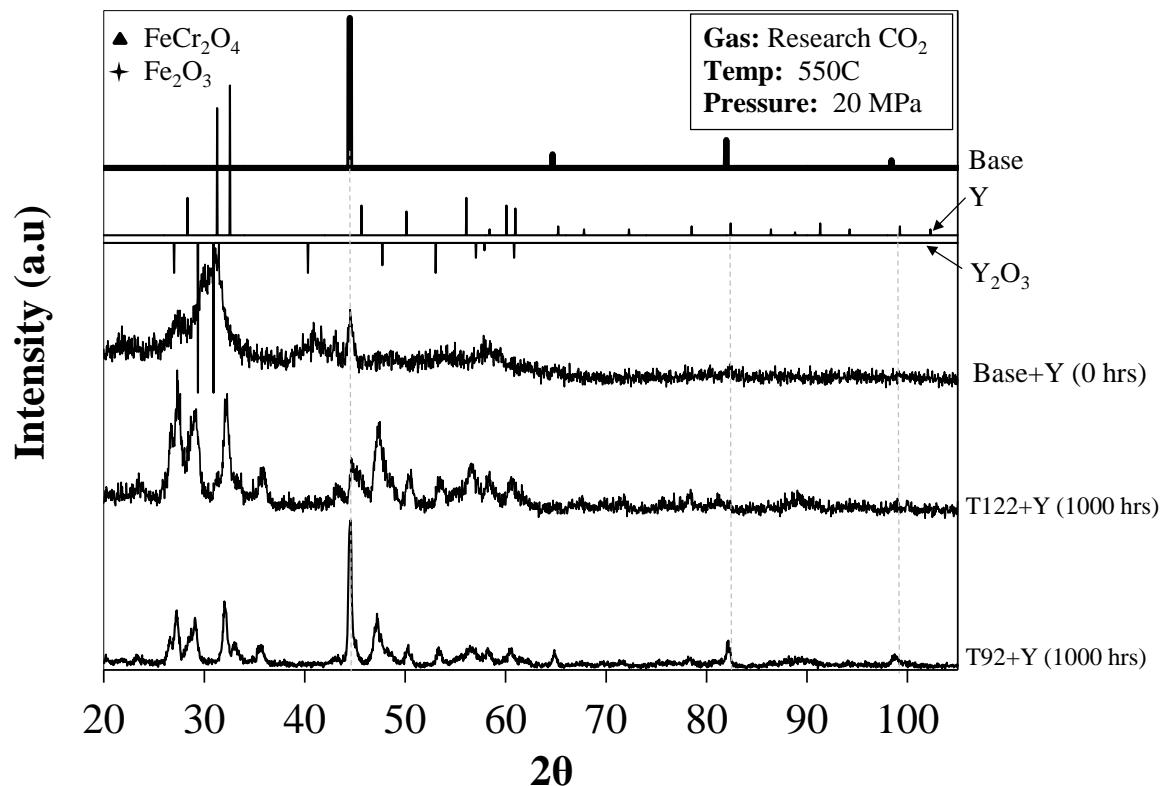

**Fig. 147:** SEM micrographs of **Y-Coated HCM12A** in Research CO<sub>2</sub> at 550°C, 20 MPa  
After 200 hrs exposure at (a) 250X, (b) 500X, (c) 3,000X, and (d) 20,000X.



**Fig. 148:** SEM micrographs of Y-Coated T122 in Research CO<sub>2</sub> at 550°C, 20 MPa After **1000** hrs exposure at (a) 500X, (b) 5,000X, (c) 1,000X near the edge, and (d) 1,000X at a different location on the edge.

The yttrium coated coupons proved resistive to electroplating with Cu. *Fig. 149* below shows photographs of electroplated coupons for purposes of retaining the coating prior to sectioning and mounting for examination. This obstacle explains why cross-sections for Y-coated samples are not provided above in this work, but will be provided for future publication as described in the preface. Options are to investigate putting down a seed layer using Ti and then electroplate with Cu. It seems the microstructure of Cu is highly

dependent on the characteristic of the underlying layer, with perhaps yttrium having a poor affinity for bonding to Cu.




**Fig. 149:** Photographs of Electroplated Coupons for Examining Cross-Sections

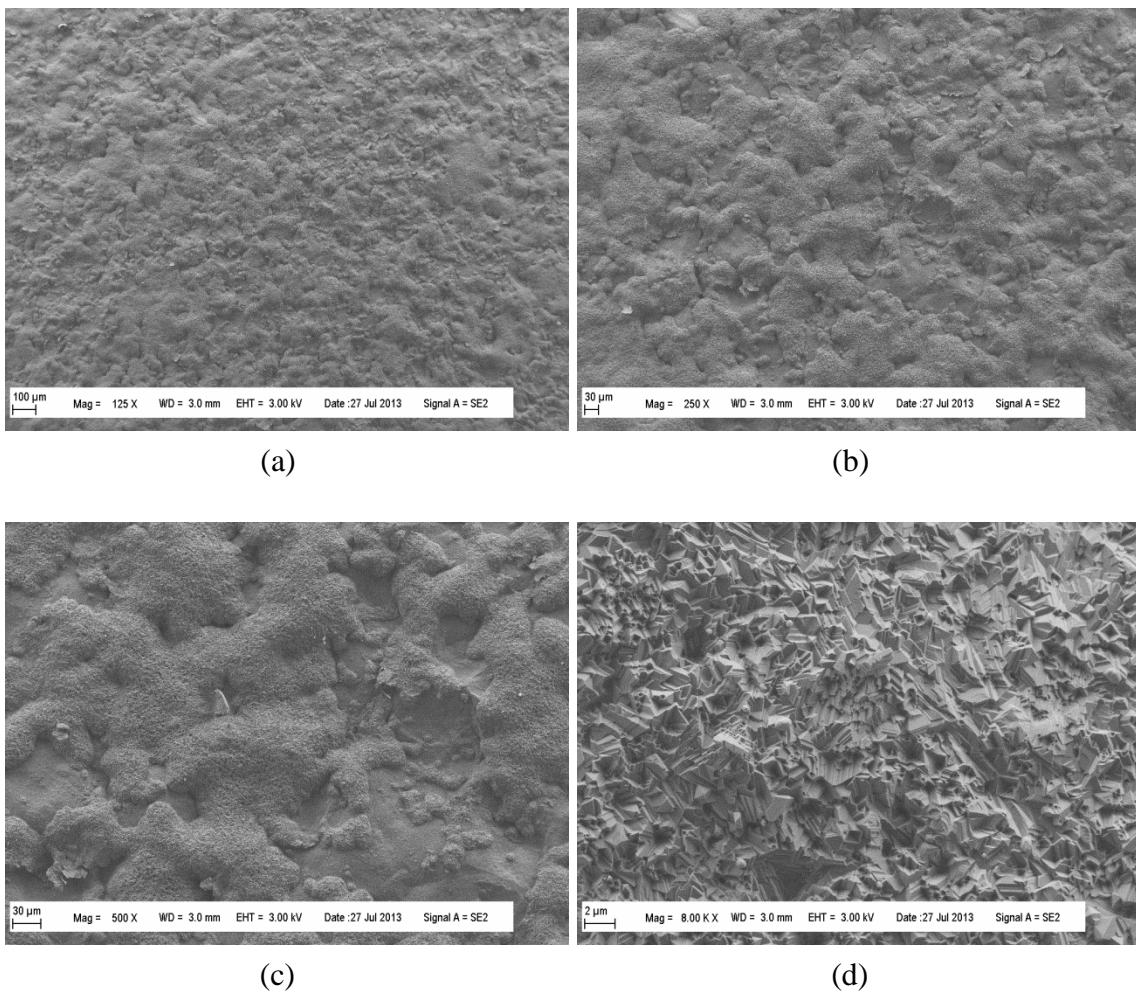
Measured properties of the applied coatings are provided below in Table 10. Steps were taken to prepare the surface and weigh the coupons and then coat the samples and weigh them again. The difference between these weights is the coating weight and is shown in the table. Again, all surface treated samples were slightly magnetic.

**Table 10:** Measured Properties of Applied Coatings

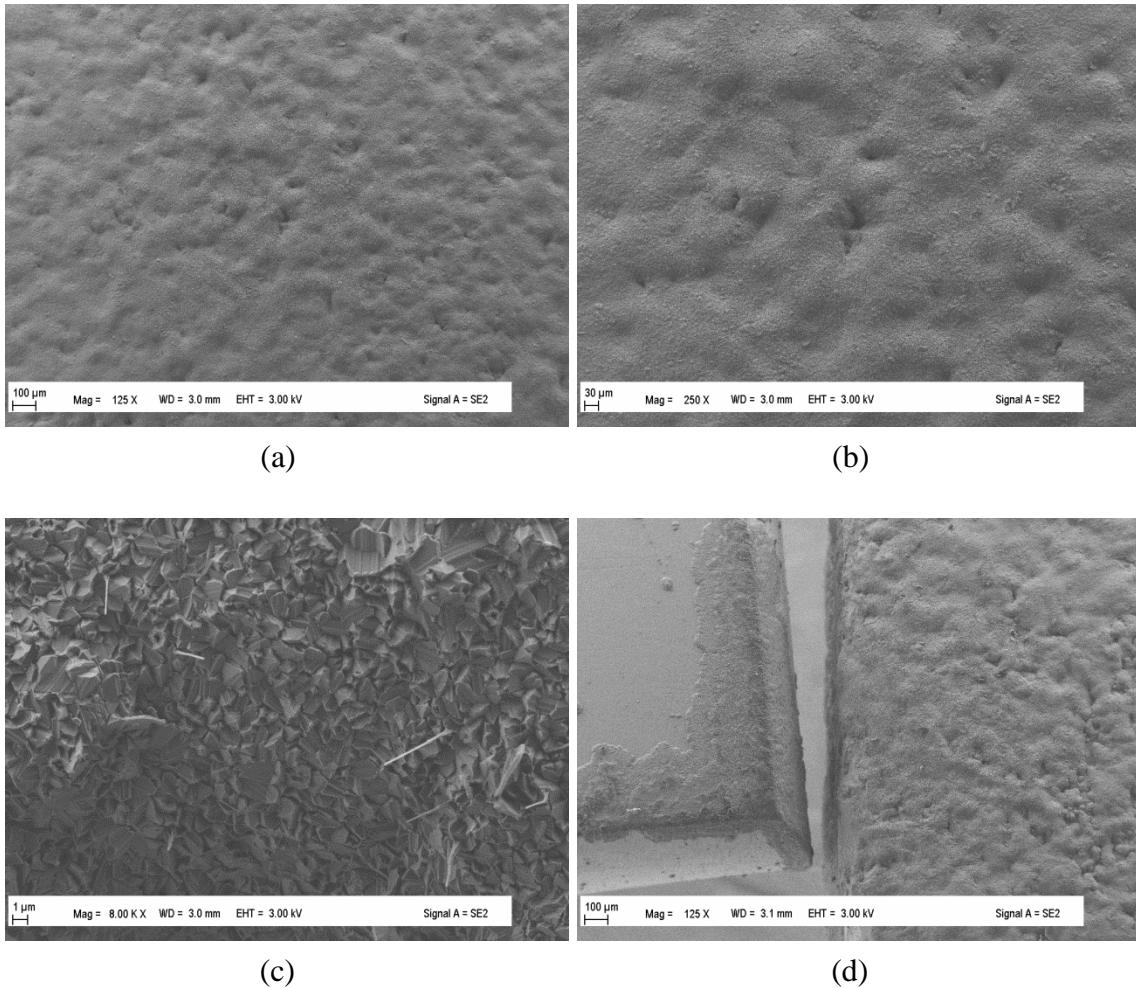
| Coating |    | Meas. Weight ( $\mu\text{g}$ ) | Meas. Area ( $\text{mm}^2$ ) | Meas. Thickness ( $\text{\AA}$ ) | Meas. Surf. Wt. ( $\text{mg}/\text{cm}^2$ ) | Nominal Density ( $\text{g}/\text{cm}^3$ ) |
|---------|----|--------------------------------|------------------------------|----------------------------------|---------------------------------------------|--------------------------------------------|
| T92     | Al | 468                            | 380.25                       | 4996                             | 0.13                                        | 2.70                                       |
| T122    | Al | 499                            | 384.91                       | 4996                             | 0.13                                        | 2.70                                       |
| T92     | Y  | 931                            | 383.73                       | 5042                             | 0.24                                        | 4.34                                       |
| T122    | Y  | 964                            | 380.16                       | 5042                             | 0.25                                        | 4.34                                       |



**Fig. 150:** GIXRD patterns of Y-Coated NF616 (T92) and HCM12A (T122)  
After 1000 hours exposure.

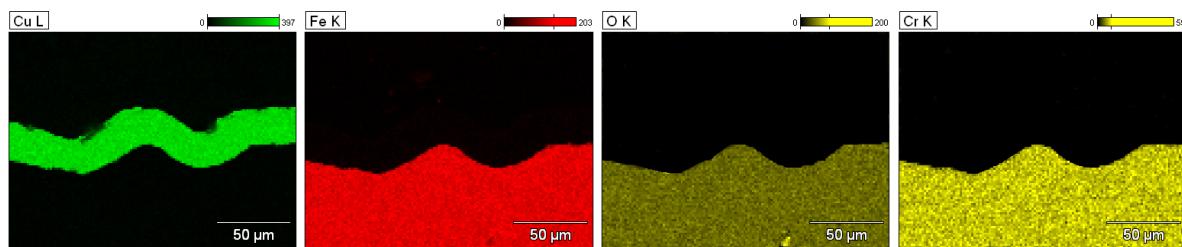
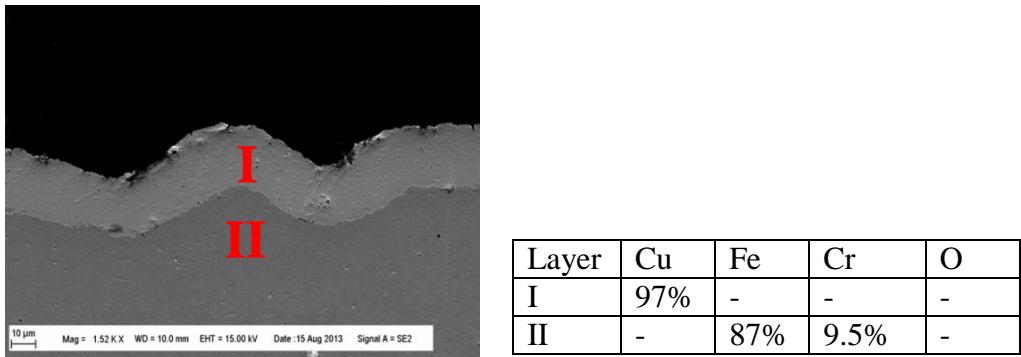

### 5.5.3. Shot Peening on 9-12%Cr Ferritic-Martensitics

SEM and EDS surface analysis of NF616 after shot peening is shown below in *Fig. 151*. EDS quant results show an atomic fraction (%) of chromium consistent with that of the actual composition.




**Fig. 151:** SEM/EDS of Shot Peened T92 before exposure

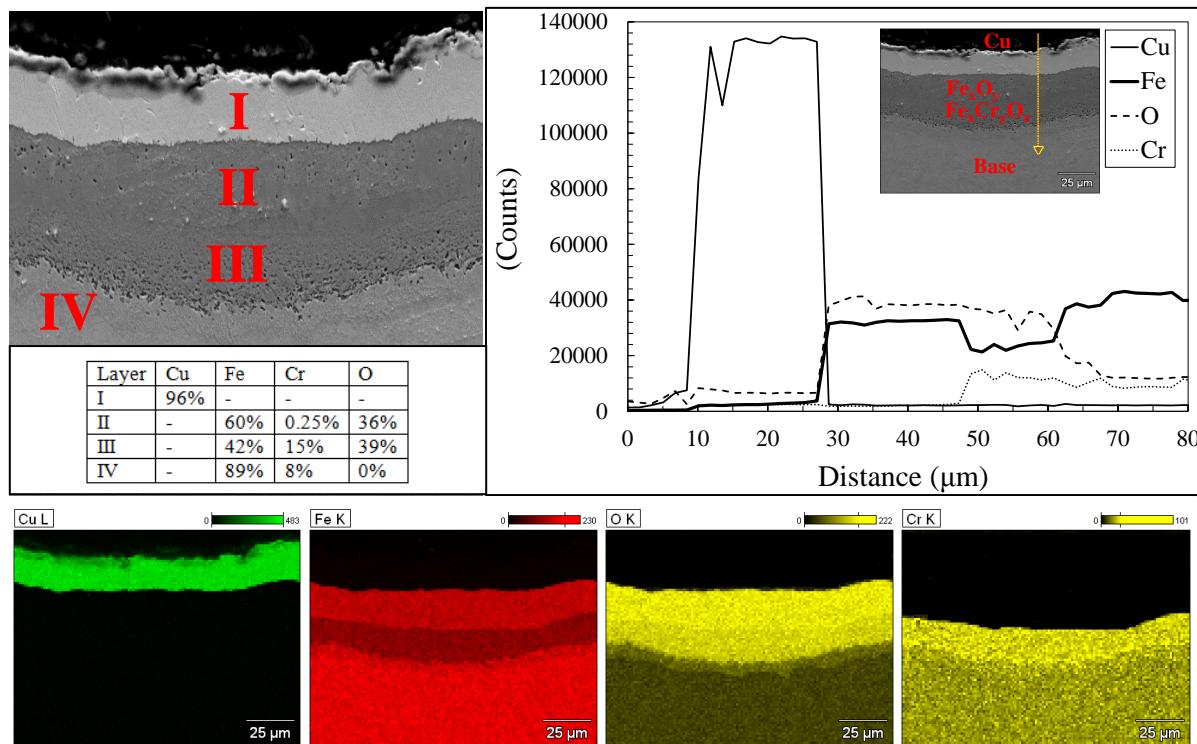
SEM micrographs of peened T92 are shown below for 400 hours (Fig. 152) and 1000 hours (Fig. 153).


**Fig. 152:** SEM micrographs of Shot Peened T92 in RG-CO<sub>2</sub> at 550°C, 20 MPa  
After 400 hrs exposure at (a) 125X, (b) 250X, (c) 500X, and (d) 8,000X.

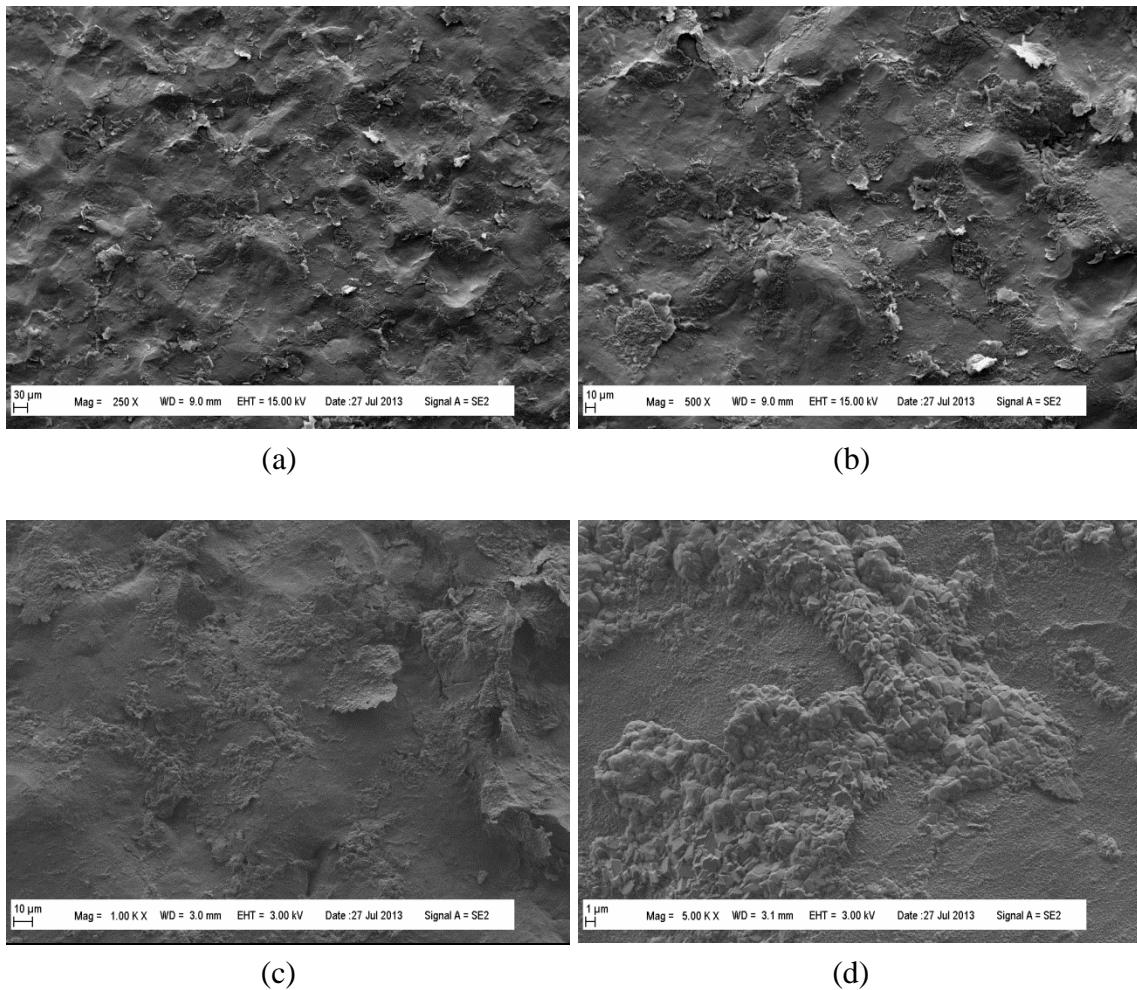


**Fig. 153:** SEM micrographs of Shot Peened T92 in RG-CO<sub>2</sub> at 550°C, 20 MPa After 1000 hrs exposure at (a) 125X, (b) 250X, (c) 8,000X showing needles, and (d) 125X toward the edge to compare edge of peened surface to Y-coated.

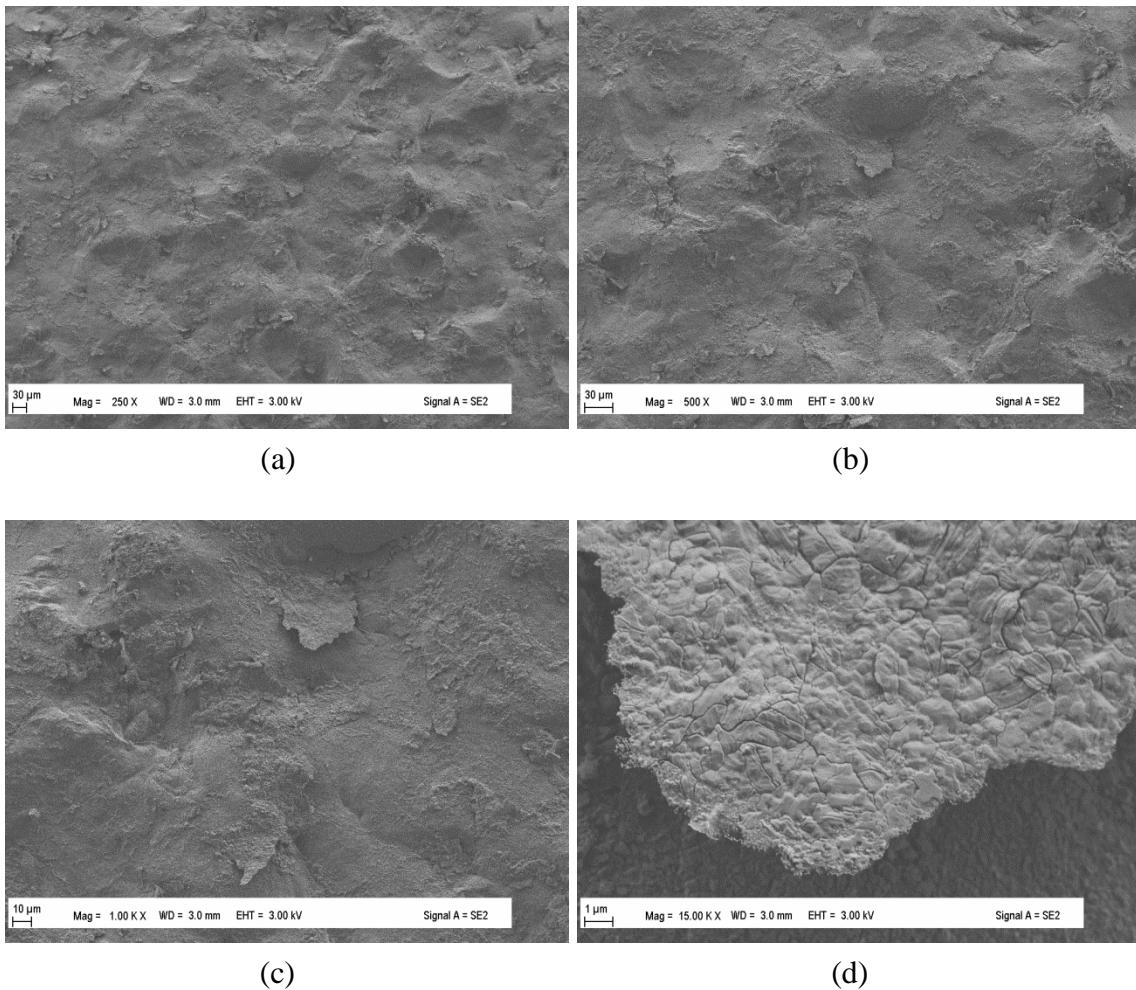

EDS cross-section maps of peened T122 before exposure are shown below in *Fig. 154*. The top lightly contrasted layer is the protective Cu layer that helps distinguish between the features of the base alloy. Atomic fraction (%) is also provided in the figure, and should be used as reference for comparison to atomic fraction in other figures that follow to quantify changes in stoichiometry of observed layer(s).



**Fig. 154:** Cross-sections of Shot Peened T122 Before Exposure. Electroplated with Cu for enhanced characterization. **Top Right:** Atomic fraction (%) of base material (taken at 1500X). **Bottom:** Spectral maps of key elements.


Cross-section of peened T92 after 1000 hours exposure is shown below in *Fig. 155*. Both the atomic fraction taken at different points in the oxide layers and the linescan correlate well to suggest existence of a rich Fe and O top layer thicker than the Fe, Cr, and O layer beneath it. Intensity difference in, as well as between Fe, Cr, and O in the layers highlighted by EDS spectral maps are clear and distinguishable, however the line of reference to where the base surface was originally and is now is not entirely clear. The changes in the spectral map for oxygen show a migration direction of oxygen from the base to the top layer. The atomic fractions and surface features both suggest a dual density or duplex oxide layer forming on the peened surface. The stoichiometry of the top layer (II) is very closely aligned with the  $\text{Fe}_2\text{O}_3$  (5.24 g/cc) oxide (hematite) and the bottom layer (III) a non-stoichiometric iron-

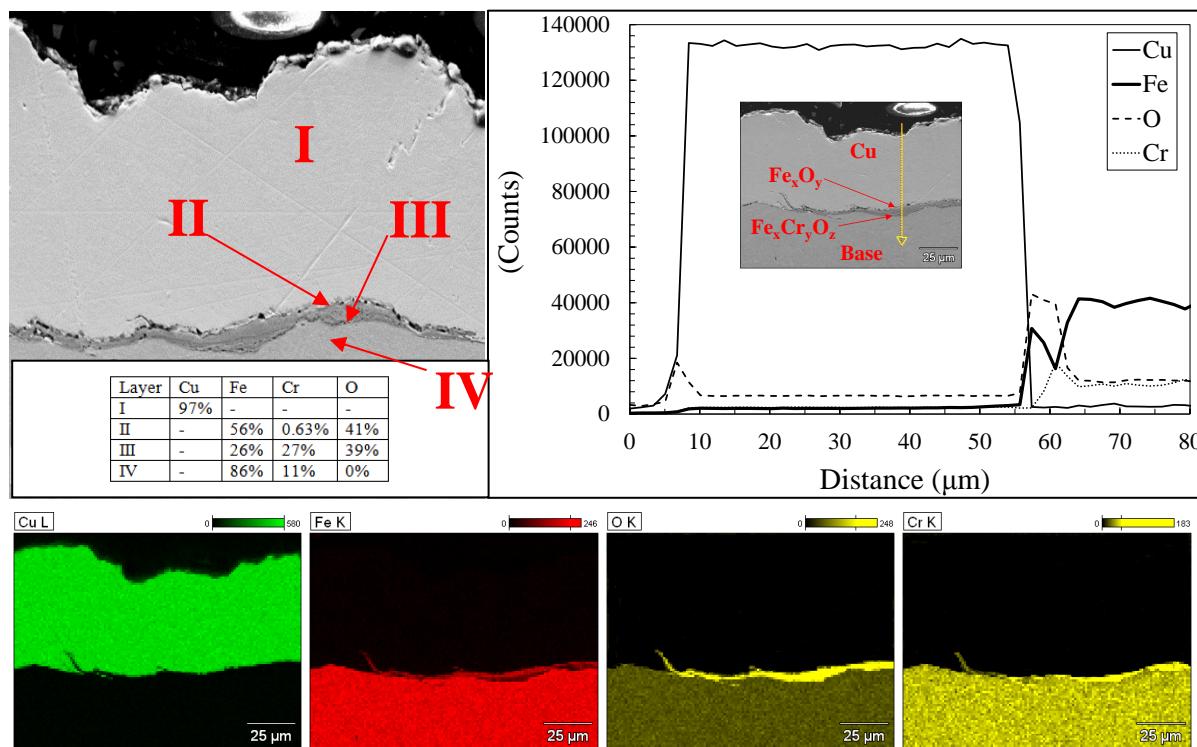
chromium oxide  $\text{Fe}_x\text{Cr}_y\text{O}_z$  that is likely the spinel  $\text{FeCr}_2\text{O}_4$ , as observed in phase I and on AFA-OC6.



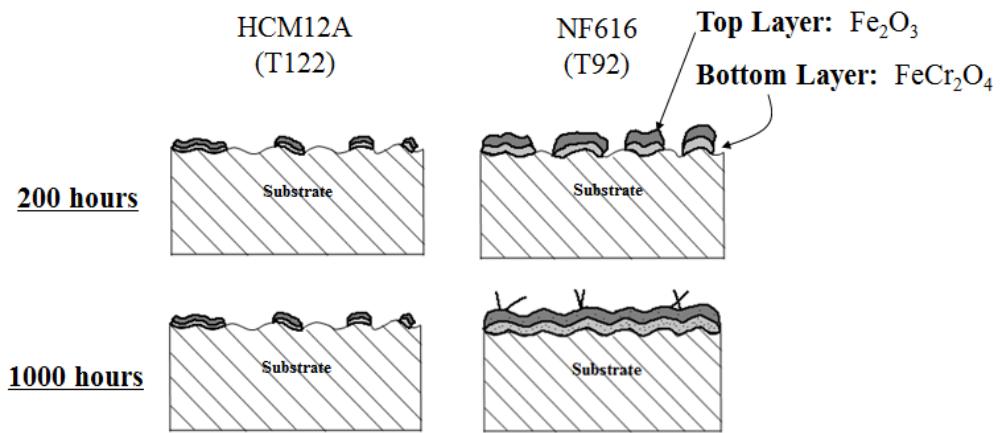

**Fig. 155:** Cross-Section of Shot Peened T92 after 1000 hours in RG-CO<sub>2</sub>/550°C/20MPa. Electroplated with Cu for enhanced characterization. **Top Left:** Atom % of layers hinting dual density Fe-Oxide layer formation (taken at 2000X). **Top Right:** EDS linescan through layers showing lower Fe, higher Cr content in bottom layer. **Bottom:** Spectral maps of key elements.

SEM micrographs of peened T122 are shown below for 200 hours (*Fig. 156*) and below for 1000 hours exposure (*Fig. 157*).

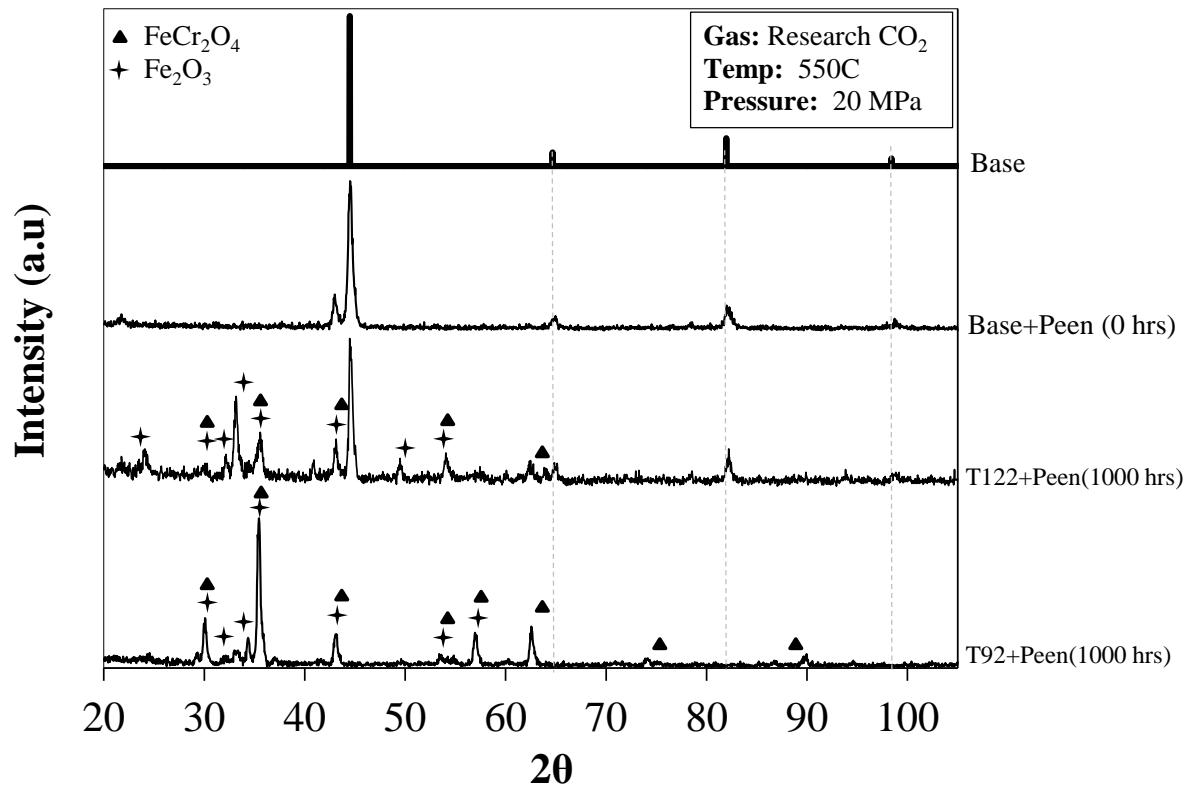



**Fig. 156:** SEM micrographs of Shot Peened T122 in RG-CO<sub>2</sub> at 550°C, 20 MPa  
After 200 hrs exposure at (a) 250X, (b) 500X, (c) 1,000X and (d) 5,000X.




**Fig. 157:** SEM micrographs of Shot Peened T122 in RG-CO<sub>2</sub> at 550°C, 20 MPa  
After **1000** hrs exposure at (a) 250X, (b) 500X, (c) 1,000X and (d) 15,000X.

Cross-section of peened T122 after 1000 hours exposure is shown below in *Fig. 158*. The oxide structure still appears duplex in nature, but is much thinner than that seen on T92. Also it is important to mention the oxide features shown in *Fig. 158* were discrete and far between, whereas the oxide layer for T92 was fairly uniform and quite continuous. Once again, stoichiometries of the layers coincide with that obtained also by T92, a Fe<sub>2</sub>O<sub>3</sub> top layer followed by a FeCr<sub>2</sub>O<sub>4</sub> bottom layer. A schematic representation of the nature of the oxide


formed as observed through cross-sections is shown below in *Fig. 159*. A GIXRD pattern taken for T92 and T122 after 1000 hours is shown in *Fig. 160*. The suspected oxide layers observed and ascertained stoichiometrically from cross-sections are identified as phases and confirmed for T92 and T122. Similar observations described here for shot peened samples were also observed for Al-coated samples (Sec 5.1).



**Fig. 158:** Cross-Section of Shot Peened T122 after 1000 hours in RG-CO<sub>2</sub>/550°C/20MPa. Electroplated with Cu for enhanced characterization. **Top Left:** Atom % of layers hinting thin dual density Fe-Oxide layer formation (taken at 2000X). **Top Right:** EDS linescan through layers showing lower Fe, higher Cr content in bottom layer. **Bottom:** Spectral maps of key elements.



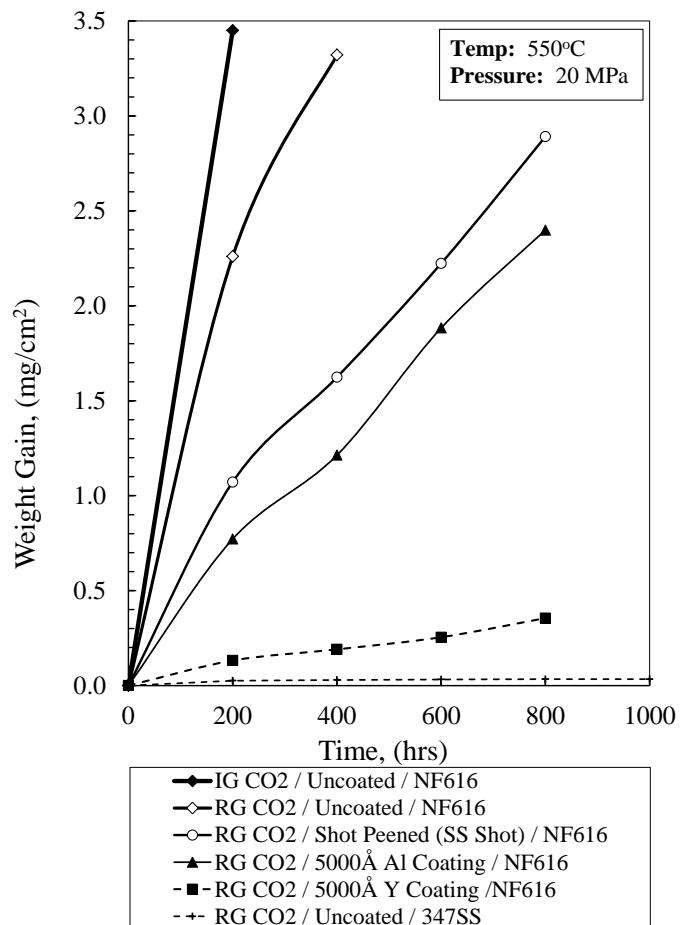
**Fig. 159:** Schematic Representation of Duplex Oxide Formation on Peened FM Steels



**Fig. 160:** GIXRD patterns of Shot Peened T92 and T122 after 1000 hours exposure.

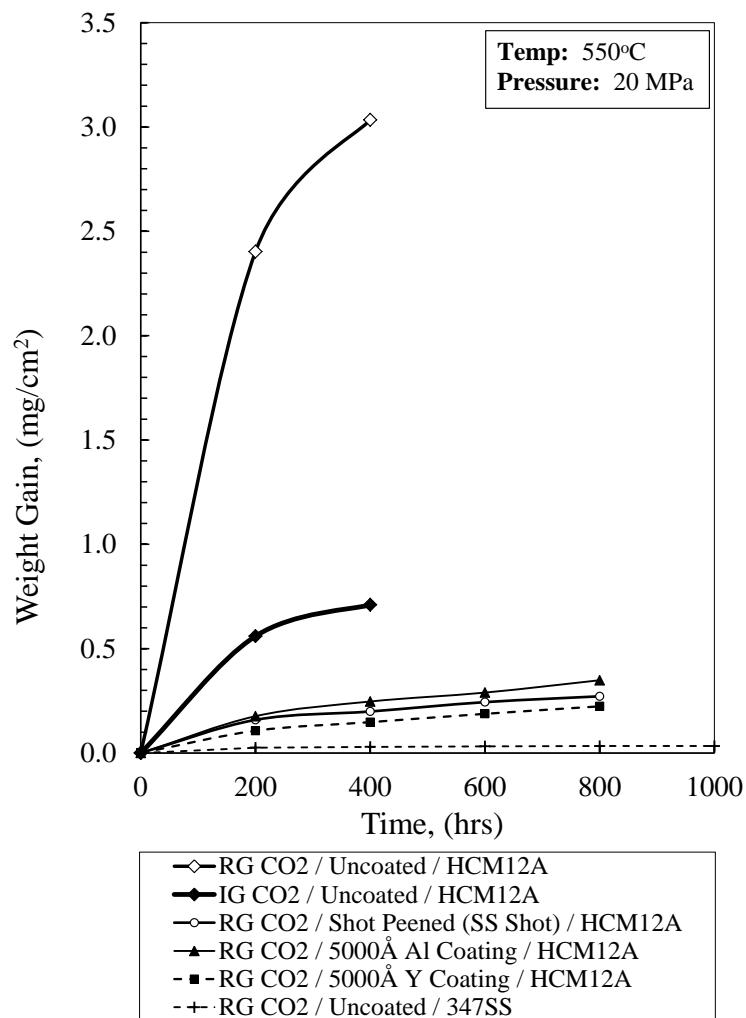
Hardness measurements were made on unpeened and shot-peened FM steels and are provided below in Table 11. Measurements were made on both superficial and Rockwell scales for comparison.

Table 11: Measured Hardness of Unpeened and Shot Peened Samples


|               | Condition | 15N<br>(15 kgf)<br>Superficial | 30N<br>(30 kgf)<br>Superficial | HRC<br>(150kgf)<br>Rockwell |
|---------------|-----------|--------------------------------|--------------------------------|-----------------------------|
| <b>NF616</b>  | Unpeened  | 83.32                          | 68.78                          | 34.20                       |
|               | Peened    | 83.74                          | 69.70                          | 35.25                       |
| <b>HCM12A</b> | Unpeened  | 83.76                          | 69.44                          | 37.74                       |
|               | Peened    | 84.52                          | 70.0                           | 35.34                       |

**Note:** Unpeened values based on average of 5 measurements, peened values based on average of 10 measurements. Shot peened sample only peened on one side; all samples polished to 800 grit finish. All meas. made using 135° diamond tipped pointer.

The superficial scales were selected for several reasons; they can be used for coatings by applying a lighter load, and the indenter is more likely to give a more representative hardness value that can be converted to Vickers micro hardness. Measuring directly using Vickers micro hardness was initially thought to produce values that may not be truly representative of the surface due to the unevenness and propensity of surface irregularities. Vickers micro hardness of shot peened samples was performed by Naraparaju et al [70] to illustrate increase in fatigue strength and associate the increase in hardness to the presence of dislocations on the peened surface. According to Grabke [65], surface working such as grinding, sand-

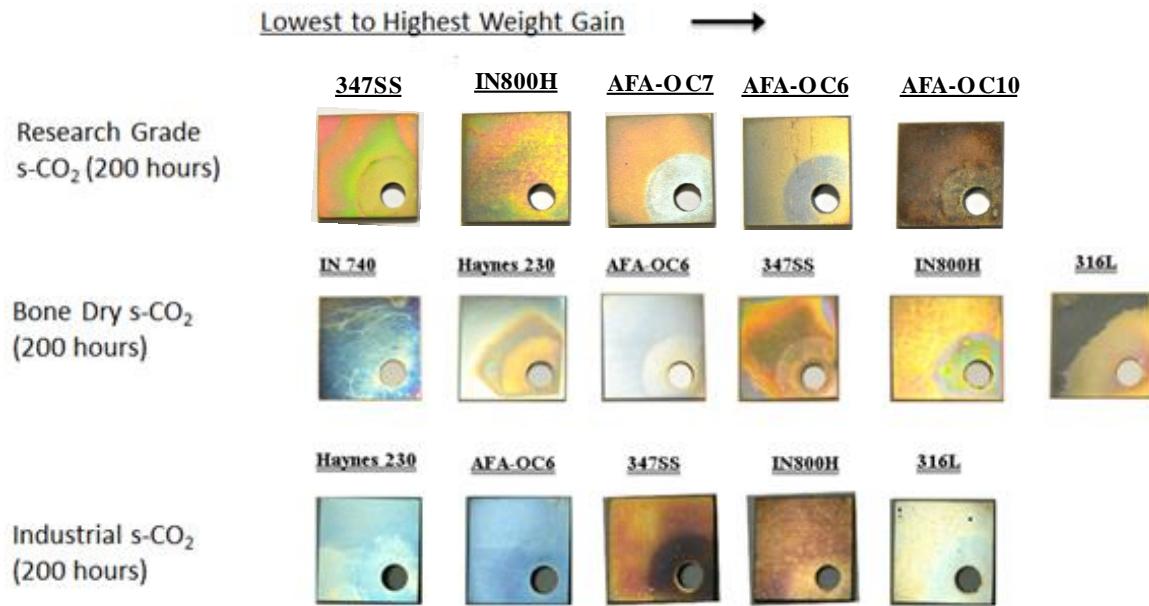

blasting, machining, shot-peening, etc. introduces near surface deformation, i.e. many dislocations, and upon heating to the process temperature a partially recrystallized microstructure results with many grain boundaries and sub-boundaries, which can act as fast diffusion paths for supply of (say in this instance from this paper, Cr) to the surface. It is like a cold working effect, and has been shown to be favorable in protection against metal dusting.

#### 5.5.4. Comparison of Surface Treatments on 9-12%Cr Ferritic-Martensitics



**Fig. 161:** Effect of Al, Y Coatings and Shot Peening on NF616 at 550°C, 20 MPa

Results from Alvarez et al [68] indicate that the quality of the coatings, particularly their density and adhesion, are more important than the thickness of the layer deposited for effective protection against metal dusting. Reactive elements (rare earth) like yttrium significantly increase the adhesion and spalling resistance of the oxide layers, thereby further enhancing the high temperature corrosion resistant behavior [71]. Delaunay and Huntz have showed that growth rate can be decreased and spalling reduced by additions of Y, Ce, or La [72, 73].




**Fig. 162:** Effect of Al, Y Coatings and Shot Peening on HCM12A at 550°C, 20 MPa

## 5.5. Analysis of Interference Colors

According to Vander Voort [74], interference colors and their relationship to film thickness have been observed for pure iron, steel, nickel, and copper. The colors produced by a film of suitable thickness are caused by interference between light rays reflected from the inner and outer film surfaces. Recombination of two waves with a phase difference of  $180^\circ$  causes light of a certain wavelength to disappear, and the reflected light exhibits the complimentary color. In this study, interference colors were observed on the austenitic and alumina forming alloys in the temperature range of  $450\text{--}650^\circ\text{C}$ . Images were taken with a high resolution digital camera at an angle off-normal to the coupon to capture the proper hue of colors. These images can be located in Sec. 8.1 of the appendices. The progression of observed colors with increasing temperature was generally fairly consistent between the austenitic alloy group, and likewise with the alumina forming alloy group. The only clearly evident distinction between surface oxidation and exposure time witnessed in the austenitic group was for the 347SS alloy. The surface oxidation appears as closely grouped spot-like black particles. Between 400 and 600 hours, this physical distinction manifests itself and continues to grow thereafter. It's interesting to note that the manifestation of this physical distinction also happens to occur around the inflection point on the oxidation curve from linear to parabolic, a transition commonly referred to as break-away oxidation. According to Kofstad [35], during transition to the accelerated oxidation of niobium in oxygen, the first nuclei of  $\text{Nb}_2\text{O}_5$  are detected as spots on the surface, and the breakaway oxidation itself is associated with  $\text{Nb}_2\text{O}_5$  formation. The  $\text{Nb}_2\text{O}_5$  scale is porous and offers no or little resistance to the oxidation. This oxide scale phenomena with interference colors during transition was also

observed and reported by Hurlen [75], Blackburn [76], Cox and Johnston [77], which may similarly be taking place here in this study for 347SS and the AFA's, but obviously with a different oxide layer given the metal/alloy composition and test conditions. As for oxidation colors observed for the ferritic alloys, this was not the case. Their color remained strictly between a dull and dark grey with evidence of spallation at 450°C, leading to their removal from the study at higher temperatures. *Fig. 163* below illustrates the observed progression of interference colors after 200 hours in each of the different CO<sub>2</sub> gas grades.



**Fig. 163:** Progression of Interference Colors with Magnitude of Weight Gain at 650°C

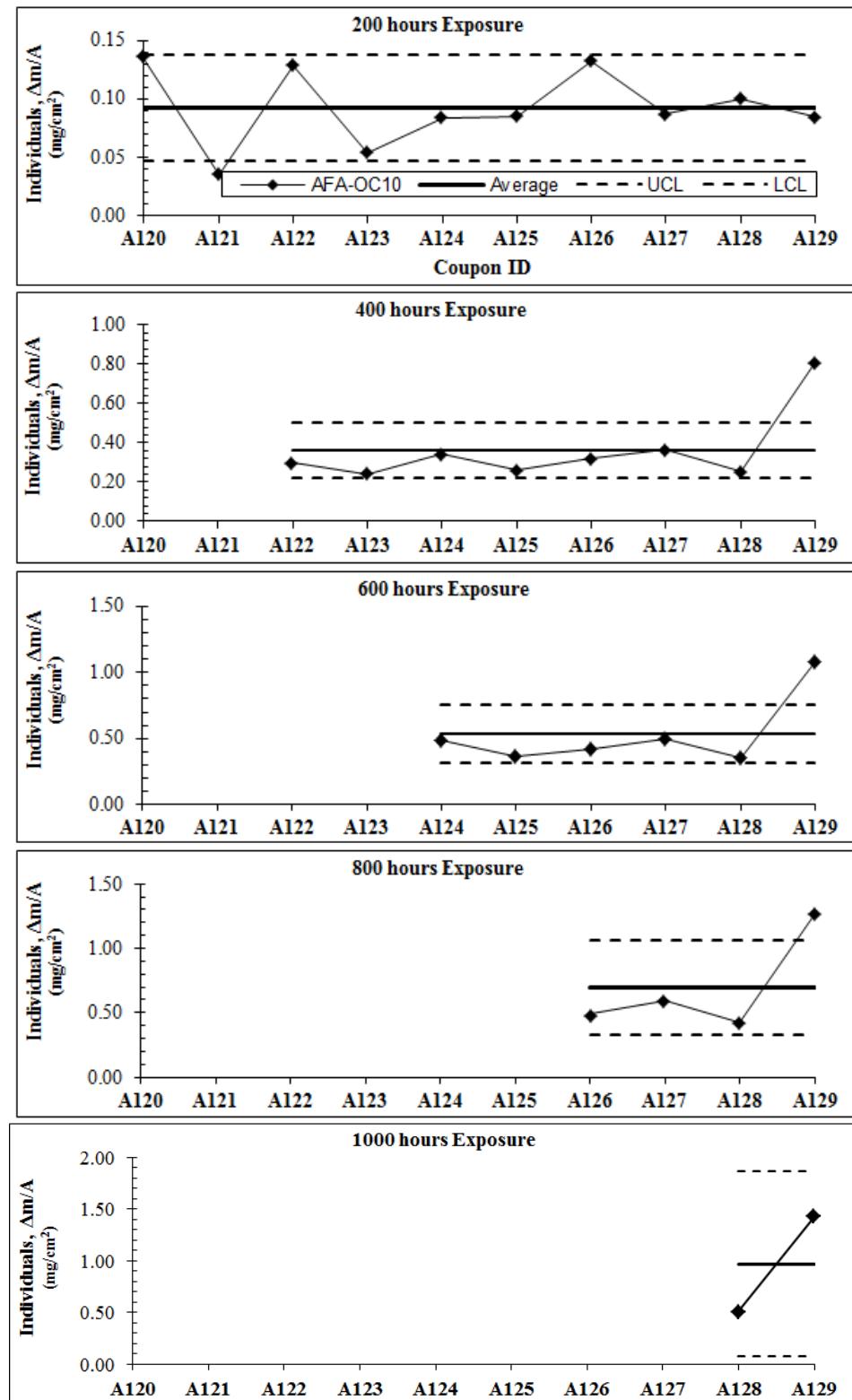
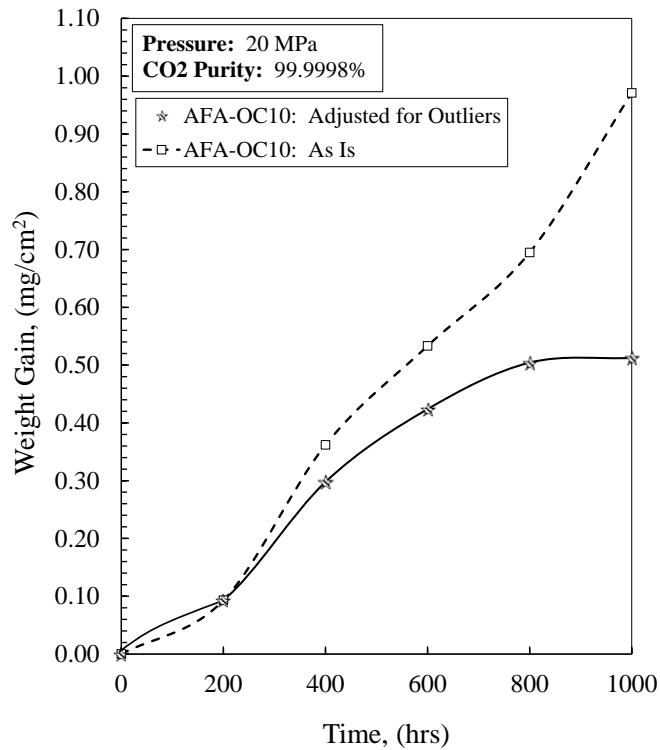
Is there a relationship between interference color and magnitude of weight gain/film thickness under supercritical conditions? Techniques such as imaging spectrophotometry, ellipsometry, and multi-wavelength interferometry are a few approaches that might be used for determining film thickness as provided by Kitagawa [78].

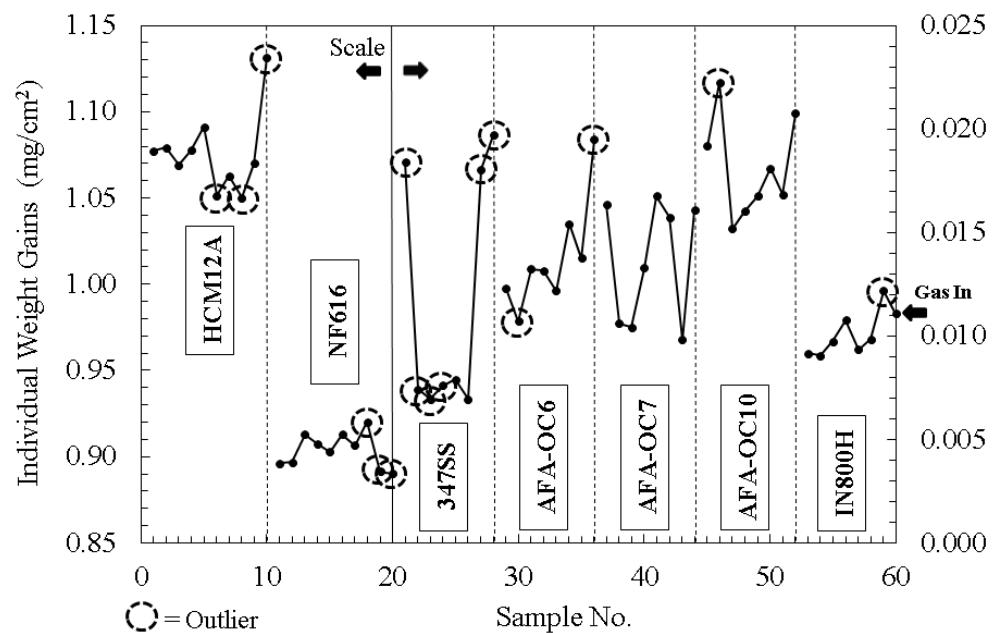
## 5.6. Statistical Analysis Techniques

### 5.6.1. Monitoring Individual Weight Gains using Control Charts

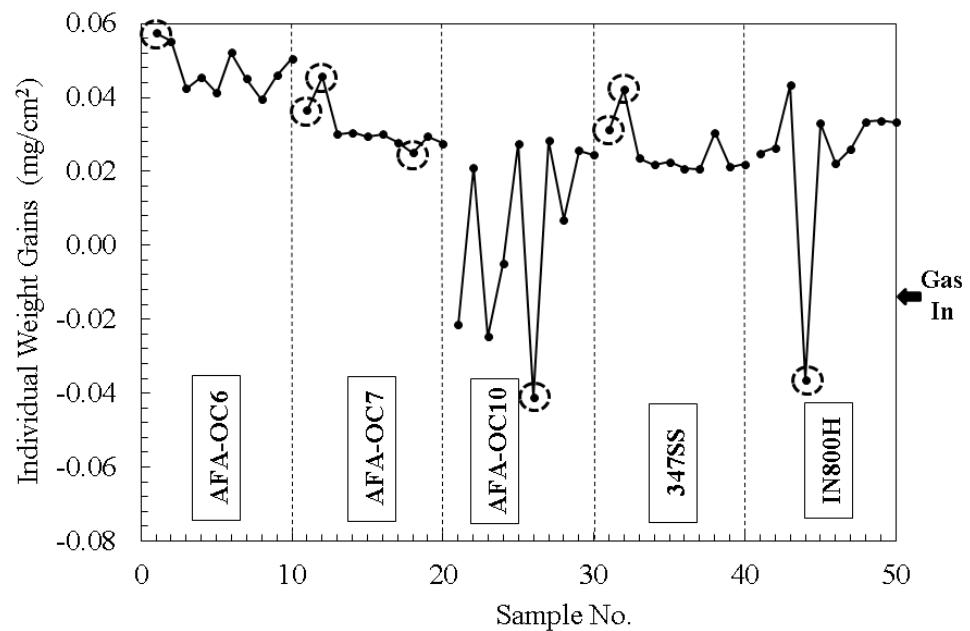
In this study, ASTM control charts [79] were used as a statistical quality control method to monitor the variation of individual weight gains with respect to the average reported weight gain. A control chart always has a central line for the average, a line for the upper control limit (UCL) and a line for the lower control limit (LCL). The mentioning of this bears particular importance for alloys AFA-OC6 and AFA-OC10. The individual weight gains of these coupons at 650°C consisted of several peculiar outlying values that were outside of set control limits. For example, *Fig. 164* below shows control charts for the individual weight gains of AFA-OC10 at 650°C. A few outliers are detected outside of control limits at 200 hours, but notice how coupon A129 becomes an outlier at 400 hours and its impact on the average continues to propagate through 1000 hours. These outliers have the potential to significantly alter the average weight gain and possibly even the type of oxidation curve that is generally taking place. Such removal of individual outliers from the computed average weight gain is a principle that was applied by Brush [80] in his study in superheated steam. *Fig. 165* below shows the “as is” average weight gain curve versus the ‘adjusted’ for outliers average weight gain curve. The procedure for determining the adjusted curve consisted of removing the highest outlier from the average and repeating until individual weight gains fell within ASTM control limits. It should also be noted that at 650°C, the AFA materials appear to be susceptible to a large amount of variation and they exhibited the largest deviation amongst individuals. This can be seen in *Fig. 168*. The adjusted values for AFA-OC6 and

AFA-OC10 at 650°C are plotted in *Fig. 51* and *Fig. 52*. Freeman [81] has shown that the weight measurement is the dominating contributor to the standard error and that the longer the test, the smaller the error. Quesenberry [82] emphasizes the effect of sample size on control limits for  $\bar{X}$  charts and recommends a number of samples and sample size for establishing individual measurement control limits.

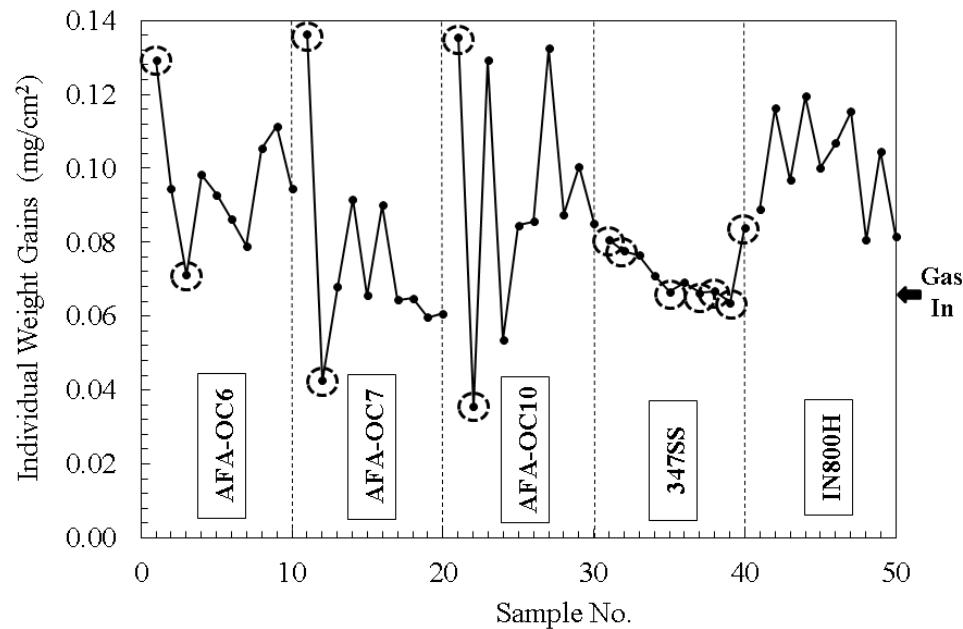





Fig. 164: Control Chart for Individual Weight Gains of AFA-OC10 (Expt. 5)

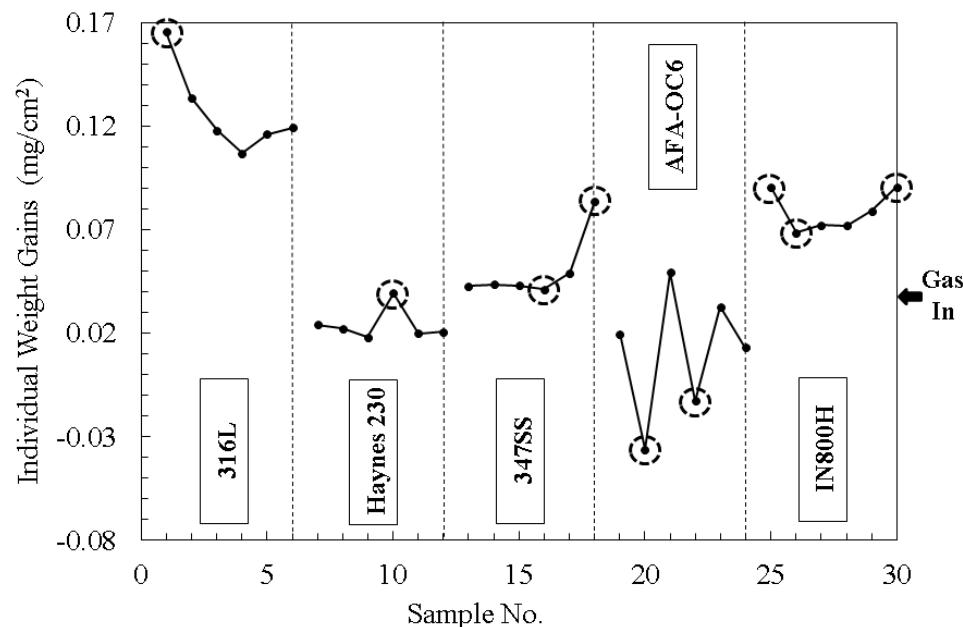



**Fig. 165:** Effect of Outliers on Weight Gain Oxidation Curve.

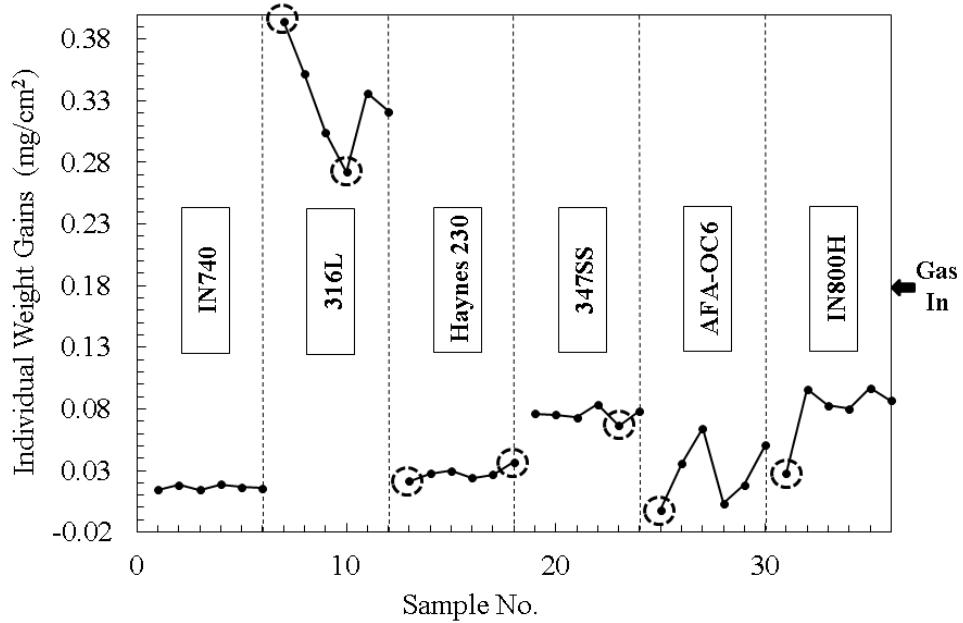
### 5.6.2. Effect of Individuals on Average Weight Gain


As a part of exploratory data analysis, it was observed that on occasion, outliers existed in what could mistakenly be the same frequent position. To expand on this, there was concern that perhaps outliers were occurring with a greater frequency at the same locations between different materials when arranged on the sample holder. Therefore, individual weight gains were plotted in the same arrangement coupons were arranged on the sample holder according to material, to evaluate where these outliers were occurring. This is shown in *Fig. 166* through *Fig. 170*.




**Fig. 166:** Individual Weight Gains at  $450^\circ\text{C}$ , 20 MPa in RG- $\text{CO}_2$  after 200hrs (Expt. #3)




**Fig. 167:** Individual Weight Gains at  $550^\circ\text{C}$ , 20 MPa in RG- $\text{CO}_2$  after 200hrs (Expt. #4)



**Fig. 168:** Individual Weight Gains at 650°C, 20MPa in RG-CO<sub>2</sub> after 200hrs (Expt. #5)



**Fig. 169:** Individual Weight Gains at 650°C, 20MPa in IG-CO<sub>2</sub> after 200hrs (Expt. #7)



**Fig. 170:** Individual Weight Gains at 650°C, 20MPa in IG-CO<sub>2</sub> after 200hrs (Expt. #8)

In Fig. 166 it is interesting to note that 347SS (austenitic) is the only alloy sandwiched between two different alloys (either ferritic, AFA, or a superalloy) in RG-CO<sub>2</sub> experiments 3 through 5. However, outliers appear not only at the ends, but also near the center for 347SS, where the individual data points resemble somewhat a U/V-shaped valley. Such location of outliers may be purely random or just chance, or could present insight into a phenomena taking place that is not clearly known. According to Grabke, care should be taken over the positioning of specimens and in particular the possibility of catalytic effects between multiple specimens of different alloys, whereby volatile corrosion products from one sample may trigger corrosion on a neighbor. To minimize this possibility, duplicate sample positions should be randomized in the autoclave, avoiding like specimen configurations [33]. In Fig. 166 through Fig. 168, the range in difference between individual weight gains for RG-CO<sub>2</sub> is larger than in IG-CO<sub>2</sub> (Fig. 169) and BDG-CO<sub>2</sub> (Fig. 170), especially for the AFA's which

have significant scattering amongst their individuals. In RG-CO<sub>2</sub>, the weight gains were higher, and in turn the growth rates occurred faster at early exposure times. This large range of difference between individuals in RG-CO<sub>2</sub> may be related to the growth rate observed. This could imply that for environments where coupons experience high growth rates, large deviations may be expected between individuals, and a sufficient number of samples should be selected to overcome such an effect and to assist in obtaining a weight gain value that is well-averaged and meaningful.

## 6. Summary

### 6.1. Results and Conclusions

- An experimental system for performing oxidation tests of various grades of alloys in S<sub>CCO</sub><sub>2</sub> up to 650°C and 20 MPa has been constructed and is capable of rank ordering alloy oxidation-corrosion performance.
- An effect of operating pressure (8.274MPa vs. 20 MPa) at 450°C was found to increase the magnitude of weight gain and oxide growth for both T92 and T122, but the austenitics exhibited comparatively low weight gain at either pressure.
- Both ferritic materials at 450°C developed a thick duplex oxide layer consisting of an outer magnetite (Fe<sub>3</sub>O<sub>4</sub>) layer and a chromium rich inner spinel layer, despite simultaneous material loss via pitting and carbon deposition. These effects, fitting in

definition to metal dusting, together with large magnitude weight gains compared to the other test alloys, warranted their removal from study at temperatures  $> 450^{\circ}\text{C}$ .

- The austenitic and AFA alloys at  $450^{\circ}\text{C}$  displayed low weight gains and near parabolic oxidation curves and were exempt from metal dusting or material loss, suggesting protective oxidation and good corrosion resistance.
- The austenitic and AFA alloys at  $650^{\circ}\text{C}$  are best portrayed by a combination of rate laws to describe their behavior as transition in stages of oxidation occur, fitting the type of regimes experienced in earlier works and denoted by an S-shaped curve, unseen before in this particular environment. This was not the case for IN800H, which demonstrated good corrosion resistance at all three test temperatures. 347SS began to show signs of spallation after 400 hours, while none of the AFA materials appeared to show such signs.
- Preferential attack was observed at the flat edges and corners of coupons, and contributed largely to the measured weight gains. This may be an important consideration for in-plant application of materials for components where joining and welds are present.
- Weight gains were lower in IG- $\text{CO}_2$  than in RG- $\text{CO}_2$  likely owing to the extra oxygen content helping suppress oxidation by forming a protective oxygen-rich oxide layer. More mass spectrometer analysis is needed at the outlet to ascertain the reaction products with respect to higher contents of moisture, hydrocarbons, and oxygen as provided by the gas certificate. The austenitics were generally unaffected by this change in environment, similarly as it was seen in changes of pressures. However

AFA-OC6 showed marked improvement while NF616 experienced a much larger weight gain than in RG-CO<sub>2</sub>.

- Very thin oxide scales were observed in IG-CO<sub>2</sub>. TEM analysis may help describe the nature of the thin oxide layer(s) formed.
- All surface treatments (Al, Y, and Shot Peen) showed improvement to oxidation resistance on the 9-12%Cr FM steels. The integrity or adherence of the aluminum layer rapidly diminished and continued to diminish at a linear rate. Y-coating added significant benefit for both FM steels, slowing down the rate of oxide but at a much lower continued linear rate. Peening proved effective as a cold working tool, and was similar in performance to Y-coating for T122.

## 6.2. Future Work

Testing was still being performed at the conclusion of this work to evaluate the oxidation-corrosion performance of alloys at high temperature.

- In the near future, efforts will be made by my predecessor, Jacob Mahaffey, to gain more insight and understanding into the effects of impurities in controlled doses such as H<sub>2</sub>O, CO, O<sub>2</sub>, hydrocarbons, etc., but primarily moisture at the onset. Several doses are anticipated to be trialed at 50, 75, 100, and 1000ppm of H<sub>2</sub>O at 650°C.
- In addition, measurements will be made in collaboration with Sandia National Laboratory using the same concentration as that employed in their SCCO<sub>2</sub> flow loops to simulate an in-plant condition. The difference between the measurements made in

this study with the aforementioned in-plant condition may help to provide some explanation of the byproducts to be expected (dumped) downstream in other machinery components. Many measurements have been made on iron-based alloys using CO<sub>2</sub>/CO mixtures, as well as different concentrations of CO in the gas [16], but at sub-critical pressures.

- Use will be made of a mass spectrometer system running simultaneously with LabVIEW acquisition to capture mass spectra of inlet moisture and concentrations of reaction products at the outlet of the autoclave apparatus. Such measurements will be made in a similar fashion to that of Quadakkers et al [83], but who used gas chromatography and an electrolytic-type H<sub>2</sub>O monitor for impurities in impure helium.
- Future testing also includes measurements made at lower temperatures and/or pressures for lower temperature components in the Brayton cycle that do not experience full turbine inlet conditions, as well as those expected for the precooler.

## 7. References

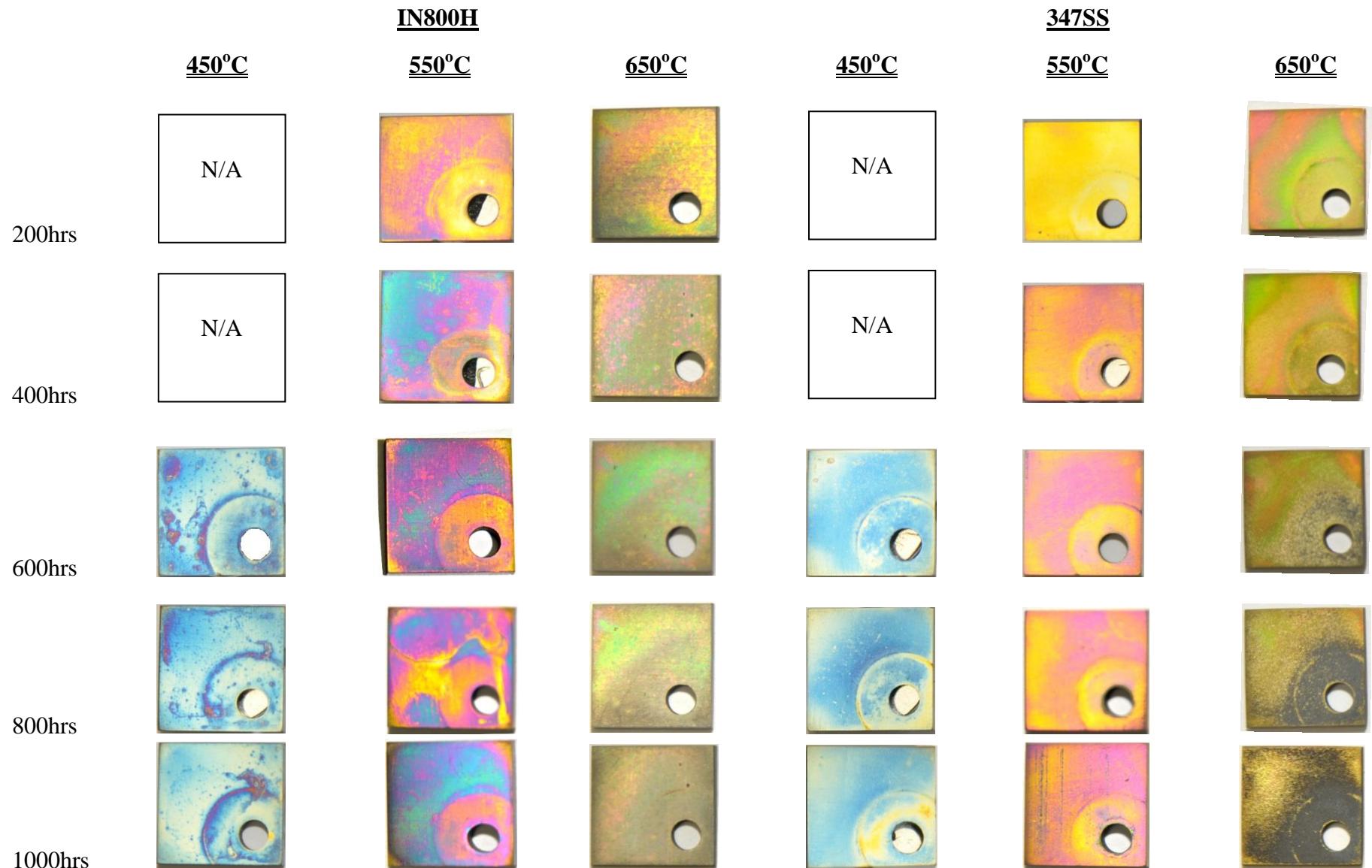
- [1] Tammann, G. (1920). *Über Anlauffarben von Metallen*, Z. Anorg. Allg. Chem. III, pp. 78-89.
- [2] Tammann, G. and Koster, W. (1922). Z. Anorg. Chem., 123.
- [3] Pilling, N.B. and Bedworth, R.E. (1923). *The Oxidation of Metals at High Temperature*, Journal of the Institute of Metals, Vol. 29, pp. 529-582.
- [4] Kubaschewski, B.E. and Hopkins, O. (1962). *Oxidation of Metals and Alloys*, Butterworths Publishing.
- [5] Dunn, J.S. (1926). *The High Temperature Oxidation of Metals*, Proc. R. Soc. Lond. A. 111, pp. 203-209.
- [6] Hauffe, K. (1965). *Oxidation of Metals*, Plenum Press, New York.
- [7] Rohr, V., Schutze, M., Fortuna, E., Tsipas, D.N., Milewska, A., and Perez, F.J. (2005). *Development of Novel Diffusion Coatings for 9-12% Cr Ferritic-Martensitic Steels*, Materials And Corrosion, Vol. 56, No. 12, pp. 874-881.
- [8] Klueh, R.L., and Harries, D.R. (2001). *High Chromium Ferritic and Martensitic Steels for Nuclear Applications*, ASTM International.
- [9] Oh, C., Lillo, T., Windes, W., Totemeier, T., and Moore, R. (2004). *Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatability*, Nuclear Energy Research Initiative, pp. 1-28.
- [10] G. Sulzer, "Verfahren zur Erzeugung von Arbeit aus Wärme," 269599, July 15, 1950.
- [11] E. G. Feher, "The Supercritical Thermodynamic Power Cycle," in Intersociety Energy Conversion Engineering Conference, Miami Beach, 1967, Paper No. 4348.
- [12] "Conference Proceedings from the Supercritical CO<sub>2</sub> Power Cycle Symposium," in Supercritical CO<sub>2</sub> Power Cycle Symposium, Troy, NY, 2009.
- [13] Y Kato, T Nitawaki, and Y Muto, "Medium Temperature Carbon Dioxide Gas Turbine Reactor," Nuclear Engineering and Design, p. Vol. 230 pp. 195, 2004.
- [14] Chang H. Oh, "Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility," Idaho Falls, 2006.

- [15] Dostal, V, Driscoll, M.J., and Hezjar, P. (2004). *A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors*, Advanced Nuclear Power Technology Program, pp. 1-307.
- [16] Holmes, D.R. and Hill, R.B. (1974). *Corrosion of Steels in CO<sub>2</sub>*, British Nuclear Energy Society (BNES), Reading University.
- [17] Ma, Z., and Turchi, C.S. (2011). *Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems*, Supercritical CO<sub>2</sub> Power Cycle Symposium: NREL/CP-5500-50787, pp. 1-5.
- [18] Chapman, D.J., and Arias, D.A. (2009). *An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant*, Proceedings of SCCO<sub>2</sub> Power Cycle Symposium, April 29-30, Troy NY.
- [19] Klueh, R.L., and Nelson, A.T. (2007). *Ferritic-Martensitic Steels for Next Generation Reactors*, Journal of Nuclear Materials, pp.37-52.
- [20] Sridhar, S., Rozzelle, P., Morreale, B., and Alman, D. (2011). *Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems*, Metallurgical and Materials Transactions A, Vol. 42A, pp. 871-877.
- [21] Gong, Y, et al. *Analysis of Radial Compressor Options for Supercritical CO<sub>2</sub> Power Conversion Cycles*, MIT-GFR-034, June 2006
- [22] Wright, S.A., Radel, R.F., Vernon, M.E., Rochau, G.E., and Pickard, P.S. (2010). *Operation and Analysis of a Supercritical CO<sub>2</sub> Brayton Cycle*, Sandia National Laboratories-SAND2010-0171, pp. 1-101.
- [23] Grabke, H.J.(1998). *Carburization: A High Temperature Corrosion Phenomenon*, Materials Technology Institute of the Chemical Process Industries, Inc., MTI Publication No. 52
- [24] Gibbs, J.P. (2010). *Corrosion of Various Engineering Alloys in Supercritical Carbon Dioxide*, M.S. Thesis, MIT.
- [25] Dunlevy, M.W. (2009). *An Exploration of the Effect of Temperature on Different Alloys in a Supercritical Carbon Dioxide Environment*, A Dissertation submitted to the Massachusetts Institute of Technology, pp. 1-176.
- [26] Lim, J.Y., McKrell, T.J., Eastwick, G., and Ballinger, R.G. (2008). *Corrosion of Materials in Supercritical Carbon Dioxide Environments*, NACE International, Paper No. 08430.

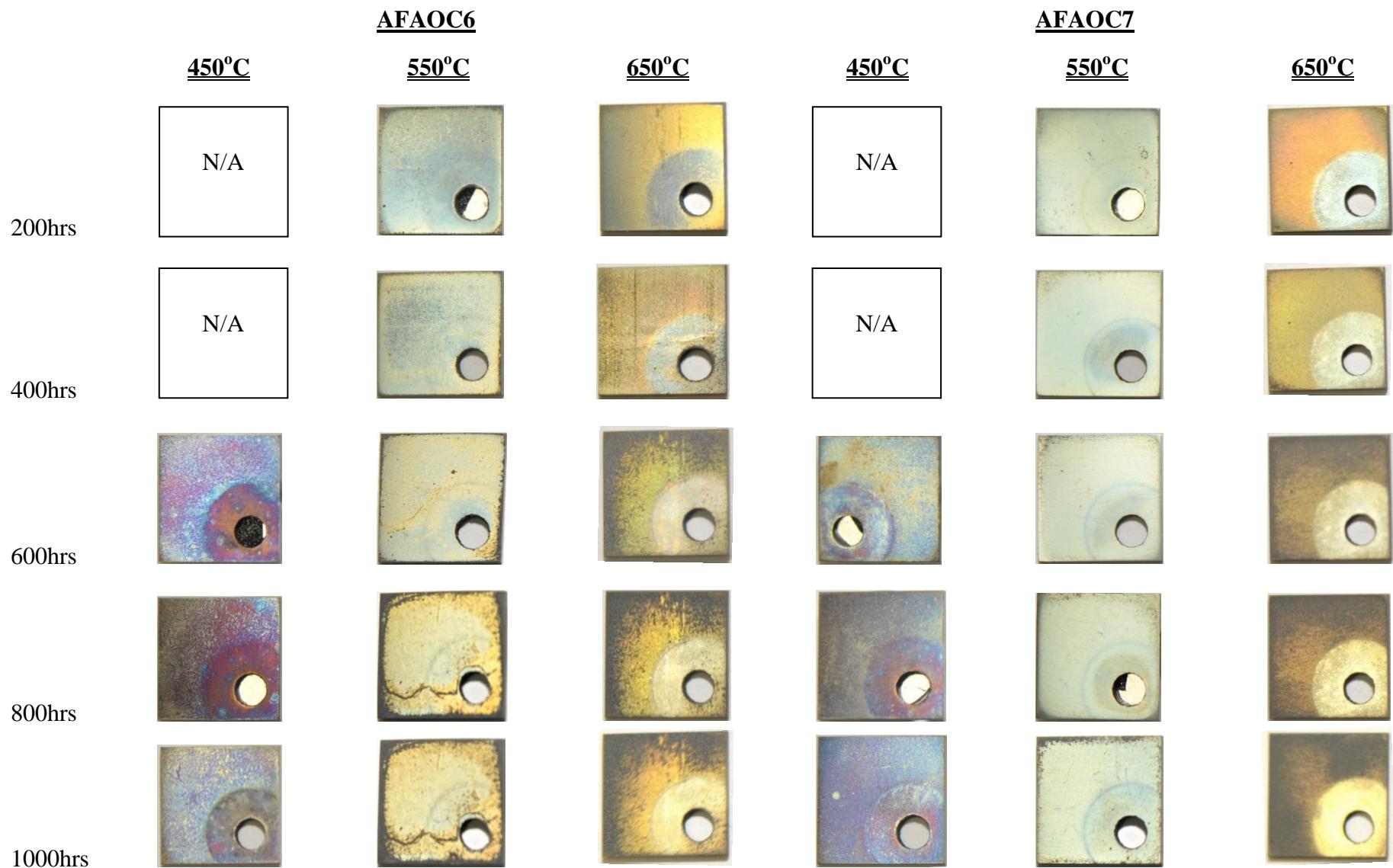
- [27] Furukawa, T., Inagaki, Y., and Aritomi, M. (2010). *Corrosion Behavior of FBR Structural Materials in High Temperature Supercritical Carbon Dioxide*, Journal of Power and Energy Systems, Vol. 4, No. 1, pp. 252-261.
- [28] Rouillard, F., Charton, F., and Moine, G. (2009). *Corrosion Behavior of Different Metallic Materials in Supercritical CO<sub>2</sub> at 550°C and 250 Bars*, Proceedings of the SCCO<sub>2</sub> Power Cycle Symposium, Troy, NY, April 29-30.
- [29] Rouillard, F., Moine, G., Tabarant, M., and Ruiz, J.C. (2012). *Corrosion of 9Cr Steel in CO<sub>2</sub> at Intermediate Temperature II: Mechanism of Carburization*, Oxidation of Metals, Vol. 77, pp. 57-70.
- [30] Jelinek, J. (2012). *Corrosion Behavior of Alloys in High Temperature High Pressure Supercritical Carbon Dioxide*, M.S. Thesis, UW-Madison
- [31] Anderson, M., Cao, G., Tan, L., Sridharan, K., and Allen, T. (2009). *High Pressure and Temperatures S-CO<sub>2</sub> Alloy Testing*, University of Wisconsin-Madison: Thermal Hydraulics Laboratory, pp. 1-52.
- [32] Baxter, D.J., Fordham, R.J., and Norton, J.F. (1993). *The Need for Standard Test Methodologies for High Temperature Corrosion: Simulating Gaseous Corrosion Processes*, Materials at High Temperature, 11, 1-4, pp. 70-74.
- [33] Grabke, H.J., and Meadowcraft, D.B. (1995). *Guidelines for Methods of Testing and Research in High Temperature Corrosion*, Institute of Metals, European Federation of Corrosion Publications, No. 14.
- [34] Kofstad, P. (1958). *Oxidation of Metals: Determination of Activation Energies*, Acta Chemica Scandinavica, Vol. 12, No. 4, pp. 701-707.
- [35] Kofstad, Per (1966). *High Temperature Oxidation of Metals*, John Wiley & Sons Inc.
- [36] Pint, B.A., Anderson, B.N., Matthews, W.J., Waldhelm, C.M., and Teece, W. (2013). *Evaluation of a NiCrAl Foil for a Concentrated Solar Power Application*, Proceedings of the ASME Turbo Expo, June 3-7, San Antonio, TX.
- [37] Nesbitt, J.A., and Heckel, R.W. (1984). *Modeling Degradation and Failure of Ni-Cr-Al Overlay Coatings*, Thin Solid Films, Vol. 119, pp. 281-290.
- [38] Santrock, J., Studley, S.A., and Hayes, J.M. (1985). *Isotopic Analyses Based on the Mass Spectrum of Carbon Dioxide*, Anal. Chem., Vol. 57, pp. 1444-1448.

- [39] Kane, R.H., and Goodell, P.D. (1982). *Gas Analysis Techniques for High Temperature Corrosion Testing*, Journal of Testing and Evaluation, JTEVA, Vol. 10, No. 6, pp. 286-291.
- [40] Ren, X. (2008). *Corrosion of Ferritic-Martensitic Steels and Ni-Based Alloys in Supercritical Water*, M.S. Thesis, UW-Madison.
- [41] Tan, L., Ren, X., Sridharan, K., and Allen, T. (2008). *Effect of Shot-Peening on the Oxidation of Alloy 800H Exposed to Supercritical Water and Cyclic Oxidation*, Corrosion Science, Vol. 50, pp. 2040-2046.
- [42] Allen, T.R., Chen, Y., Ren, X., Sridharan, K., Tan, L., Was, G.S., West, E., and Guzonas, D. (2012). *Material Performance in Supercritical Water*, pp. 279-326.
- [43] Tang, Z., Wang, F., Wu, W., Wang, Q., and Li, D. (1998). *Effect of Coatings on Oxidation Resistance and Mechanical Performance of Ti60 Alloy*, Materials Science & Engineering, Vol. A255, pp. 133-138.
- [44] SAE (1991). *SAE Manual on Shot Peening*, SAE HS-84, 3rd Edition, Sep. 1991.
- [45] Garibay, R.P., and Chang, N.S. (1989). *Improved Fatigue Life of a Carburized Gear by Shot Peening Parameter Optimization*, International Conference on Carburizing: Processing & Performance, July, pp. 283-289.
- [46] Grabke, H.J., Muller-Lorenz, E.M., Strauss, S., Pippel, E., and Woltersdorf, J. (1997). *Effects of Grain Size, Cold Working, and Surface Finish on the Metal Dusting Resistance of Steels*, Oxidation of Metals, Vol. 50, Nos. 3/4, pp. 241-254.
- [47] Piehl, C., Tokei, Z., and Grabke, H.J. (2001). *Surface Treatment and Cold Workings as Tools to Improve Oxidation Behaviour of Chromium Steels*, Materials Science Forum, Vol. 369-372, pp. 319-326.
- [48] SAE J443 (1984). *Procedures for using Standard Shot Peening Test Strip*, Warrendale, PA.
- [49] Personal communication with Lue Schumaker at SMC
- [50] Allen, T.R., Chen, Y., Ren, X., and Sridharan, K. (2005). *Corrosion of Candidate Materials for Supercritical Water-Cooled Reactors*, Proc. of 12th Inter. Conf. on Env. Deg. Of Matls in Nuclear Power System - Water Reactors, pp. 1397-1407.
- [51] Cox, B., and Johnston, T. (1963). *The Oxidation and Corrosion of Niobium*, Trans. Met. Soc. AIME, Vol. 227, pp. 36-47.

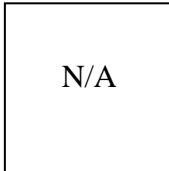
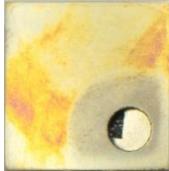
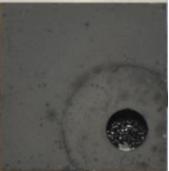
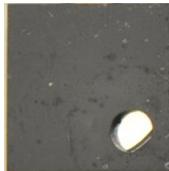
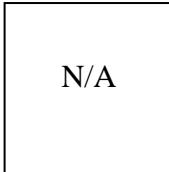
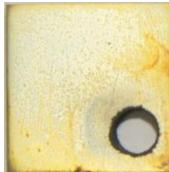
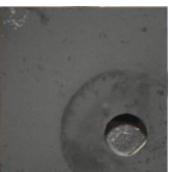
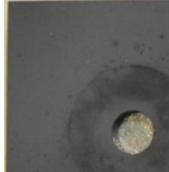
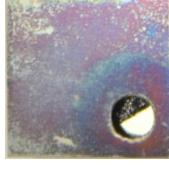
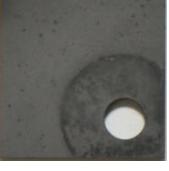
- [52] Kofstad, P., and Bredesen, R. (1991). *On the Oxidation of Iron in CO<sub>2</sub> + CO Gas Mixtures II: Reaction Mechanisms During Initial Oxidation*, Oxidation of Metals, Vol. 35, Nos. 1/2, pp. 107-137.
- [53] Abdulaziz I. Al-Meshari, *Metal Dusting of Heat-Resistant Alloys*, 2008, Ph. D. Dissertation, University of Cambridge.
- [54] J. C. Griess, J. H. DeVan, and W. A. Maxwell, "Long-Term Corrosion of Cr-Ni Steels in Superheated Steam at 482 and 538C," in NACE Corrosion 81, Houston, TX, 1981.
- [55] F. Eberle and J. H. Kitterman, "Behavior of Superheater Alloys in High Temperature, High Pressure Steam," American Society of Mechanical Engineers, p. 67, 1968.
- [56] Y. Watanabe et al., Proceedings of the 9th International Conference on Pressure Vessel Technology, April 9-14, 2000.
- [57] J. Litz, A. Rahmel, and M. Schorr, "Selective Carbide Oxidation and Internal Nitridation of the Ni-base Superalloys IN 738 LC and IN 939 in Air," Oxidation of Metals, vol. 30, no. 1-2, pp. 95-105, 1988.
- [58] A. A. Krishnan and V. Prakash, "High Temperature Oxidation Characteristics of Some Manganese-Aluminum Steels Part I," Journal of Scientific and Industrial Research, vol. 13B, pp. 444-449, June 1954.
- [59] H. Buscaill et al., "Characterization of the Oxides Formed at 1000C on the AISI 316L Stainless Steel- Role of Molybdenum," Materials Chemistry and Physics, vol. 111, pp. 491-496, April 2008.
- [60] G. D. Smith, *High Temperature, Corrosion Tests and Standards -- Application and Interpretation*, R. Baboian, Ed.: American Society of Testing and Materials, 1995.
- [61] Zhang, J., Spech, P., Young, D. (2012). *Metal Dusting of Alumina-Forming Creep-Resistant Austenitic Stainless Steels*, Oxidation of Metals, Vol. 77, No. 3-4, pp. 167-187.
- [62] Gibbs, G.B. (1965). *On the Temperature Dependence of the Activation Energy for Diffusion*, *Acta Metallurgica*, Vol. 13, pp. 926-927.
- [63] Gibbs, G.B. (1968). *The Analysis of Curved Arrhenius Plots*, *Scripta Metallurgica*, Vol. 2, pp. 65-68.
- [64] Was, G.S., and Teyssytre, S. (2005). *Challenges and Recent Progress in Corrosion and Stress Corrosion Cracking of Alloys for Supercritical Water Reactor Core*

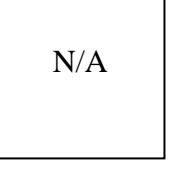
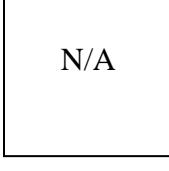

- Components*, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors.
- [65] Grabke, H.J., Muller-Lorenz, E.M., Alcester, B., and Lucas, M. (2000). *Formation of chromium rich oxide scales for protection against metal dusting*, Materials at High Temperatures, Vol. 17, pp. 339-346.
- [66] Cabrera, N., and Mott, N.F. (1949). *Theory of the Oxidation of Metals*, Rep. Prig. Phys. 12, pp. 163-184.
- [67] Su, Y.J., Trice, R.W., Faber, K.T., Wang, H., and Porter, W.D. (2004). *Thermal Conductivity, Phase Stability, and Oxidation Resistance of YSZ Thermal Barrier Coatings*, Oxidation of Metals, Vol. 61, Nos. 3/4, pp. 253-271.
- [68] Alvarez, J., Melon, D., Salas, O., Oseguera, J., and Lopez, V. (2008). *Protective Coatings Against Metal Dusting*, Surface & Coatings Technology, Vol. 203, pp.422-426.
- [69] Rouillard, F., Moine, G., Martinelli, L., and Ruiz, J.C. (2012). *Corrosion of 9Cr Steel in CO<sub>2</sub> at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation*, Oxidation of Metals, Vol. 77, pp. 27-55.
- [70] Naraparaju, R., Christ, H.J., Renner, F.U., and Kostka, A. (2011). *Effect of Shot-Peening on the Oxidation Behaviour of Boiler Steels*, Oxidation of Metals, Vol. 76, pp. 233-245
- [71] Agarwal, D.C., Kloewer, J., and Brill, U. (2001). *Recent Results on Metal Dusting of Nickel Base Alloys and Some Applications*, NACE International, Paper No. 01382
- [72] LaGrange, M.H., Huntz, A.M., and Davidson, J.H. (1984). *The Influence of Y, Zr, or Ti Additions on the High Temperature Oxidation Resistance of Fe-Ni-Cr-Al Alloys of Variable Purity*, Corrosion Science, Vol. 24, No. 7, pp. 613-627.
- [73] Delaunay, D., Huntz, A.M., and Lacombe, P. (1980). *Mechanical Stresses Developed in High Temperature Resistant Alloys During Isothermal and Cyclic Oxidation Treatments: The Influence of Yttrium Additions on Oxide Scale Adherence*, Corrosion Science, Vol. 20, pp. 1109-1117.
- [74] Vander Voort, G.F. (1984). *Metallography, Principles, and Practice*, ASM International.
- [75] Hurlen, Tor. (1961). *Oxidation of Niobium*, Journal of Institute of Metals, Vol. 89, 1960-61, pp. 273-280.

- [76] Blackburn, P.E. (1962). *The Mechanisms of the Niobium Reaction with Water Vapor and with Oxygen*, Journal of Electrochemical Society, Vol. 109, pp. 1142-1150.
- [77] Cox, B., and Johnston, T. (1963). *The Oxidation and Corrosion of Niobium*, Trans. Met. Soc. AIME, Vol. 227, pp. 36-47.
- [78] Kitagawa, K. (2013). *Thin-Film Thickness Profile Measurement by Three-Wavelength Interference Color Analysis*, Applied Optics, Vol. 52, No. 10, pp. 1998-2007.
- [79] ASTM (1990). *Manual on Presentation of Data and Control Chart Analysis: 6th Edition*, Committee E-11 on Quality and Statistics, ASTM Manual 7.
- [80] Brush, E.G. (1965). *Corrosion Rate Law Considerations in Superheated Steam*, Nuclear Applications, Vol. 1, pp. 246-251.
- [81] Freeman, R.A., and Silverman, D.C. (1992). *Technical Note: Error Propagation in Coupon Immersion Tests*, NACE Corrosion, Vol. 48, No. 6, pp. 463-466.
- [82] Quesenberry, C.P. (1993). *The Effect of Sample Size on Estimated Limits for X-bar and X Control Charts*, Journal of Quality Technology, Vol. 25, No. 4, pp. 237-247.
- [83] Quadakkers, W.J., Schuster, H., and Shindo, M. (1986). *Corrosion Behaviour of High Temperature Alloys in Impure Helium Environments*, Jour. of Nuclear Materials 140, pp. 94-105.

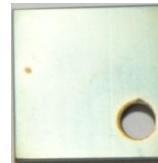
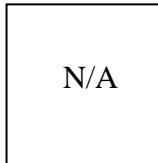
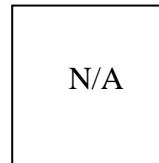
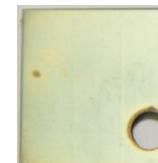
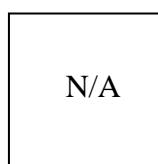
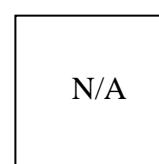
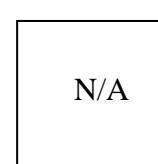
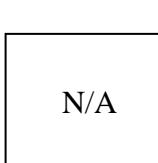
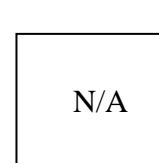
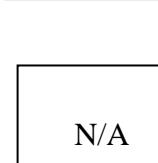
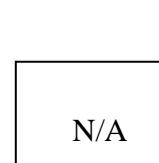

## **8. Appendices**

The appendices contained herein include those too large to include in the main body of this work, but have relevant reference to discussion made within, and will serve to aid in the future for quick reference of measured values, and also for which additional exploratory statistical analyses may be carried out.

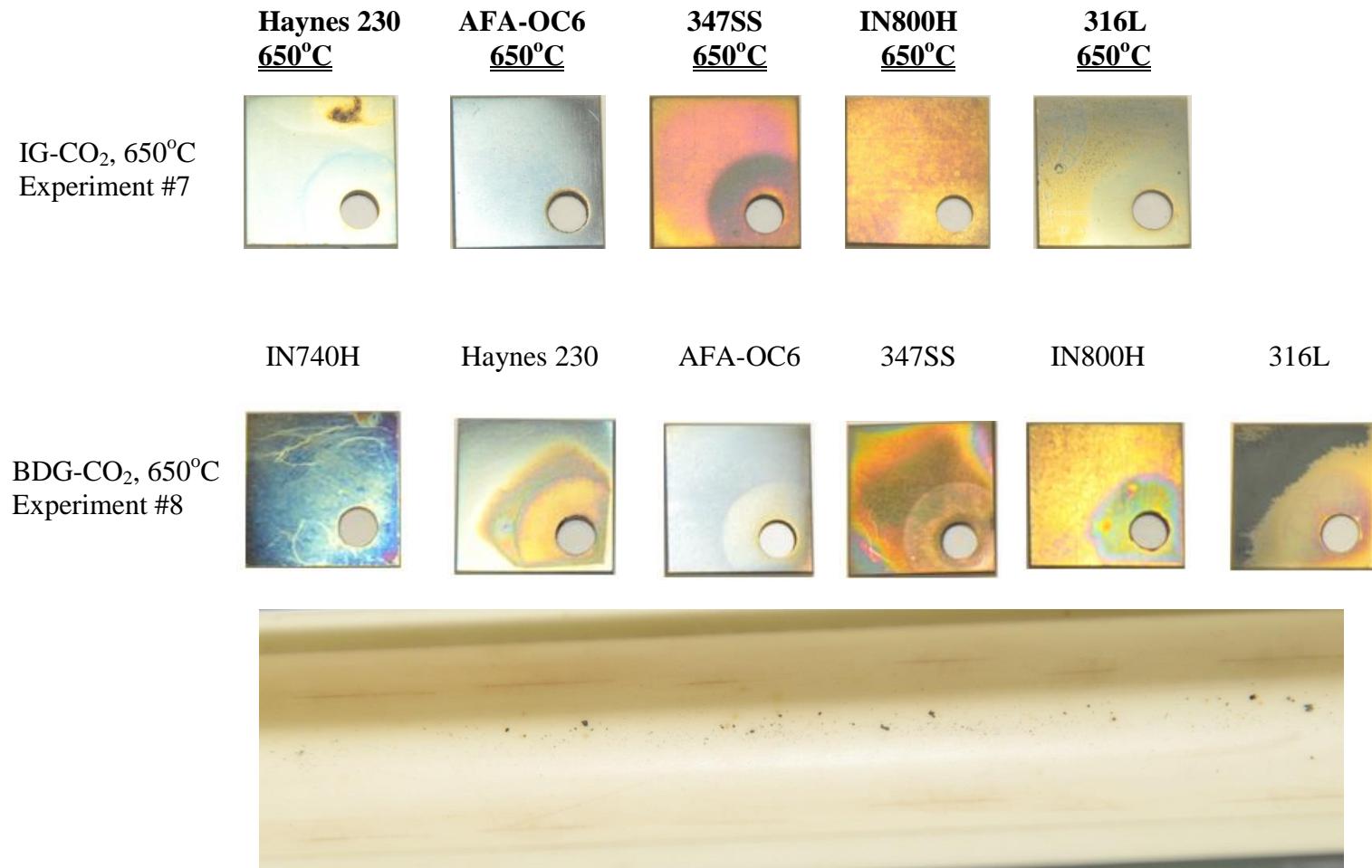


### 8.1. Interference Colors



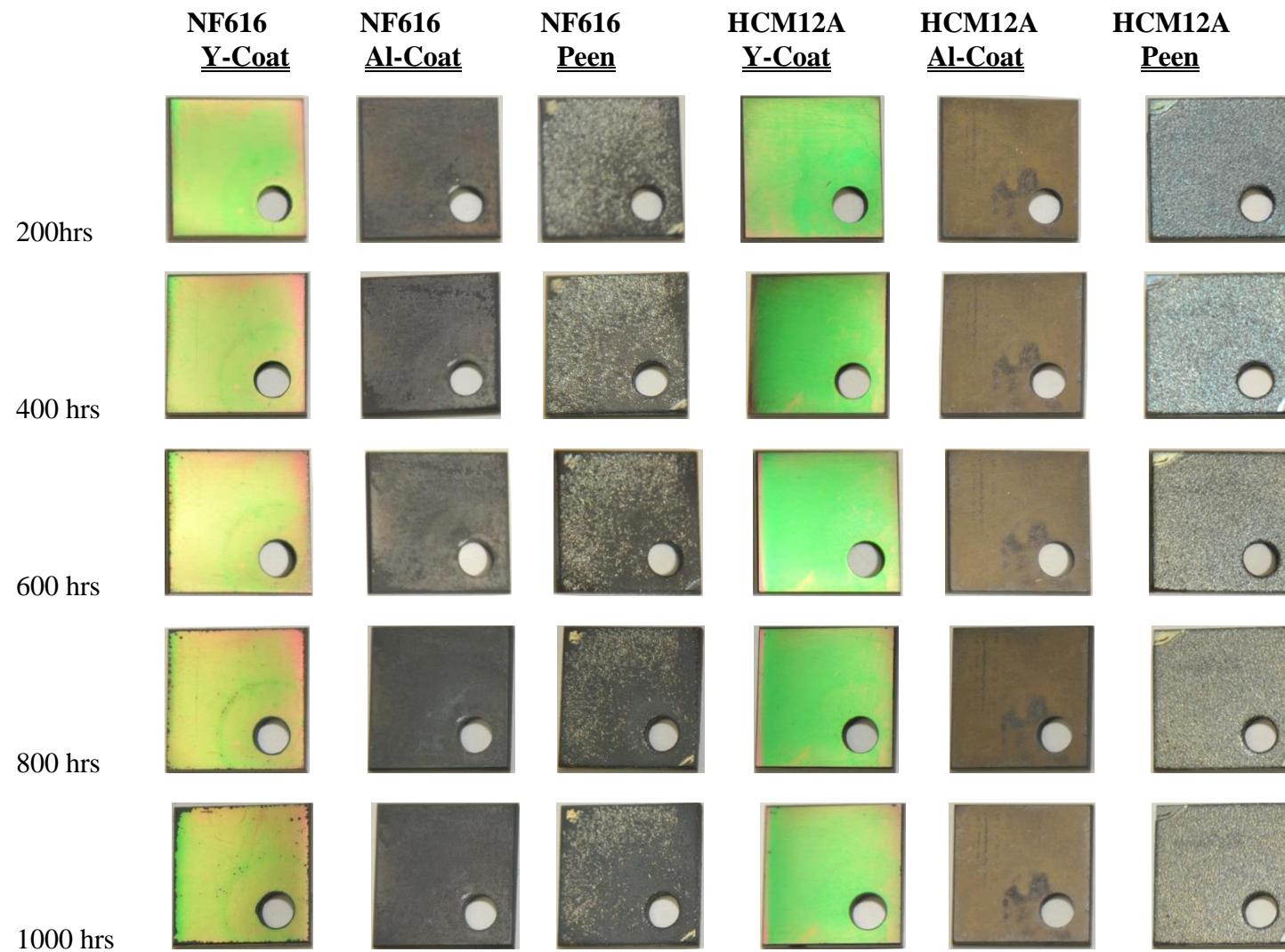












*Fig. 171:* Interference Colors of Coupons for Expt. #3 through #5




**Fig. 172:** Interference Colors of Coupons for Expt. #3 through #5 (Cont.)

| AFAOC10 |                                                                                     |                                                                                     | NF616                                                                                | HCM12A                                                                                |                                                                                       |
|---------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|         | <u>450°C</u>                                                                        | <u>550°C</u>                                                                        | <u>650°C</u>                                                                         | <u>450°C</u>                                                                          |                                                                                       |
| 200hrs  |    |    |    |    |    |
| 400hrs  |    |    |    |    |    |
| 600hrs  |    |    |    |    |    |
| 800hrs  |   |   |   |   |   |
| 1000hrs |  |  |  |  |  |


*Fig. 173: Interference Colors of Coupons for Expt. #3 through #5 (Cont.)*

|         | NF616<br><u>550°C</u>                                                               | HCM12A<br><u>550°C</u>                                                              | 347SS<br><u>550°C</u>                                                               | IN800H<br><u>550°C</u>                                                               | AFAOC6<br><u>550°C</u>                                                                | AFAOC7<br><u>550°C</u>                                                                | AFA-OC10<br><u>550°C</u>                                                              | 316L<br><u>550°C</u>                                                                  |
|---------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 200hrs  |    |    |    |    |    |    |    |    |
| 400hrs  |    |    |    |    |    |    |    |    |
| 600hrs  |    |    |    |    |    |    |    |    |
| 800hrs  |   |   |   |   |   |   |   |   |
| 1000hrs |  |  |  |  |  |  |  |  |

**Fig. 174:** Interference Colors of Coupons for Expt. #6



**Fig. 175:** Interference Colors of Coupons for Expt. #7 and #8.  
**Bottom:** Metal particles collected on alumina boat at 1000 hour interval.



**Fig. 176:** Interference Colors of Coupons for Expt. #9

## 8.2. Average Weight Gains with 95% Confidence Limits

**Table 12:** Expt. #3- #5 Avg. Weight Gain Values using Research Grade CO<sub>2</sub> (mg/cm<sup>2</sup>)

| <b>Sample ID</b> | <b>Temp./Press.</b> | <b>200 hours</b>    | <b>400 hours</b>    | <b>600 hours</b>    | <b>800 hours</b>    | <b>1000 hours</b>   |
|------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| IN800H           | 450°C/20MPa         | 0.010149 ± 0.000916 | 0.012275 ± 0.000928 | 0.011288 ± 0.000951 | 0.011481 ± 0.001576 | 0.011666 ± 0.001923 |
|                  | 550°C/20MPa         | 0.030700 ± 0.015767 | 0.042900 ± 0.022789 | 0.044327 ± 0.010191 | 0.049395 ± 0.015482 | 0.057889 ± 0.004741 |
|                  | 650°C/20MPa         | 0.101062 ± 0.010043 | 0.119500 ± 0.009595 | 0.127967 ± 0.012225 | 0.132887 ± 0.018915 | 0.136063 ± 0.010324 |
|                  |                     |                     |                     |                     |                     |                     |
| 347SS            | 450°C/20MPa         | 0.011625 ± 0.004933 | 0.013791 ± 0.005725 | 0.015682 ± 0.006018 | 0.015918 ± 0.008509 | 0.018299 ± 0.010146 |
|                  | 550°C/20MPa         | 0.025660 ± 0.004981 | 0.029093 ± 0.002862 | 0.031872 ± 0.004060 | 0.033359 ± 0.007320 | 0.033617 ± 0.001243 |
|                  | 650°C/20MPa         | 0.072201 ± 0.004957 | 0.084852 ± 0.007165 | 0.129877 ± 0.048710 | 0.242039 ± 0.142072 | 0.386471 ± 0.141390 |
|                  |                     |                     |                     |                     |                     |                     |
| AFA-OC6          | 450°C/20MPa         | 0.013782 ± 0.002237 | 0.015784 ± 0.002496 | 0.020170 ± 0.002687 | 0.021745 ± 0.003143 | 0.022846 ± 0.004112 |
|                  | 550°C/20MPa         | 0.047509 ± 0.004331 | 0.092908 ± 0.010342 | 0.147400 ± 0.027605 | 0.229400 ± 0.058298 | 0.367599 ± 0.044455 |
|                  | 650°C/20MPa         | 0.096249 ± 0.011774 | 0.130344 ± 0.011777 | 0.799084 ± 0.355170 | 0.787897 ± 0.466297 | 0.660381 ± 0.070337 |
|                  | * 650°C/20MPa       | 0.096249 ± 0.011774 | 0.130344 ± 0.011777 | 0.462216 ± 0.028905 | 0.567428 ± 0.052324 | 0.660381 ± 0.070337 |
|                  |                     |                     |                     |                     |                     |                     |
| AFA-OC7          | 450°C/20MPa         | 0.013637 ± 0.002484 | 0.015724 ± 0.002360 | 0.019903 ± 0.002765 | 0.017488 ± 0.002254 | 0.017506 ± 0.003916 |
|                  | 550°C/20MPa         | 0.031197 ± 0.004182 | 0.043984 ± 0.003738 | 0.053847 ± 0.011360 | 0.056479 ± 0.013860 | 0.079962 ± 0.007977 |
|                  | 650°C/20MPa         | 0.074386 ± 0.018628 | 0.127827 ± 0.024785 | 0.299352 ± 0.064107 | 0.364361 ± 0.111194 | 0.378229 ± 0.086913 |
|                  |                     |                     |                     |                     |                     |                     |
| AFA-OC10         | 450°C/20MPa         | 0.018141 ± 0.002039 | 0.021551 ± 0.003203 | 0.028363 ± 0.002662 | 0.028042 ± 0.002014 | 0.029676 ± 0.003402 |
|                  | 550°C/20MPa         | 0.025400 ± 0.018319 | 0.034900 ± 0.023401 | 0.043500 ± 0.033613 | 0.045700 ± 0.026440 | 0.051800 ± 0.006199 |
|                  | 650°C/20MPa         | 0.092972 ± 0.023582 | 0.361957 ± 0.156000 | 0.533214 ± 0.288466 | 0.694914 ± 0.616866 | 0.970907 ± 0.898627 |
|                  | * 650°C/20MPa       | 0.092972 ± 0.023582 | 0.297815 ± 0.043638 | 0.423829 ± 0.084247 | 0.504246 ± 0.147183 | 0.512423 ± 0.260711 |
|                  |                     |                     |                     |                     |                     |                     |
| HCM12A           | 450°C/20MPa         | 1.076044 ± 0.016615 | 1.332318 ± 0.031026 | 1.482732 ± 0.028265 | 1.626375 ± 0.051709 | <b>Not tested</b>   |
|                  | 550°C/20MPa         | 2.402450 ± 0.130907 | 3.034332 ± 0.010793 | <b>Not tested</b>   | <b>Not tested</b>   | <b>Not tested</b>   |
|                  |                     |                     |                     |                     |                     |                     |
| NF616            | 450°C/20MPa         | 0.903723 ± 0.007139 | 1.205530 ± 0.009868 | 1.419824 ± 0.025574 | 1.583505 ± 0.042408 | <b>Not tested</b>   |
|                  | 550°C/20MPa         | 2.259518 ± 0.592245 | 3.321001 ± 0.520771 | <b>Not tested</b>   | <b>Not tested</b>   | <b>Not tested</b>   |

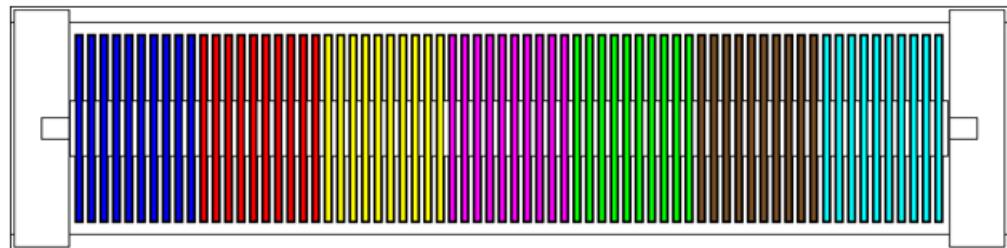
Uncertainty values computed based on 95% confidence limits (Student t table) provided in ASTM Manual 7 [55].

\* Average weight gain value computed with “outliers” outside of ASTM control limits removed. Applied by Brush [75], but done here if outside controls.

**Table 13:** Expt. #6 Avg. Weight Gain Values using Industrial Grade CO<sub>2</sub> (mg/cm<sup>2</sup>)

| <b><u>Sample ID</u></b> | <b><u>Temp./Press.</u></b> | <b><u>200 hours</u></b> | <b><u>400 hours</u></b> | <b><u>600 hours</u></b> | <b><u>800 hours</u></b> | <b><u>1000 hours</u></b> |
|-------------------------|----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| <b>IN800H</b>           | 550°C/20MPa                | 0.022911 ± 0.003289     | 0.029466 ± 0.004099     | 0.031747 ± 0.007013     | 0.034211 ± 0.003182     | 0.036681 ± 0.003882      |
| <b>347SS</b>            | 550°C/20MPa                | 0.020013 ± 0.003379     | 0.023499 ± 0.003482     | 0.026439 ± 0.004939     | 0.029212 ± 0.003611     | 0.030870 ± 0.001228      |
| <b>AFA-OC6</b>          | 550°C/20MPa                | 0.035580 ± 0.008855     | 0.042456 ± 0.013026     | 0.043357 ± 0.012275     | 0.042283 ± 0.007623     | 0.042563 ± 0.007870      |
| <b>AFA-OC7</b>          | 550°C/20MPa                | 0.035475 ± 0.004461     | 0.036784 ± 0.006030     | 0.037620 ± 0.009801     | 0.038362 ± 0.011343     | 0.040204 ± 0.008353      |
| <b>AFA-OC10</b>         | 550°C/20MPa                | 0.005381 ± 0.005412     | 0.015098 ± 0.004786     | 0.029096 ± 0.003484     | 0.063138 ± 0.005279     | 0.102197 ± 0.002252      |
| <b>HCM12A</b>           | 550°C/20MPa                | 0.558454 ± 0.176256     | 0.774983 ± 0.164184     | <b>Not tested</b>       | <b>Not tested</b>       | <b>Not tested</b>        |
| <b>NF616</b>            | 550°C/20MPa                | 3.450994 ± 0.162144     | <b>Not tested</b>       | <b>Not tested</b>       | <b>Not tested</b>       | <b>Not tested</b>        |
| <b>316L</b>             | 550°C/20MPa                | 0.016933 ± 0.001596     | 0.022841 ± 0.004029     | <b>Not tested</b>       | <b>Not tested</b>       | <b>Not tested</b>        |

Uncertainty values computed based on 95% confidence limits (Student t table) provided in ASTM Manual 7. [55]


**Table 14:** Expt. #9 Avg. Weight Gain Values using Research Grade CO<sub>2</sub> (mg/cm<sup>2</sup>)

| <b>Sample ID</b>                  | <b>Temp./Press.</b> | <b><u>200 hours</u></b> | <b><u>400 hours</u></b> | <b><u>600 hours</u></b> | <b><u>800 hours</u></b> | <b><u>1000 hours</u></b> |
|-----------------------------------|---------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| <b>HCM12A<br/>(Al Coat)</b>       | 550°C/20MPa         | 0.176429 ± 0.021598     | 0.246831 ± 0.033288     | 0.289554 ± 0.021331     | 0.348784 ± 0.027073     | 0.396836 ± 0.031427      |
| <b>HCM12A<br/>(Y Coat)</b>        | 550°C/20MPa         | 0.106714 ± 0.005452     | 0.147899 ± 0.007409     | 0.187766 ± 0.011835     | 0.223650 ± 0.054191     | 0.266629 ± 0.052443      |
| <b>HCM12A<br/>(Shot<br/>Peen)</b> | 550°C/20MPa         | 0.158822 ± 0.010585     | 0.199023 ± 0.014730     | 0.243791 ± 0.037619     | 0.273148 ± 0.009971     | 0.293403 ± 0.009980      |
| <b>NF616<br/>(Al Coat)</b>        | 550°C/20MPa         | 0.771573 ± 0.095404     | 1.212986 ± 0.169118     | 1.882982 ± 0.215472     | 2.398347 ± 0.276442     | 2.917167 ± 0.350244      |
| <b>NF616<br/>(Y Coat)</b>         | 550°C/20MPa         | 0.131762 ± 0.003889     | 0.190560 ± 0.010339     | 0.254493 ± 0.035196     | 0.355282 ± 0.086095     | 0.479291 ± 0.126023      |
| <b>NF616<br/>(Shot<br/>Peen)</b>  | 550°C/20MPa         | 1.071789 ± 0.205456     | 1.623505 ± 0.281161     | 2.223219 ± 0.529005     | 2.791231 ± 0.633449     | 3.339116 ± 0.695360      |

Uncertainty values computed based on 95% confidence limits (Student t table) provided in ASTM Manual 7. [55]

### 8.3. Raw Data Tables

Table 15: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, Coupon Arrangement



| Sample | Blue<br>HCM12A | Red<br>NF616 | Yellow<br>347ss | Magenta<br>AFA-OC6 | Green<br>AFA-OC7 | Brown<br>AFA-OC10 | Cyan<br>IN800H |
|--------|----------------|--------------|-----------------|--------------------|------------------|-------------------|----------------|
| 1      | H08            | N08          | S08             | A608               | A702             | A102              | I02            |
| 2      | H09            | N09          | S09             | A609               | A703             | A103              | I03            |
| 3      | H10            | N10          | S10             | A610               | A704             | A104              | I04            |
| 4      | H11            | N11          | S11             | A611               | A705             | A105              | I05            |
| 5      | H12            | N12          | S12             | A612               | A706             | A106              | I06            |
| 6      | H13            | N13          | S13             | A613               | A707             | A107              | I07            |
| 7      | H14            | N14          | S14             | A614               | A708             | A108              | I08            |
| 8      | H15            | N15          | S15             | A615               | A709             | A109              | I09            |
| 9      | H16            | N16          |                 |                    |                  |                   |                |
| 10     | H17            | N17          |                 |                    |                  |                   |                |

Table 16: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, HCM12A

|             |                      |                                   |                             |
|-------------|----------------------|-----------------------------------|-----------------------------|
| Project:    | SCCO2                | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm   |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm   |
| Expt. #:    | 3                    | Uncertainty in Meas. Area:        |                             |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | K91271                      |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Ferritic-Martensitic        |
| Temp. (°C): | 450                  | Color Designation:                | Blue                        |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                           |
| Sample ID:  | HCM12A               |                                   |                             |
| Notes:      |                      |                                   |                             |

| Meas #                    | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                           | H08                    | H09      | H10      | H11      | H12      | H13      | H14      | H15      | H16      | H17      |          |
| BARE WEIGHT<br>(gm)       | <b>1</b>               | 1.866788 | 1.872840 | 1.867796 | 1.854164 | 1.889370 | 1.874356 | 1.886408 | 1.880476 | 1.870132 | 1.881146 |
|                           | <b>2</b>               | 1.866794 | 1.872846 | 1.867794 | 1.854164 | 1.889368 | 1.874358 | 1.886414 | 1.880480 | 1.870138 | 1.881146 |
|                           | <b>3</b>               | 1.866792 | 1.872842 | 1.867796 | 1.854166 | 1.889368 | 1.874356 | 1.886408 | 1.880478 | 1.870136 | 1.881146 |
|                           | <b>4</b>               | 1.866788 | 1.872840 | 1.867792 | 1.854166 | 1.889366 | 1.874360 | 1.886408 | 1.880476 | 1.870136 | 1.881148 |
|                           | <b>5</b>               | 1.866788 | 1.872844 | 1.867794 | 1.854166 | 1.889368 | 1.874360 | 1.886410 | 1.880478 | 1.870134 | 1.881146 |
|                           | <b>6</b>               | 1.866790 | 1.872840 | 1.867798 | 1.854164 | 1.889370 | 1.874358 | 1.886406 | 1.880478 | 1.870138 | 1.881148 |
|                           | <b>7</b>               | 1.866794 | 1.872846 | 1.867796 | 1.854168 | 1.889372 | 1.874356 | 1.886408 | 1.880476 | 1.870138 | 1.881144 |
|                           | <b>8</b>               | 1.866788 | 1.872844 | 1.867796 | 1.854168 | 1.889374 | 1.874356 | 1.886406 | 1.880478 | 1.870136 | 1.881144 |
|                           | <b>9</b>               | 1.866792 | 1.872842 | 1.867794 | 1.854164 | 1.889368 | 1.874360 | 1.886408 | 1.880480 | 1.870138 | 1.881148 |
|                           | <b>10</b>              | 1.866786 | 1.872846 | 1.867796 | 1.854166 | 1.889368 | 1.874358 | 1.886410 | 1.880476 | 1.870140 | 1.881146 |
| BARE<br>THICKNESS<br>(mm) | <b>1<sub>L</sub></b>   | 12.738   | 12.745   | 12.741   | 12.740   | 12.729   | 12.733   | 12.722   | 12.716   | 12.715   | 12.720   |
|                           | <b>2<sub>L</sub></b>   | 12.740   | 12.746   | 12.742   | 12.738   | 12.735   | 12.745   | 12.718   | 12.723   | 12.716   | 12.738   |
|                           | <b>3<sub>L</sub></b>   | 12.741   | 12.744   | 12.740   | 12.737   | 12.743   | 12.731   | 12.718   | 12.726   | 12.711   | 12.739   |
|                           | <b>4<sub>W</sub></b>   | 12.701   | 12.709   | 12.711   | 12.707   | 12.695   | 12.666   | 12.680   | 12.667   | 12.686   | 12.669   |
|                           | <b>5<sub>W</sub></b>   | 12.702   | 12.708   | 12.711   | 12.704   | 12.693   | 12.664   | 12.688   | 12.666   | 12.683   | 12.669   |
|                           | <b>6<sub>W</sub></b>   | 12.705   | 12.708   | 12.713   | 12.703   | 12.685   | 12.665   | 12.679   | 12.665   | 12.664   | 12.671   |
|                           | <b>1</b>               | 1.578    | 1.559    | 1.554    | 1.559    | 1.561    | 1.557    | 1.565    | 1.567    | 1.559    | 1.561    |
|                           | <b>2</b>               | 1.576    | 1.563    | 1.560    | 1.560    | 1.570    | 1.558    | 1.569    | 1.570    | 1.565    | 1.569    |
|                           | <b>3</b>               | 1.563    | 1.565    | 1.561    | 1.561    | 1.573    | 1.557    | 1.568    | 1.572    | 1.567    | 1.570    |
|                           | <b>4</b>               | 1.574    | 1.562    | 1.553    | 1.541    | 1.567    | 1.551    | 1.562    | 1.564    | 1.559    | 1.561    |
|                           | <b>5</b>               | 1.576    | 1.564    | 1.562    | 1.572    | 1.572    | 1.558    | 1.569    | 1.574    | 1.565    | 1.576    |

Table 17: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, HCM12A

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | H08 | H09      | H10      | H11      | H12      | H13      | H14      | H15      | H16      | H17      |          |
| 200 hrs             | 1   | 1.870988 | 1.877044 | 1.871958 | 1.858354 | 1.893612 | 1.878432 | 1.890532 | 1.884550 | 1.874282 | 1.885538 |
|                     | 2   | 1.870986 | 1.877048 | 1.871956 | 1.858356 | 1.893612 | 1.878438 | 1.890534 | 1.884548 | 1.874286 | 1.885536 |
|                     | 3   | 1.870988 | 1.877044 | 1.871954 | 1.858356 | 1.893610 | 1.878436 | 1.890534 | 1.884550 | 1.874286 | 1.885540 |
|                     | 4   | 1.870984 | 1.877044 | 1.871956 | 1.858358 | 1.893612 | 1.878432 | 1.890532 | 1.884550 | 1.874282 | 1.885542 |
|                     | 5   | 1.870986 | 1.877042 | 1.871954 | 1.858354 | 1.893610 | 1.878430 | 1.890530 | 1.884552 | 1.874284 | 1.885538 |
|                     | 6   | 1.870988 | 1.877040 | 1.871958 | 1.858356 | 1.893610 | 1.878432 | 1.890534 | 1.884552 | 1.874284 | 1.885538 |
|                     | 7   | 1.870986 | 1.877044 | 1.871956 | 1.858354 | 1.893612 | 1.878432 | 1.890530 | 1.884550 | 1.874282 | 1.885540 |
|                     | 8   | 1.870990 | 1.877048 | 1.871956 | 1.858358 | 1.893614 | 1.878434 | 1.890532 | 1.884548 | 1.874286 | 1.885536 |
|                     | 9   | 1.870988 | 1.877046 | 1.871954 | 1.858358 | 1.893616 | 1.878432 | 1.890536 | 1.884550 | 1.874288 | 1.885538 |
|                     | 10  | 1.870988 | 1.877044 | 1.871952 | 1.858356 | 1.893614 | 1.878430 | 1.890534 | 1.884550 | 1.874284 | 1.885538 |
| 400 hrs             | 1   |          |          | 1.872870 | 1.859332 | 1.894682 | 1.879348 | 1.891658 | 1.885468 | 1.875332 | 1.886534 |
|                     | 2   |          |          | 1.872882 | 1.859336 | 1.894682 | 1.879350 | 1.891652 | 1.885468 | 1.875330 | 1.886534 |
|                     | 3   |          |          | 1.872882 | 1.859340 | 1.894688 | 1.879348 | 1.891656 | 1.885468 | 1.875332 | 1.886538 |
|                     | 4   |          |          | 1.872884 | 1.859340 | 1.894684 | 1.879346 | 1.891658 | 1.885464 | 1.875332 | 1.886534 |
|                     | 5   |          |          | 1.872874 | 1.859338 | 1.894688 | 1.879344 | 1.891658 | 1.885468 | 1.875332 | 1.886540 |
|                     | 6   |          |          | 1.872874 | 1.859340 | 1.894684 | 1.879344 | 1.891652 | 1.885460 | 1.875334 | 1.886540 |
|                     | 7   |          |          | 1.872884 | 1.859332 | 1.894688 | 1.879346 | 1.891658 | 1.885466 | 1.875336 | 1.886538 |
|                     | 8   |          |          | 1.872886 | 1.859338 | 1.894682 | 1.879348 | 1.891654 | 1.885464 | 1.875334 | 1.886536 |
|                     | 9   |          |          | 1.872886 | 1.859338 | 1.894682 | 1.879346 | 1.891650 | 1.885462 | 1.875334 | 1.886536 |
|                     | 10  |          |          | 1.872886 | 1.859332 | 1.894682 | 1.879350 | 1.891654 | 1.885462 | 1.875336 | 1.886538 |
| 600 hrs             | 1   |          |          |          | 1.895232 | 1.879968 | 1.892166 | 1.886138 | 1.875876 | 1.887036 |          |
|                     | 2   |          |          |          | 1.895228 | 1.879968 | 1.892164 | 1.886134 | 1.875878 | 1.887036 |          |
|                     | 3   |          |          |          | 1.895230 | 1.879970 | 1.892164 | 1.886134 | 1.875878 | 1.887038 |          |
|                     | 4   |          |          |          | 1.895232 | 1.879966 | 1.892168 | 1.886136 | 1.875880 | 1.887038 |          |
|                     | 5   |          |          |          | 1.895232 | 1.879972 | 1.892166 | 1.886134 | 1.875878 | 1.887036 |          |
|                     | 6   |          |          |          | 1.895228 | 1.879970 | 1.892166 | 1.886132 | 1.875876 | 1.887034 |          |
|                     | 7   |          |          |          | 1.895232 | 1.879968 | 1.892168 | 1.886136 | 1.875878 | 1.887034 |          |
|                     | 8   |          |          |          | 1.895230 | 1.879966 | 1.892164 | 1.886134 | 1.875880 | 1.887038 |          |
|                     | 9   |          |          |          | 1.895234 | 1.879966 | 1.892166 | 1.886136 | 1.875882 | 1.887036 |          |
|                     | 10  |          |          |          | 1.895232 | 1.879968 | 1.892166 | 1.886136 | 1.875880 | 1.887038 |          |
| 800 hrs             | 1   |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |
| 1000 hrs            | 1   |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |

Table 18: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, NF616

|             |                      |                                   |                             |
|-------------|----------------------|-----------------------------------|-----------------------------|
| Project:    | SCCO2                | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm   |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm   |
| Expt. #:    | 3                    | Uncertainty in Meas. Area:        |                             |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | K92460                      |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Ferritic-Martensitic        |
| Temp. (°C): | 450                  | Color Designation:                | Red                         |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                           |
| Sample ID:  | NF616                |                                   |                             |
| Notes:      |                      |                                   |                             |

| Meas #                 | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                        | N08                    | N09      | N10      | N11      | N12      | N13      | N14      | N15      | N16      | N17      |          |
| BARE WEIGHT<br>(gm)    | <b>1</b>               | 1.838592 | 1.830504 | 1.862160 | 1.858502 | 1.812018 | 1.830518 | 1.846152 | 1.848064 | 1.840752 | 1.815008 |
|                        | <b>2</b>               | 1.838594 | 1.830502 | 1.862160 | 1.858504 | 1.812016 | 1.830516 | 1.846156 | 1.848060 | 1.840752 | 1.815010 |
|                        | <b>3</b>               | 1.838592 | 1.830500 | 1.862162 | 1.858504 | 1.812016 | 1.830518 | 1.846150 | 1.848062 | 1.840754 | 1.815008 |
|                        | <b>4</b>               | 1.838590 | 1.830504 | 1.862158 | 1.858506 | 1.812018 | 1.830514 | 1.846150 | 1.848064 | 1.840752 | 1.815006 |
|                        | <b>5</b>               | 1.838588 | 1.830500 | 1.862158 | 1.858500 | 1.812014 | 1.830516 | 1.846152 | 1.848068 | 1.840758 | 1.815010 |
|                        | <b>6</b>               | 1.838594 | 1.830504 | 1.862156 | 1.858502 | 1.812018 | 1.830518 | 1.846154 | 1.848062 | 1.840756 | 1.815012 |
|                        | <b>7</b>               | 1.838596 | 1.830502 | 1.862160 | 1.858506 | 1.812016 | 1.830518 | 1.846154 | 1.848064 | 1.840758 | 1.815010 |
|                        | <b>8</b>               | 1.838594 | 1.830506 | 1.862162 | 1.858506 | 1.812018 | 1.830520 | 1.846156 | 1.848062 | 1.840758 | 1.815008 |
|                        | <b>9</b>               | 1.838594 | 1.830504 | 1.862160 | 1.858508 | 1.812018 | 1.830518 | 1.846156 | 1.848066 | 1.840756 | 1.815008 |
|                        | <b>10</b>              | 1.838592 | 1.830506 | 1.862158 | 1.858508 | 1.812020 | 1.830516 | 1.846156 | 1.848064 | 1.840760 | 1.815010 |
| BARE THICKNESS<br>(mm) | <b>1<sub>L</sub></b>   | 12.699   | 12.676   | 12.681   | 12.681   | 12.699   | 12.672   | 12.687   | 12.670   | 12.655   | 12.659   |
|                        | <b>2<sub>L</sub></b>   | 12.696   | 12.675   | 12.682   | 12.682   | 12.698   | 12.674   | 12.682   | 12.670   | 12.660   | 12.665   |
|                        | <b>3<sub>L</sub></b>   | 12.699   | 12.678   | 12.684   | 12.686   | 12.695   | 12.666   | 12.681   | 12.675   | 12.662   | 12.652   |
|                        | <b>4<sub>W</sub></b>   | 12.680   | 12.657   | 12.649   | 12.669   | 12.679   | 12.649   | 12.656   | 12.637   | 12.637   | 12.632   |
|                        | <b>5<sub>W</sub></b>   | 12.680   | 12.656   | 12.650   | 12.669   | 12.677   | 12.649   | 12.650   | 12.648   | 12.641   | 12.633   |
|                        | <b>6<sub>W</sub></b>   | 12.678   | 12.657   | 12.652   | 12.669   | 12.677   | 12.648   | 12.641   | 12.644   | 12.642   | 12.634   |
|                        | <b>1</b>               | 1.521    | 1.545    | 1.554    | 1.547    | 1.508    | 1.524    | 1.535    | 1.546    | 1.542    | 1.505    |
|                        | <b>2</b>               | 1.547    | 1.546    | 1.569    | 1.556    | 1.507    | 1.540    | 1.539    | 1.548    | 1.542    | 1.532    |
|                        | <b>3</b>               | 1.554    | 1.540    | 1.571    | 1.560    | 1.502    | 1.539    | 1.540    | 1.545    | 1.537    | 1.548    |
|                        | <b>4</b>               | 1.544    | 1.512    | 1.563    | 1.556    | 1.510    | 1.536    | 1.536    | 1.554    | 1.548    | 1.539    |
|                        | <b>5</b>               | 1.542    | 1.561    | 1.569    | 1.553    | 1.504    | 1.530    | 1.539    | 1.536    | 1.534    | 1.519    |

Table 19: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, NF616

| Meas #  | Measured Weight (g) |          |          |          |          |          |          |          |          |          |          |
|---------|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|         | N08                 | N09      | N10      | N11      | N12      | N13      | N14      | N15      | N16      | N17      |          |
| 200 hrs | 1                   | 1.84205  | 1.833956 | 1.865686 | 1.862010 | 1.815482 | 1.834022 | 1.849640 | 1.851602 | 1.844180 | 1.818416 |
|         | 2                   | 1.842052 | 1.833954 | 1.865682 | 1.862010 | 1.815488 | 1.834020 | 1.849640 | 1.851602 | 1.844176 | 1.818420 |
|         | 3                   | 1.842054 | 1.833954 | 1.865684 | 1.862008 | 1.815484 | 1.834026 | 1.849642 | 1.851604 | 1.844178 | 1.818418 |
|         | 4                   | 1.842052 | 1.833950 | 1.865686 | 1.862008 | 1.815486 | 1.834022 | 1.849640 | 1.851602 | 1.844176 | 1.818418 |
|         | 5                   | 1.842054 | 1.833954 | 1.865686 | 1.862010 | 1.815482 | 1.834024 | 1.849644 | 1.851600 | 1.844176 | 1.818422 |
|         | 6                   | 1.842052 | 1.833956 | 1.865684 | 1.862010 | 1.815486 | 1.834026 | 1.849642 | 1.851600 | 1.844178 | 1.818420 |
|         | 7                   | 1.842050 | 1.833954 | 1.865682 | 1.862006 | 1.815488 | 1.834022 | 1.849640 | 1.851602 | 1.844174 | 1.818418 |
|         | 8                   | 1.842052 | 1.833952 | 1.865680 | 1.862008 | 1.815488 | 1.834020 | 1.849638 | 1.851604 | 1.844178 | 1.818418 |
|         | 9                   | 1.842054 | 1.833956 | 1.865684 | 1.862008 | 1.815490 | 1.834024 | 1.849640 | 1.851600 | 1.844180 | 1.818420 |
|         | 10                  | 1.842056 | 1.833954 | 1.865680 | 1.862006 | 1.815488 | 1.834022 | 1.849642 | 1.851600 | 1.844176 | 1.818416 |
| 400 hrs | 1                   |          |          | 1.866836 | 1.863152 | 1.816614 | 1.835176 | 1.850806 | 1.852768 | 1.845376 | 1.819538 |
|         | 2                   |          |          | 1.866838 | 1.863154 | 1.816618 | 1.835172 | 1.850800 | 1.852764 | 1.845380 | 1.819540 |
|         | 3                   |          |          | 1.866838 | 1.863150 | 1.816618 | 1.835174 | 1.850808 | 1.852762 | 1.845378 | 1.819540 |
|         | 4                   |          |          | 1.866840 | 1.863152 | 1.816612 | 1.835176 | 1.850806 | 1.852764 | 1.845380 | 1.819544 |
|         | 5                   |          |          | 1.866842 | 1.863150 | 1.816616 | 1.835176 | 1.850802 | 1.852766 | 1.845380 | 1.819542 |
|         | 6                   |          |          | 1.866838 | 1.863154 | 1.816616 | 1.835172 | 1.850802 | 1.852764 | 1.845378 | 1.819540 |
|         | 7                   |          |          | 1.866836 | 1.863156 | 1.816618 | 1.835172 | 1.850804 | 1.852766 | 1.845380 | 1.819544 |
|         | 8                   |          |          | 1.866838 | 1.863152 | 1.816614 | 1.835174 | 1.850806 | 1.852768 | 1.845376 | 1.819540 |
|         | 9                   |          |          | 1.866836 | 1.863154 | 1.816616 | 1.835170 | 1.850802 | 1.852762 | 1.845376 | 1.819538 |
|         | 10                  |          |          | 1.866840 | 1.863150 | 1.816614 | 1.835176 | 1.850806 | 1.852764 | 1.845378 | 1.819540 |
| 600 hrs | 1                   |          |          |          | 1.817412 | 1.836022 | 1.851618 | 1.853680 | 1.846096 | 1.820408 |          |
|         | 2                   |          |          |          | 1.817410 | 1.836020 | 1.851620 | 1.853680 | 1.846098 | 1.820406 |          |
|         | 3                   |          |          |          | 1.817408 | 1.836024 | 1.851620 | 1.853678 | 1.846096 | 1.820408 |          |
|         | 4                   |          |          |          | 1.817410 | 1.836022 | 1.851622 | 1.853678 | 1.846100 | 1.820408 |          |
|         | 5                   |          |          |          | 1.817412 | 1.836020 | 1.851618 | 1.853680 | 1.846098 | 1.820410 |          |
|         | 6                   |          |          |          | 1.817410 | 1.836020 | 1.851616 | 1.853678 | 1.846100 | 1.820406 |          |
|         | 7                   |          |          |          | 1.817410 | 1.836022 | 1.851616 | 1.853676 | 1.846096 | 1.820406 |          |
|         | 8                   |          |          |          | 1.817408 | 1.836020 | 1.851618 | 1.853678 | 1.846096 | 1.820408 |          |
|         | 9                   |          |          |          | 1.817412 | 1.836022 | 1.851620 | 1.853678 | 1.846098 | 1.820406 |          |
|         | 10                  |          |          |          | 1.817410 | 1.836024 | 1.851616 | 1.853680 | 1.846100 | 1.820410 |          |

| Meas #   | Measured Weight (g) |     |     |     |     |     |     |     |          |          |          |          |
|----------|---------------------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|
|          | N08                 | N09 | N10 | N11 | N12 | N13 | N14 | N15 | N16      | N17      |          |          |
| 800 hrs  | 1                   |     |     |     |     |     |     |     | 1.852186 | 1.854286 | 1.846734 | 1.821100 |
|          | 2                   |     |     |     |     |     |     |     | 1.852184 | 1.854286 | 1.846734 | 1.821098 |
|          | 3                   |     |     |     |     |     |     |     | 1.852184 | 1.854284 | 1.846732 | 1.821102 |
|          | 4                   |     |     |     |     |     |     |     | 1.852188 | 1.854286 | 1.846736 | 1.821104 |
|          | 5                   |     |     |     |     |     |     |     | 1.852186 | 1.854282 | 1.846734 | 1.821102 |
|          | 6                   |     |     |     |     |     |     |     | 1.852186 | 1.854282 | 1.846732 | 1.821100 |
|          | 7                   |     |     |     |     |     |     |     | 1.852188 | 1.854286 | 1.846732 | 1.821098 |
|          | 8                   |     |     |     |     |     |     |     | 1.852184 | 1.854284 | 1.846736 | 1.821100 |
|          | 9                   |     |     |     |     |     |     |     | 1.852186 | 1.854286 | 1.846734 | 1.821100 |
|          | 10                  |     |     |     |     |     |     |     | 1.852188 | 1.854286 | 1.846734 | 1.821100 |
| 1000 hrs | 1                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 2                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 3                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 4                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 5                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 6                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 7                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 8                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 9                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 10                  |     |     |     |     |     |     |     |          |          |          |          |
| 1200 hrs | 1                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 2                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 3                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 4                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 5                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 6                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 7                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 8                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 9                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 10                  |     |     |     |     |     |     |     |          |          |          |          |

Table 20: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, 347SS

|             |                      |                                   |                                           |
|-------------|----------------------|-----------------------------------|-------------------------------------------|
| Project:    | <b>SCCO2</b>         | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | <b>3</b>             | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000182$ cm <sup>2</sup> |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | S34700                                    |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Austenitic                                |
| Temp. (°C): | 450                  | Color Designation:                | Yellow                                    |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | <b>347SS</b>         |                                   |                                           |
| Notes:      |                      |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | S08                    | S09      | S10      | S11      | S12      | S13      | S14      | S15      |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.940586 | 1.946918 | 1.944050 | 1.952448 | 1.934344 | 1.830346 | 1.837530 | 1.834796 |
|                                 | <b>2</b>               | 1.940582 | 1.946914 | 1.944046 | 1.952448 | 1.934342 | 1.830346 | 1.837528 | 1.834798 |
|                                 | <b>3</b>               | 1.940582 | 1.946916 | 1.944048 | 1.952448 | 1.934344 | 1.830342 | 1.837530 | 1.834796 |
|                                 | <b>4</b>               | 1.940584 | 1.946914 | 1.944046 | 1.952446 | 1.934348 | 1.830346 | 1.837530 | 1.834796 |
|                                 | <b>5</b>               | 1.940582 | 1.946914 | 1.944048 | 1.952446 | 1.934348 | 1.830344 | 1.837532 | 1.834798 |
|                                 | <b>6</b>               | 1.940586 | 1.946918 | 1.944050 | 1.952450 | 1.934344 | 1.830344 | 1.837530 | 1.834796 |
|                                 | <b>7</b>               | 1.940586 | 1.946920 | 1.944050 | 1.952448 | 1.934346 | 1.830346 | 1.837528 | 1.834794 |
|                                 | <b>8</b>               | 1.940580 | 1.946918 | 1.944048 | 1.952450 | 1.934342 | 1.830348 | 1.837526 | 1.834796 |
|                                 | <b>9</b>               | 1.940582 | 1.946916 | 1.944046 | 1.952450 | 1.934346 | 1.830346 | 1.837526 | 1.834796 |
|                                 | <b>10</b>              | 1.940584 | 1.946914 | 1.944050 | 1.952450 | 1.934346 | 1.830348 | 1.837528 | 1.834800 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 13.217   | 13.237   | 13.194   | 13.236   | 13.210   | 13.009   | 12.912   | 12.904   |
|                                 | <b>2<sub>L</sub></b>   | 13.212   | 13.219   | 13.199   | 13.225   | 13.204   | 13.004   | 12.926   | 12.947   |
|                                 | <b>3<sub>L</sub></b>   | 13.203   | 13.204   | 13.200   | 13.218   | 13.188   | 13.001   | 12.935   | 12.992   |
|                                 | <b>4<sub>W</sub></b>   | 12.656   | 12.654   | 12.651   | 12.653   | 12.659   | 12.536   | 12.434   | 12.362   |
|                                 | <b>5<sub>W</sub></b>   | 12.658   | 12.655   | 12.653   | 12.655   | 12.660   | 12.537   | 12.508   | 12.351   |
|                                 | <b>6<sub>W</sub></b>   | 12.660   | 12.660   | 12.657   | 12.660   | 12.658   | 12.542   | 12.530   | 12.305   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.559    | 1.561    | 1.558    | 1.562    | 1.530    | 1.499    | 1.541    | 1.544    |
|                                 | <b>2</b>               | 1.560    | 1.563    | 1.563    | 1.564    | 1.538    | 1.498    | 1.541    | 1.545    |
|                                 | <b>3</b>               | 1.564    | 1.565    | 1.566    | 1.566    | 1.540    | 1.491    | 1.537    | 1.546    |
|                                 | <b>4</b>               | 1.558    | 1.562    | 1.563    | 1.560    | 1.530    | 1.492    | 1.539    | 1.539    |
|                                 | <b>5</b>               | 1.563    | 1.563    | 1.560    | 1.566    | 1.540    | 1.495    | 1.537    | 1.549    |

Table 21: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, 347SS

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |  |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Meas #              | S08 | S09      | S10      | S11      | S12      | S13      | S14      | S15      |          |  |
| 200 hrs             | 1   | 1.940656 | 1.946948 | 1.944076 | 1.952480 | 1.934376 | 1.830374 | 1.837598 | 1.834878 |  |
|                     | 2   | 1.940656 | 1.946946 | 1.944078 | 1.952478 | 1.934374 | 1.830376 | 1.837598 | 1.834872 |  |
|                     | 3   | 1.940658 | 1.946944 | 1.944078 | 1.952478 | 1.934378 | 1.830374 | 1.837600 | 1.834874 |  |
|                     | 4   | 1.940656 | 1.946946 | 1.944074 | 1.952480 | 1.934376 | 1.830374 | 1.837598 | 1.834872 |  |
|                     | 5   | 1.940656 | 1.946948 | 1.944078 | 1.952478 | 1.934374 | 1.830372 | 1.837600 | 1.834872 |  |
|                     | 6   | 1.940658 | 1.946948 | 1.944076 | 1.952476 | 1.934376 | 1.830376 | 1.837602 | 1.834870 |  |
|                     | 7   | 1.940660 | 1.946944 | 1.944074 | 1.952478 | 1.934378 | 1.830372 | 1.837598 | 1.834874 |  |
|                     | 8   | 1.940658 | 1.946948 | 1.944072 | 1.952480 | 1.934380 | 1.830370 | 1.837596 | 1.834870 |  |
|                     | 9   | 1.940656 | 1.946946 | 1.944076 | 1.952482 | 1.934378 | 1.830370 | 1.837600 | 1.834872 |  |
|                     | 10  | 1.940658 | 1.946942 | 1.944078 | 1.952480 | 1.934376 | 1.830368 | 1.837596 | 1.834868 |  |
| 400 hrs             | 1   | 1.940666 | 1.946946 | 1.944084 | 1.952492 | 1.934382 | 1.830372 | 1.837610 | 1.834888 |  |
|                     | 2   | 1.940668 | 1.946948 | 1.944090 | 1.952492 | 1.934382 | 1.830374 | 1.837612 | 1.834888 |  |
|                     | 3   | 1.940670 | 1.946950 | 1.944088 | 1.952490 | 1.934384 | 1.830376 | 1.837614 | 1.834882 |  |
|                     | 4   | 1.940668 | 1.946948 | 1.944084 | 1.952488 | 1.934384 | 1.830376 | 1.837610 | 1.834880 |  |
|                     | 5   | 1.940672 | 1.946954 | 1.944086 | 1.952496 | 1.934386 | 1.830376 | 1.837612 | 1.834884 |  |
|                     | 6   | 1.940670 | 1.946948 | 1.944082 | 1.952488 | 1.934386 | 1.830370 | 1.837614 | 1.834886 |  |
|                     | 7   | 1.940666 | 1.946950 | 1.944086 | 1.952492 | 1.934384 | 1.830372 | 1.837616 | 1.834890 |  |
|                     | 8   | 1.940668 | 1.946944 | 1.944086 | 1.952490 | 1.934382 | 1.830372 | 1.837612 | 1.834882 |  |
|                     | 9   | 1.940666 | 1.946952 | 1.944084 | 1.952488 | 1.934380 | 1.830368 | 1.837610 | 1.834884 |  |
|                     | 10  | 1.940672 | 1.946946 | 1.944088 | 1.952486 | 1.934382 | 1.830374 | 1.837612 | 1.834886 |  |
| 600 hrs             | 1   | 1.940676 | 1.946956 | 1.944090 | 1.952496 | 1.934386 | 1.830384 | 1.837618 | 1.834896 |  |
|                     | 2   | 1.940678 | 1.946958 | 1.944090 | 1.952496 | 1.934390 | 1.830382 | 1.837620 | 1.834894 |  |
|                     | 3   | 1.940678 | 1.946956 | 1.944092 | 1.952498 | 1.934388 | 1.830382 | 1.837618 | 1.834898 |  |
|                     | 4   | 1.940680 | 1.946956 | 1.944090 | 1.952498 | 1.934388 | 1.830380 | 1.837622 | 1.834898 |  |
|                     | 5   | 1.940676 | 1.946958 | 1.944094 | 1.952496 | 1.934386 | 1.830382 | 1.837620 | 1.834896 |  |
|                     | 6   | 1.940678 | 1.946954 | 1.944092 | 1.952496 | 1.934384 | 1.830380 | 1.837618 | 1.834894 |  |
|                     | 7   | 1.940676 | 1.946956 | 1.944092 | 1.952494 | 1.934388 | 1.830380 | 1.837616 | 1.834896 |  |
|                     | 8   | 1.940680 | 1.946958 | 1.944094 | 1.952496 | 1.934388 | 1.830384 | 1.837618 | 1.834898 |  |
|                     | 9   | 1.940680 | 1.946956 | 1.944090 | 1.952494 | 1.934390 | 1.830382 | 1.837616 | 1.834898 |  |
|                     | 10  | 1.940678 | 1.946954 | 1.944094 | 1.952496 | 1.934388 | 1.830380 | 1.837620 | 1.834896 |  |
| 800 hrs             | 1   |          |          |          |          |          |          |          |          |  |
|                     | 2   |          |          |          |          |          |          |          |          |  |
|                     | 3   |          |          |          |          |          |          |          |          |  |
|                     | 4   |          |          |          |          |          |          |          |          |  |
|                     | 5   |          |          |          |          |          |          |          |          |  |
|                     | 6   |          |          |          |          |          |          |          |          |  |
|                     | 7   |          |          |          |          |          |          |          |          |  |
|                     | 8   |          |          |          |          |          |          |          |          |  |
|                     | 9   |          |          |          |          |          |          |          |          |  |
|                     | 10  |          |          |          |          |          |          |          |          |  |
| 1000 hrs            | 1   |          |          |          |          |          |          |          |          |  |
|                     | 2   |          |          |          |          |          |          |          |          |  |
|                     | 3   |          |          |          |          |          |          |          |          |  |
|                     | 4   |          |          |          |          |          |          |          |          |  |
|                     | 5   |          |          |          |          |          |          |          |          |  |
|                     | 6   |          |          |          |          |          |          |          |          |  |
|                     | 7   |          |          |          |          |          |          |          |          |  |
|                     | 8   |          |          |          |          |          |          |          |          |  |
|                     | 9   |          |          |          |          |          |          |          |          |  |
|                     | 10  |          |          |          |          |          |          |          |          |  |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |  |
|                     | 2   |          |          |          |          |          |          |          |          |  |
|                     | 3   |          |          |          |          |          |          |          |          |  |
|                     | 4   |          |          |          |          |          |          |          |          |  |
|                     | 5   |          |          |          |          |          |          |          |          |  |
|                     | 6   |          |          |          |          |          |          |          |          |  |
|                     | 7   |          |          |          |          |          |          |          |          |  |
|                     | 8   |          |          |          |          |          |          |          |          |  |
|                     | 9   |          |          |          |          |          |          |          |          |  |
|                     | 10  |          |          |          |          |          |          |          |          |  |

Table 22: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, AFA-OC6

|             |                      |                                   |                                       |
|-------------|----------------------|-----------------------------------|---------------------------------------|
| Project:    | <b>SCCO2</b>         | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002 \text{ g}$   |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001 \text{ mm}$     |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001 \text{ mm}$     |
| Expt. #:    | <b>3</b>             | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.00018 \text{ cm}^2$ |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | Heat # 001919 (CRADA RPT)             |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Alumina-Forming-Austenitic            |
| Temp. (°C): | 450                  | Color Designation:                | Magenta                               |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                     |
| Sample ID:  | <b>AFA-OC6</b>       |                                   |                                       |
| Notes:      |                      |                                   |                                       |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A608                   | A609     | A610     | A611     | A612     | A613     | A614     | A615     |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.833206 | 1.828396 | 1.797156 | 1.831640 | 1.841900 | 1.849838 | 1.784030 | 1.832356 |
|                                 | <b>2</b>               | 1.833210 | 1.828396 | 1.797154 | 1.831644 | 1.841896 | 1.849842 | 1.784030 | 1.832352 |
|                                 | <b>3</b>               | 1.833208 | 1.828394 | 1.797158 | 1.831644 | 1.841898 | 1.849840 | 1.784030 | 1.832358 |
|                                 | <b>4</b>               | 1.833206 | 1.828394 | 1.797160 | 1.831644 | 1.841898 | 1.849842 | 1.784032 | 1.832356 |
|                                 | <b>5</b>               | 1.833208 | 1.828396 | 1.797158 | 1.831642 | 1.841900 | 1.849838 | 1.784032 | 1.832356 |
|                                 | <b>6</b>               | 1.833208 | 1.828396 | 1.797154 | 1.831646 | 1.841902 | 1.849838 | 1.784034 | 1.832358 |
|                                 | <b>7</b>               | 1.833206 | 1.828398 | 1.797154 | 1.831642 | 1.841898 | 1.849836 | 1.784032 | 1.832360 |
|                                 | <b>8</b>               | 1.833204 | 1.828396 | 1.797156 | 1.831642 | 1.841896 | 1.849838 | 1.784034 | 1.832358 |
|                                 | <b>9</b>               | 1.833208 | 1.828400 | 1.797154 | 1.831644 | 1.841898 | 1.849838 | 1.784032 | 1.832362 |
|                                 | <b>10</b>              | 1.833210 | 1.828398 | 1.797154 | 1.831642 | 1.841898 | 1.849840 | 1.784036 | 1.832356 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.957   | 12.972   | 12.960   | 12.948   | 12.865   | 12.924   | 12.797   | 12.834   |
|                                 | <b>2<sub>L</sub></b>   | 12.955   | 12.971   | 12.958   | 12.950   | 12.873   | 12.940   | 12.671   | 12.819   |
|                                 | <b>3<sub>L</sub></b>   | 12.956   | 12.970   | 12.955   | 12.952   | 12.874   | 12.944   | 12.622   | 12.800   |
|                                 | <b>4<sub>W</sub></b>   | 12.670   | 12.663   | 12.684   | 12.653   | 12.565   | 12.582   | 12.590   | 12.571   |
|                                 | <b>5<sub>W</sub></b>   | 12.668   | 12.667   | 12.685   | 12.661   | 12.567   | 12.583   | 12.590   | 12.588   |
|                                 | <b>6<sub>W</sub></b>   | 12.667   | 12.673   | 12.685   | 12.667   | 12.573   | 12.587   | 12.563   | 12.597   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.544    | 1.560    | 1.524    | 1.558    | 1.572    | 1.569    | 1.549    | 1.563    |
|                                 | <b>2</b>               | 1.550    | 1.556    | 1.523    | 1.559    | 1.572    | 1.574    | 1.555    | 1.566    |
|                                 | <b>3</b>               | 1.551    | 1.550    | 1.519    | 1.556    | 1.568    | 1.570    | 1.549    | 1.565    |
|                                 | <b>4</b>               | 1.541    | 1.533    | 1.512    | 1.545    | 1.573    | 1.574    | 1.547    | 1.563    |
|                                 | <b>5</b>               | 1.558    | 1.570    | 1.532    | 1.571    | 1.573    | 1.571    | 1.554    | 1.567    |

Table 23: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, AFA-OC6

| Measured Weight (g) |      |          |          |          |          |          |          |          |          |  |
|---------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Meas #              | A608 | A609     | A610     | A611     | A612     | A613     | A614     | A615     |          |  |
| 200 hrs             | 1    | 1.833254 | 1.828440 | 1.797208 | 1.831698 | 1.841948 | 1.849898 | 1.784086 | 1.832432 |  |
|                     | 2    | 1.833254 | 1.828436 | 1.797206 | 1.831694 | 1.841944 | 1.849898 | 1.784086 | 1.832436 |  |
|                     | 3    | 1.833256 | 1.828436 | 1.797208 | 1.831694 | 1.841946 | 1.849900 | 1.784084 | 1.832430 |  |
|                     | 4    | 1.833256 | 1.828438 | 1.797206 | 1.831696 | 1.841948 | 1.849902 | 1.784086 | 1.832432 |  |
|                     | 5    | 1.833258 | 1.828440 | 1.797210 | 1.831694 | 1.841944 | 1.849900 | 1.784088 | 1.832436 |  |
|                     | 6    | 1.833256 | 1.828440 | 1.797208 | 1.831698 | 1.841946 | 1.849898 | 1.784084 | 1.832434 |  |
|                     | 7    | 1.833258 | 1.828438 | 1.797210 | 1.831692 | 1.841944 | 1.849900 | 1.784086 | 1.832436 |  |
|                     | 8    | 1.833254 | 1.828436 | 1.797208 | 1.831694 | 1.841946 | 1.849900 | 1.784082 | 1.832430 |  |
|                     | 9    | 1.833256 | 1.828440 | 1.797208 | 1.831692 | 1.841944 | 1.849898 | 1.784084 | 1.832430 |  |
|                     | 10   | 1.833256 | 1.828442 | 1.797206 | 1.831696 | 1.841948 | 1.849900 | 1.784084 | 1.832432 |  |
| 400 hrs             | 1    | 1.833266 | 1.828444 | 1.797216 | 1.831698 | 1.841958 | 1.849902 | 1.784100 | 1.832438 |  |
|                     | 2    | 1.833260 | 1.828440 | 1.797214 | 1.831702 | 1.841956 | 1.849904 | 1.784098 | 1.832442 |  |
|                     | 3    | 1.833264 | 1.828442 | 1.797218 | 1.831700 | 1.841958 | 1.849900 | 1.784096 | 1.832440 |  |
|                     | 4    | 1.833264 | 1.828442 | 1.797218 | 1.831700 | 1.841958 | 1.849902 | 1.784102 | 1.832442 |  |
|                     | 5    | 1.833266 | 1.828440 | 1.797216 | 1.831698 | 1.841960 | 1.849900 | 1.784100 | 1.832438 |  |
|                     | 6    | 1.833262 | 1.828444 | 1.797218 | 1.831702 | 1.841958 | 1.849904 | 1.784098 | 1.832444 |  |
|                     | 7    | 1.833264 | 1.828438 | 1.797214 | 1.831704 | 1.841956 | 1.849906 | 1.784098 | 1.832440 |  |
|                     | 8    | 1.833262 | 1.828440 | 1.797220 | 1.831700 | 1.841958 | 1.849904 | 1.784100 | 1.832444 |  |
|                     | 9    | 1.833260 | 1.828442 | 1.797218 | 1.831704 | 1.841956 | 1.849906 | 1.784096 | 1.832442 |  |
|                     | 10   | 1.833260 | 1.828438 | 1.797216 | 1.831702 | 1.841956 | 1.849902 | 1.784102 | 1.832444 |  |
| 600 hrs             | 1    | 1.833276 | 1.828462 | 1.797232 | 1.831724 | 1.841976 | 1.849908 | 1.784122 | 1.832458 |  |
|                     | 2    | 1.833278 | 1.828460 | 1.797234 | 1.831718 | 1.841978 | 1.849912 | 1.784124 | 1.832462 |  |
|                     | 3    | 1.833280 | 1.828464 | 1.797236 | 1.831720 | 1.841978 | 1.849912 | 1.784122 | 1.832458 |  |
|                     | 4    | 1.833274 | 1.828458 | 1.797230 | 1.831720 | 1.841980 | 1.849910 | 1.784122 | 1.832460 |  |
|                     | 5    | 1.833278 | 1.828460 | 1.797232 | 1.831718 | 1.841976 | 1.849908 | 1.784120 | 1.832460 |  |
|                     | 6    | 1.833276 | 1.828460 | 1.797234 | 1.831720 | 1.841976 | 1.849910 | 1.784122 | 1.832458 |  |
|                     | 7    | 1.833280 | 1.828462 | 1.797232 | 1.831722 | 1.841978 | 1.849912 | 1.784124 | 1.832456 |  |
|                     | 8    | 1.833276 | 1.828458 | 1.797232 | 1.831718 | 1.841976 | 1.849912 | 1.784126 | 1.832458 |  |
|                     | 9    | 1.833274 | 1.828460 | 1.797234 | 1.831720 | 1.841978 | 1.849910 | 1.784124 | 1.832456 |  |
|                     | 10   | 1.833278 | 1.828462 | 1.797230 | 1.831724 | 1.841980 | 1.849908 | 1.784120 | 1.832458 |  |
| 800 hrs             | 1    |          |          |          |          |          |          |          |          |  |
|                     | 2    |          |          |          |          |          |          |          |          |  |
|                     | 3    |          |          |          |          |          |          |          |          |  |
|                     | 4    |          |          |          |          |          |          |          |          |  |
|                     | 5    |          |          |          |          |          |          |          |          |  |
|                     | 6    |          |          |          |          |          |          |          |          |  |
|                     | 7    |          |          |          |          |          |          |          |          |  |
|                     | 8    |          |          |          |          |          |          |          |          |  |
|                     | 9    |          |          |          |          |          |          |          |          |  |
|                     | 10   |          |          |          |          |          |          |          |          |  |
| 1000 hrs            | 1    |          |          |          |          |          |          |          |          |  |
|                     | 2    |          |          |          |          |          |          |          |          |  |
|                     | 3    |          |          |          |          |          |          |          |          |  |
|                     | 4    |          |          |          |          |          |          |          |          |  |
|                     | 5    |          |          |          |          |          |          |          |          |  |
|                     | 6    |          |          |          |          |          |          |          |          |  |
|                     | 7    |          |          |          |          |          |          |          |          |  |
|                     | 8    |          |          |          |          |          |          |          |          |  |
|                     | 9    |          |          |          |          |          |          |          |          |  |
|                     | 10   |          |          |          |          |          |          |          |          |  |
| 1200 hrs            | 1    |          |          |          |          |          |          |          |          |  |
|                     | 2    |          |          |          |          |          |          |          |          |  |
|                     | 3    |          |          |          |          |          |          |          |          |  |
|                     | 4    |          |          |          |          |          |          |          |          |  |
|                     | 5    |          |          |          |          |          |          |          |          |  |
|                     | 6    |          |          |          |          |          |          |          |          |  |
|                     | 7    |          |          |          |          |          |          |          |          |  |
|                     | 8    |          |          |          |          |          |          |          |          |  |
|                     | 9    |          |          |          |          |          |          |          |          |  |
|                     | 10   |          |          |          |          |          |          |          |          |  |

Table 24: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, AFA-OC7

|             |                      |                                   |                                           |
|-------------|----------------------|-----------------------------------|-------------------------------------------|
| Project:    | <b>SCCO2</b>         | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | <b>3</b>             | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000181$ cm <sup>2</sup> |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | Heat # 001920 (CRADA RPT)                 |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Alumina-Forming-Austenitic                |
| Temp. (°C): | 450                  | Color Designation:                | Green                                     |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | <b>AFA-OC7</b>       |                                   |                                           |
| Notes:      |                      |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A702                   | A703     | A704     | A705     | A706     | A707     | A708     | A709     |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.860566 | 1.844168 | 1.841398 | 1.844678 | 1.825728 | 1.849198 | 1.844340 | 1.834756 |
|                                 | <b>2</b>               | 1.860574 | 1.844166 | 1.841396 | 1.844676 | 1.825726 | 1.849192 | 1.844342 | 1.834762 |
|                                 | <b>3</b>               | 1.860568 | 1.844172 | 1.841396 | 1.844674 | 1.825728 | 1.849200 | 1.844344 | 1.834766 |
|                                 | <b>4</b>               | 1.860568 | 1.844170 | 1.841396 | 1.844676 | 1.825722 | 1.849198 | 1.844348 | 1.834756 |
|                                 | <b>5</b>               | 1.860568 | 1.844168 | 1.841398 | 1.844682 | 1.825724 | 1.849200 | 1.844348 | 1.834758 |
|                                 | <b>6</b>               | 1.860566 | 1.844168 | 1.841394 | 1.844678 | 1.825726 | 1.849204 | 1.844340 | 1.834762 |
|                                 | <b>7</b>               | 1.860568 | 1.844170 | 1.841396 | 1.844684 | 1.825728 | 1.849208 | 1.844346 | 1.834762 |
|                                 | <b>8</b>               | 1.860570 | 1.844174 | 1.841392 | 1.844680 | 1.825726 | 1.849202 | 1.844342 | 1.834766 |
|                                 | <b>9</b>               | 1.860570 | 1.844172 | 1.841394 | 1.844684 | 1.825722 | 1.849200 | 1.844342 | 1.834766 |
|                                 | <b>10</b>              | 1.860568 | 1.844170 | 1.841392 | 1.844680 | 1.825728 | 1.849204 | 1.844344 | 1.834766 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.860   | 12.852   | 12.856   | 12.852   | 12.866   | 12.866   | 12.853   | 12.862   |
|                                 | <b>2<sub>L</sub></b>   | 12.865   | 12.860   | 12.858   | 12.851   | 12.866   | 12.870   | 12.855   | 12.862   |
|                                 | <b>3<sub>L</sub></b>   | 12.868   | 12.863   | 12.858   | 12.851   | 12.868   | 12.873   | 12.857   | 12.864   |
|                                 | <b>4<sub>W</sub></b>   | 12.704   | 12.687   | 12.691   | 12.687   | 12.670   | 12.696   | 12.673   | 12.680   |
|                                 | <b>5<sub>W</sub></b>   | 12.706   | 12.689   | 12.692   | 12.685   | 12.678   | 12.699   | 12.670   | 12.681   |
|                                 | <b>6<sub>W</sub></b>   | 12.707   | 12.688   | 12.693   | 12.684   | 12.679   | 12.695   | 12.669   | 12.686   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.564    | 1.548    | 1.552    | 1.549    | 1.547    | 1.551    | 1.553    | 1.542    |
|                                 | <b>2</b>               | 1.569    | 1.559    | 1.554    | 1.554    | 1.550    | 1.566    | 1.562    | 1.555    |
|                                 | <b>3</b>               | 1.568    | 1.564    | 1.557    | 1.555    | 1.548    | 1.572    | 1.564    | 1.561    |
|                                 | <b>4</b>               | 1.555    | 1.557    | 1.552    | 1.550    | 1.544    | 1.563    | 1.551    | 1.543    |
|                                 | <b>5</b>               | 1.574    | 1.559    | 1.556    | 1.554    | 1.552    | 1.568    | 1.564    | 1.560    |

Table 25: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, AFA-OC7

| Measured Weight (g) |      |          |          |          |          |          |          |          |          |  |
|---------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Meas #              | A702 | A703     | A704     | A705     | A706     | A707     | A708     | A709     |          |  |
| 200 hrs             | 1    | 1.860634 | 1.844214 | 1.841434 | 1.844730 | 1.825790 | 1.849262 | 1.844382 | 1.834828 |  |
|                     | 2    | 1.860634 | 1.844212 | 1.841432 | 1.844732 | 1.825792 | 1.849262 | 1.844380 | 1.834826 |  |
|                     | 3    | 1.860636 | 1.844214 | 1.841438 | 1.844728 | 1.825790 | 1.849264 | 1.844380 | 1.834824 |  |
|                     | 4    | 1.860632 | 1.844214 | 1.841438 | 1.844730 | 1.825790 | 1.849266 | 1.844380 | 1.834824 |  |
|                     | 5    | 1.860634 | 1.844210 | 1.841434 | 1.844734 | 1.825792 | 1.849264 | 1.844382 | 1.834826 |  |
|                     | 6    | 1.860630 | 1.844208 | 1.841436 | 1.844732 | 1.825794 | 1.849260 | 1.844384 | 1.834824 |  |
|                     | 7    | 1.860632 | 1.844208 | 1.841438 | 1.844732 | 1.825794 | 1.849260 | 1.844382 | 1.834828 |  |
|                     | 8    | 1.860632 | 1.844210 | 1.841434 | 1.844730 | 1.825790 | 1.849262 | 1.844384 | 1.834824 |  |
|                     | 9    | 1.860634 | 1.844212 | 1.841440 | 1.844730 | 1.825790 | 1.849264 | 1.844384 | 1.834824 |  |
|                     | 10   | 1.860630 | 1.844212 | 1.841436 | 1.844734 | 1.825792 | 1.849260 | 1.844382 | 1.834822 |  |
| 400 hrs             | 1    | 1.860638 | 1.844228 | 1.841444 | 1.844738 | 1.825798 | 1.849270 | 1.844388 | 1.834834 |  |
|                     | 2    | 1.860638 | 1.844226 | 1.841444 | 1.844740 | 1.825798 | 1.849268 | 1.844386 | 1.834834 |  |
|                     | 3    | 1.860636 | 1.844230 | 1.841442 | 1.844742 | 1.825796 | 1.849272 | 1.844388 | 1.834832 |  |
|                     | 4    | 1.860640 | 1.844228 | 1.841440 | 1.844740 | 1.825798 | 1.849270 | 1.844388 | 1.834836 |  |
|                     | 5    | 1.860638 | 1.844226 | 1.841442 | 1.844736 | 1.825796 | 1.849270 | 1.844390 | 1.834836 |  |
|                     | 6    | 1.860636 | 1.844226 | 1.841444 | 1.844738 | 1.825800 | 1.849268 | 1.844386 | 1.834834 |  |
|                     | 7    | 1.860638 | 1.844228 | 1.841440 | 1.844742 | 1.825798 | 1.849272 | 1.844386 | 1.834836 |  |
|                     | 8    | 1.860640 | 1.844224 | 1.841446 | 1.844740 | 1.825800 | 1.849266 | 1.844388 | 1.834832 |  |
|                     | 9    | 1.860642 | 1.844226 | 1.841444 | 1.844744 | 1.825796 | 1.849270 | 1.844390 | 1.834834 |  |
|                     | 10   | 1.860638 | 1.844224 | 1.841444 | 1.844742 | 1.825800 | 1.849268 | 1.844388 | 1.834834 |  |
| 600 hrs             | 1    | 1.860670 | 1.844248 | 1.841456 | 1.844746 | 1.825814 | 1.849282 | 1.844406 | 1.834844 |  |
|                     | 2    | 1.860670 | 1.844246 | 1.841454 | 1.844746 | 1.825816 | 1.849278 | 1.844406 | 1.834844 |  |
|                     | 3    | 1.860668 | 1.844248 | 1.841458 | 1.844748 | 1.825814 | 1.849278 | 1.844408 | 1.834848 |  |
|                     | 4    | 1.860666 | 1.844248 | 1.841456 | 1.844750 | 1.825816 | 1.849280 | 1.844408 | 1.834848 |  |
|                     | 5    | 1.860668 | 1.844244 | 1.841454 | 1.844748 | 1.825812 | 1.849282 | 1.844404 | 1.834846 |  |
|                     | 6    | 1.860666 | 1.844246 | 1.841458 | 1.844748 | 1.825814 | 1.849282 | 1.844406 | 1.834844 |  |
|                     | 7    | 1.860670 | 1.844246 | 1.841460 | 1.844750 | 1.825816 | 1.849280 | 1.844408 | 1.834846 |  |
|                     | 8    | 1.860666 | 1.844248 | 1.841458 | 1.844746 | 1.825820 | 1.849282 | 1.844410 | 1.834846 |  |
|                     | 9    | 1.860670 | 1.844244 | 1.841462 | 1.844746 | 1.825816 | 1.849284 | 1.844408 | 1.834846 |  |
|                     | 10   | 1.860668 | 1.844246 | 1.841456 | 1.844748 | 1.825816 | 1.849280 | 1.844410 | 1.834844 |  |
| 800 hrs             | 1    |          |          |          |          |          |          |          |          |  |
|                     | 2    |          |          |          |          |          |          |          |          |  |
|                     | 3    |          |          |          |          |          |          |          |          |  |
|                     | 4    |          |          |          |          |          |          |          |          |  |
|                     | 5    |          |          |          |          |          |          |          |          |  |
|                     | 6    |          |          |          |          |          |          |          |          |  |
|                     | 7    |          |          |          |          |          |          |          |          |  |
|                     | 8    |          |          |          |          |          |          |          |          |  |
|                     | 9    |          |          |          |          |          |          |          |          |  |
|                     | 10   |          |          |          |          |          |          |          |          |  |
| 1000 hrs            | 1    |          |          |          |          |          |          |          |          |  |
|                     | 2    |          |          |          |          |          |          |          |          |  |
|                     | 3    |          |          |          |          |          |          |          |          |  |
|                     | 4    |          |          |          |          |          |          |          |          |  |
|                     | 5    |          |          |          |          |          |          |          |          |  |
|                     | 6    |          |          |          |          |          |          |          |          |  |
|                     | 7    |          |          |          |          |          |          |          |          |  |
|                     | 8    |          |          |          |          |          |          |          |          |  |
|                     | 9    |          |          |          |          |          |          |          |          |  |
|                     | 10   |          |          |          |          |          |          |          |          |  |
| 1200 hrs            | 1    |          |          |          |          |          |          |          |          |  |
|                     | 2    |          |          |          |          |          |          |          |          |  |
|                     | 3    |          |          |          |          |          |          |          |          |  |
|                     | 4    |          |          |          |          |          |          |          |          |  |
|                     | 5    |          |          |          |          |          |          |          |          |  |
|                     | 6    |          |          |          |          |          |          |          |          |  |
|                     | 7    |          |          |          |          |          |          |          |          |  |
|                     | 8    |          |          |          |          |          |          |          |          |  |
|                     | 9    |          |          |          |          |          |          |          |          |  |
|                     | 10   |          |          |          |          |          |          |          |          |  |

Table 26: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, AFA-OC10

|             |                      |                                   |                                       |
|-------------|----------------------|-----------------------------------|---------------------------------------|
| Project:    | <b>SCCO2</b>         | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002 \text{ g}$   |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001 \text{ mm}$     |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001 \text{ mm}$     |
| Expt. #:    | <b>3</b>             | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.00018 \text{ cm}^2$ |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | Heat # 001923 (CRADA RPT)             |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Alumina-Forming-Austenitic            |
| Temp. (°C): | 450                  | Color Designation:                | Brown                                 |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                     |
| Sample ID:  | <b>AFA-OC10</b>      |                                   |                                       |
| Notes:      |                      |                                   |                                       |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A102                   | A103     | A104     | A105     | A106     | A107     | A108     | A109     |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.825548 | 1.799642 | 1.812366 | 1.780048 | 1.834716 | 1.803058 | 1.795546 | 1.798470 |
|                                 | <b>2</b>               | 1.825542 | 1.799642 | 1.812364 | 1.780054 | 1.834718 | 1.803062 | 1.795552 | 1.798474 |
|                                 | <b>3</b>               | 1.825544 | 1.799638 | 1.812372 | 1.780048 | 1.834718 | 1.803054 | 1.795542 | 1.798472 |
|                                 | <b>4</b>               | 1.825542 | 1.799642 | 1.812364 | 1.780054 | 1.834712 | 1.803062 | 1.795554 | 1.798466 |
|                                 | <b>5</b>               | 1.825540 | 1.799636 | 1.812364 | 1.780046 | 1.834714 | 1.803062 | 1.795542 | 1.798472 |
|                                 | <b>6</b>               | 1.825546 | 1.799636 | 1.812368 | 1.780050 | 1.834714 | 1.803062 | 1.795552 | 1.798468 |
|                                 | <b>7</b>               | 1.825540 | 1.799636 | 1.812362 | 1.780046 | 1.834718 | 1.803062 | 1.795548 | 1.798470 |
|                                 | <b>8</b>               | 1.825544 | 1.799634 | 1.812368 | 1.780052 | 1.834714 | 1.803062 | 1.795550 | 1.798472 |
|                                 | <b>9</b>               | 1.825544 | 1.799636 | 1.812368 | 1.780046 | 1.834716 | 1.803064 | 1.795542 | 1.798468 |
|                                 | <b>10</b>              | 1.825542 | 1.799642 | 1.812366 | 1.780054 | 1.834716 | 1.803064 | 1.795548 | 1.798468 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.757   | 12.767   | 12.769   | 12.756   | 12.785   | 12.777   | 12.764   | 12.763   |
|                                 | <b>2<sub>L</sub></b>   | 12.759   | 12.765   | 12.768   | 12.757   | 12.785   | 12.776   | 12.763   | 12.761   |
|                                 | <b>3<sub>L</sub></b>   | 12.758   | 12.764   | 12.764   | 12.756   | 12.785   | 12.775   | 12.761   | 12.760   |
|                                 | <b>4<sub>W</sub></b>   | 12.637   | 12.667   | 12.679   | 12.665   | 12.648   | 12.656   | 12.663   | 12.655   |
|                                 | <b>5<sub>W</sub></b>   | 12.638   | 12.668   | 12.679   | 12.666   | 12.651   | 12.660   | 12.661   | 12.658   |
|                                 | <b>6<sub>W</sub></b>   | 12.639   | 12.671   | 12.673   | 12.667   | 12.649   | 12.661   | 12.660   | 12.662   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.566    | 1.542    | 1.544    | 1.535    | 1.568    | 1.541    | 1.539    | 1.536    |
|                                 | <b>2</b>               | 1.569    | 1.550    | 1.547    | 1.528    | 1.568    | 1.542    | 1.539    | 1.544    |
|                                 | <b>3</b>               | 1.570    | 1.554    | 1.549    | 1.519    | 1.569    | 1.540    | 1.535    | 1.548    |
|                                 | <b>4</b>               | 1.565    | 1.540    | 1.545    | 1.529    | 1.569    | 1.536    | 1.540    | 1.543    |
|                                 | <b>5</b>               | 1.570    | 1.555    | 1.549    | 1.526    | 1.567    | 1.543    | 1.537    | 1.540    |

Table 27: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, AFA-OC10

| Meas #  | Measured Weight (g) |          |          |          |          |          |          |          |          |
|---------|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|         | A102                | A103     | A104     | A105     | A106     | A107     | A108     | A109     |          |
| 200 hrs | 1                   | 1.825618 | 1.799722 | 1.812426 | 1.780112 | 1.834780 | 1.803130 | 1.795612 | 1.798550 |
|         | 2                   | 1.825616 | 1.799724 | 1.812424 | 1.780110 | 1.834784 | 1.803132 | 1.795614 | 1.798548 |
|         | 3                   | 1.82562  | 1.799728 | 1.812426 | 1.780110 | 1.834782 | 1.803130 | 1.795616 | 1.798550 |
|         | 4                   | 1.825616 | 1.799728 | 1.812428 | 1.780112 | 1.834778 | 1.803134 | 1.795614 | 1.798552 |
|         | 5                   | 1.825618 | 1.799724 | 1.812428 | 1.780114 | 1.834778 | 1.803132 | 1.795612 | 1.798550 |
|         | 6                   | 1.825618 | 1.799726 | 1.812424 | 1.780110 | 1.834782 | 1.803132 | 1.795612 | 1.798550 |
|         | 7                   | 1.825616 | 1.799722 | 1.812426 | 1.780112 | 1.834780 | 1.803130 | 1.795610 | 1.798554 |
|         | 8                   | 1.825618 | 1.799726 | 1.812424 | 1.780112 | 1.834784 | 1.803134 | 1.795612 | 1.798552 |
|         | 9                   | 1.825620 | 1.799724 | 1.812424 | 1.780114 | 1.834780 | 1.803130 | 1.795612 | 1.798550 |
|         | 10                  | 1.825616 | 1.799724 | 1.812422 | 1.780112 | 1.834780 | 1.803130 | 1.795614 | 1.798548 |
| 400 hrs | 1                   | 1.825630 | 1.799754 | 1.812440 | 1.780118 | 1.834790 | 1.803148 | 1.795620 | 1.798560 |
|         | 2                   | 1.825632 | 1.799750 | 1.812442 | 1.780120 | 1.834788 | 1.803148 | 1.795618 | 1.798562 |
|         | 3                   | 1.825628 | 1.799756 | 1.812442 | 1.780120 | 1.834792 | 1.803150 | 1.795618 | 1.798566 |
|         | 4                   | 1.825630 | 1.799754 | 1.812440 | 1.780122 | 1.834790 | 1.803150 | 1.795620 | 1.798560 |
|         | 5                   | 1.825630 | 1.799752 | 1.812440 | 1.780118 | 1.834794 | 1.803146 | 1.795622 | 1.798560 |
|         | 6                   | 1.825628 | 1.799750 | 1.812438 | 1.780116 | 1.834792 | 1.803144 | 1.795618 | 1.798564 |
|         | 7                   | 1.825632 | 1.799754 | 1.812436 | 1.780118 | 1.834792 | 1.803148 | 1.795616 | 1.798562 |
|         | 8                   | 1.825634 | 1.799752 | 1.812440 | 1.780120 | 1.834788 | 1.803150 | 1.795616 | 1.798564 |
|         | 9                   | 1.825630 | 1.799750 | 1.812438 | 1.780122 | 1.834792 | 1.803148 | 1.795618 | 1.798560 |
|         | 10                  | 1.825632 | 1.799750 | 1.812440 | 1.780118 | 1.834790 | 1.803150 | 1.795616 | 1.798560 |
| 600 hrs | 1                   | 1.825656 | 1.799776 | 1.812476 | 1.780144 | 1.834820 | 1.803172 | 1.795654 | 1.798576 |
|         | 2                   | 1.825656 | 1.799772 | 1.812472 | 1.780148 | 1.834822 | 1.803172 | 1.795654 | 1.798572 |
|         | 3                   | 1.825654 | 1.799774 | 1.812478 | 1.780150 | 1.834826 | 1.803172 | 1.795650 | 1.798572 |
|         | 4                   | 1.825654 | 1.799774 | 1.812472 | 1.780146 | 1.834824 | 1.803166 | 1.795648 | 1.798572 |
|         | 5                   | 1.825656 | 1.799776 | 1.812478 | 1.780148 | 1.834828 | 1.803170 | 1.795650 | 1.798574 |
|         | 6                   | 1.825658 | 1.799778 | 1.812476 | 1.780142 | 1.834828 | 1.803174 | 1.795652 | 1.798578 |
|         | 7                   | 1.825656 | 1.799778 | 1.812476 | 1.780144 | 1.834826 | 1.803170 | 1.795648 | 1.798570 |
|         | 8                   | 1.825656 | 1.799776 | 1.812474 | 1.780144 | 1.834824 | 1.803170 | 1.795648 | 1.798574 |
|         | 9                   | 1.825658 | 1.799778 | 1.812478 | 1.780144 | 1.834824 | 1.803170 | 1.795646 | 1.798572 |
|         | 10                  | 1.825658 | 1.799778 | 1.812476 | 1.780146 | 1.834826 | 1.803174 | 1.795646 | 1.798572 |

| Meas #   | Measured Weight (g) |      |      |      |          |          |          |          |          |          |
|----------|---------------------|------|------|------|----------|----------|----------|----------|----------|----------|
|          | A102                | A103 | A104 | A105 | A106     | A107     | A108     | A109     |          |          |
| 800 hrs  | 1                   |      |      |      | 1.812482 | 1.780150 | 1.834830 | 1.803174 | 1.795644 | 1.798582 |
|          | 2                   |      |      |      | 1.812484 | 1.780152 | 1.834832 | 1.803178 | 1.795644 | 1.798578 |
|          | 3                   |      |      |      | 1.812480 | 1.780152 | 1.834830 | 1.803174 | 1.795644 | 1.798580 |
|          | 4                   |      |      |      | 1.812480 | 1.780148 | 1.834828 | 1.803174 | 1.795648 | 1.798578 |
|          | 5                   |      |      |      | 1.812480 | 1.780150 | 1.834832 | 1.803176 | 1.795648 | 1.798578 |
|          | 6                   |      |      |      | 1.812482 | 1.780148 | 1.834830 | 1.803176 | 1.795646 | 1.798580 |
|          | 7                   |      |      |      | 1.812480 | 1.780148 | 1.834832 | 1.803174 | 1.795648 | 1.798578 |
|          | 8                   |      |      |      | 1.812482 | 1.780152 | 1.834830 | 1.803174 | 1.795644 | 1.798580 |
|          | 9                   |      |      |      | 1.812482 | 1.780150 | 1.834834 | 1.803178 | 1.795646 | 1.798582 |
|          | 10                  |      |      |      | 1.812480 | 1.780148 | 1.834830 | 1.803176 | 1.795648 | 1.798578 |
| 1000 hrs | 1                   |      |      |      |          |          | 1.834836 | 1.803184 | 1.795652 | 1.798590 |
|          | 2                   |      |      |      |          |          | 1.834836 | 1.803182 | 1.795652 | 1.798588 |
|          | 3                   |      |      |      |          |          | 1.834834 | 1.803182 | 1.795648 | 1.798588 |
|          | 4                   |      |      |      |          |          | 1.834836 | 1.803182 | 1.795650 | 1.798586 |
|          | 5                   |      |      |      |          |          | 1.834834 | 1.803180 | 1.795650 | 1.798588 |
|          | 6                   |      |      |      |          |          | 1.834834 | 1.803184 | 1.795650 | 1.798588 |
|          | 7                   |      |      |      |          |          | 1.834832 | 1.803182 | 1.795648 | 1.798590 |
|          | 8                   |      |      |      |          |          | 1.834836 | 1.803180 | 1.795650 | 1.798586 |
|          | 9                   |      |      |      |          |          | 1.834834 | 1.803180 | 1.795652 | 1.798588 |
|          | 10                  |      |      |      |          |          | 1.834836 | 1.803182 | 1.795650 | 1.798588 |
| 1200 hrs | 1                   |      |      |      |          |          |          |          |          |          |
|          | 2                   |      |      |      |          |          |          |          |          |          |
|          | 3                   |      |      |      |          |          |          |          |          |          |
|          | 4                   |      |      |      |          |          |          |          |          |          |
|          | 5                   |      |      |      |          |          |          |          |          |          |
|          | 6                   |      |      |      |          |          |          |          |          |          |
|          | 7                   |      |      |      |          |          |          |          |          |          |
|          | 8                   |      |      |      |          |          |          |          |          |          |
|          | 9                   |      |      |      |          |          |          |          |          |          |
|          | 10                  |      |      |      |          |          |          |          |          |          |

Table 28: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, IN800H

|             |                      |                                   |                                           |
|-------------|----------------------|-----------------------------------|-------------------------------------------|
| Project:    | <b>SCCO2</b>         | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | <b>PRJ39TC</b>       | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | <b>MD24386</b>       | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | <b>3</b>             | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000184$ cm <sup>2</sup> |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | <b>NO8810</b>                             |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Austenitic - Superalloy                   |
| Temp. (°C): | 450                  | Color Designation:                | Cyan                                      |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | <b>IN800H</b>        |                                   |                                           |
| Notes:      |                      |                                   |                                           |

| Meas #                                | Sample # / Description |            |            |            |            |            |            |            |          |
|---------------------------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|----------|
|                                       | <b>I02</b>             | <b>I03</b> | <b>I04</b> | <b>I05</b> | <b>I06</b> | <b>I07</b> | <b>I08</b> | <b>I09</b> |          |
| <b>BARE WEIGHT<br/>(gm)</b>           | <b>1</b>               | 1.992976   | 1.992254   | 1.995252   | 1.980230   | 1.981020   | 1.973024   | 1.982778   | 1.966720 |
|                                       | <b>2</b>               | 1.992980   | 1.992258   | 1.995256   | 1.980234   | 1.981016   | 1.973022   | 1.982782   | 1.966718 |
|                                       | <b>3</b>               | 1.992978   | 1.992256   | 1.995256   | 1.980234   | 1.981024   | 1.973026   | 1.982782   | 1.966720 |
|                                       | <b>4</b>               | 1.992976   | 1.992256   | 1.995254   | 1.980232   | 1.981020   | 1.973024   | 1.982784   | 1.966722 |
|                                       | <b>5</b>               | 1.992978   | 1.992254   | 1.995250   | 1.980230   | 1.981022   | 1.973026   | 1.982780   | 1.966724 |
|                                       | <b>6</b>               | 1.992982   | 1.992258   | 1.995252   | 1.980234   | 1.981024   | 1.973024   | 1.982782   | 1.966722 |
|                                       | <b>7</b>               | 1.992980   | 1.992256   | 1.995250   | 1.980232   | 1.981024   | 1.973020   | 1.982784   | 1.966724 |
|                                       | <b>8</b>               | 1.992980   | 1.992258   | 1.995248   | 1.980228   | 1.981024   | 1.973022   | 1.982780   | 1.966720 |
|                                       | <b>9</b>               | 1.992978   | 1.992254   | 1.995252   | 1.980232   | 1.981022   | 1.973024   | 1.982778   | 1.966722 |
|                                       | <b>10</b>              | 1.992978   | 1.992256   | 1.995250   | 1.980230   | 1.981024   | 1.973022   | 1.982782   | 1.966722 |
| <b>BARE AREA<br/>(mm<sup>2</sup>)</b> | <b>1<sub>L</sub></b>   | 13.409     | 13.411     | 13.418     | 13.401     | 13.402     | 13.429     | 13.415     | 13.402   |
|                                       | <b>2<sub>L</sub></b>   | 13.407     | 13.417     | 13.419     | 13.400     | 13.409     | 13.430     | 13.414     | 13.400   |
|                                       | <b>3<sub>L</sub></b>   | 13.408     | 13.415     | 13.419     | 13.400     | 13.407     | 13.427     | 13.414     | 13.399   |
|                                       | <b>4<sub>W</sub></b>   | 12.641     | 12.637     | 12.641     | 12.631     | 12.649     | 12.647     | 12.648     | 12.613   |
|                                       | <b>5<sub>W</sub></b>   | 12.643     | 12.637     | 12.639     | 12.635     | 12.650     | 12.647     | 12.649     | 12.615   |
|                                       | <b>6<sub>W</sub></b>   | 12.642     | 12.636     | 12.640     | 12.633     | 12.649     | 12.648     | 12.649     | 12.618   |
| <b>BARE THICKNESS<br/>(mm)</b>        | <b>1</b>               | 1.558      | 1.563      | 1.560      | 1.556      | 1.562      | 1.543      | 1.543      | 1.537    |
|                                       | <b>2</b>               | 1.565      | 1.560      | 1.560      | 1.556      | 1.558      | 1.544      | 1.546      | 1.540    |
|                                       | <b>3</b>               | 1.563      | 1.555      | 1.558      | 1.554      | 1.551      | 1.541      | 1.545      | 1.541    |
|                                       | <b>4</b>               | 1.559      | 1.561      | 1.556      | 1.550      | 1.563      | 1.544      | 1.541      | 1.538    |
|                                       | <b>5</b>               | 1.565      | 1.558      | 1.561      | 1.558      | 1.554      | 1.541      | 1.544      | 1.540    |

Table 29: Raw Data, Expt. #3, RG-CO<sub>2</sub>/450°C/20MPa, IN800H

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |  |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Meas #              | 102 | 103      | 104      | 105      | 106      | 107      | 108      | 109      |          |  |
| 200 hrs             | 1   | 1.993016 | 1.992290 | 1.995294 | 1.980276 | 1.981058 | 1.973066 | 1.982830 | 1.966766 |  |
|                     | 2   | 1.993014 | 1.992294 | 1.995290 | 1.980278 | 1.981062 | 1.973066 | 1.982830 | 1.966764 |  |
|                     | 3   | 1.993014 | 1.992296 | 1.995288 | 1.980272 | 1.981060 | 1.973066 | 1.982832 | 1.966768 |  |
|                     | 4   | 1.993016 | 1.992292 | 1.995292 | 1.980272 | 1.981060 | 1.973064 | 1.982834 | 1.966764 |  |
|                     | 5   | 1.993016 | 1.992290 | 1.995294 | 1.980274 | 1.981062 | 1.973064 | 1.982834 | 1.966766 |  |
|                     | 6   | 1.993016 | 1.992290 | 1.995292 | 1.980278 | 1.981062 | 1.973060 | 1.982832 | 1.966770 |  |
|                     | 7   | 1.993014 | 1.992294 | 1.995290 | 1.980276 | 1.981058 | 1.973062 | 1.982828 | 1.966768 |  |
|                     | 8   | 1.993018 | 1.992296 | 1.995292 | 1.980276 | 1.981058 | 1.973064 | 1.982828 | 1.966764 |  |
|                     | 9   | 1.993018 | 1.992294 | 1.995294 | 1.980272 | 1.981060 | 1.973060 | 1.982830 | 1.966764 |  |
|                     | 10  | 1.993016 | 1.992292 | 1.995290 | 1.980278 | 1.981060 | 1.973062 | 1.982828 | 1.966768 |  |
| 400 hrs             | 1   | 1.993022 | 1.992302 | 1.995304 | 1.980284 | 1.981066 | 1.973072 | 1.982834 | 1.966776 |  |
|                     | 2   | 1.993024 | 1.992302 | 1.995302 | 1.980284 | 1.981068 | 1.973070 | 1.982838 | 1.966774 |  |
|                     | 3   | 1.993022 | 1.992300 | 1.995304 | 1.980286 | 1.981068 | 1.973070 | 1.982836 | 1.966778 |  |
|                     | 4   | 1.993026 | 1.992306 | 1.995304 | 1.980284 | 1.981066 | 1.973074 | 1.982838 | 1.966778 |  |
|                     | 5   | 1.993026 | 1.992304 | 1.995302 | 1.980282 | 1.981064 | 1.973072 | 1.982832 | 1.966774 |  |
|                     | 6   | 1.993024 | 1.992304 | 1.995300 | 1.980286 | 1.981068 | 1.973074 | 1.982840 | 1.966776 |  |
|                     | 7   | 1.993022 | 1.992300 | 1.995302 | 1.980280 | 1.981066 | 1.973070 | 1.982840 | 1.966778 |  |
|                     | 8   | 1.993022 | 1.992302 | 1.995300 | 1.980284 | 1.981068 | 1.973076 | 1.982838 | 1.966774 |  |
|                     | 9   | 1.993024 | 1.992300 | 1.995304 | 1.980286 | 1.981064 | 1.973074 | 1.982840 | 1.966774 |  |
|                     | 10  | 1.993024 | 1.992302 | 1.995300 | 1.980284 | 1.981068 | 1.973072 | 1.982842 | 1.966776 |  |
| 600 hrs             | 1   | 1.993024 | 1.992306 | 1.995300 | 1.980278 | 1.981060 | 1.973072 | 1.982838 | 1.966768 |  |
|                     | 2   | 1.993028 | 1.992302 | 1.995300 | 1.980272 | 1.981058 | 1.973070 | 1.982832 | 1.966766 |  |
|                     | 3   | 1.993024 | 1.992304 | 1.995302 | 1.980274 | 1.981058 | 1.973070 | 1.982834 | 1.966766 |  |
|                     | 4   | 1.993026 | 1.992306 | 1.995302 | 1.980276 | 1.981058 | 1.973068 | 1.982834 | 1.966768 |  |
|                     | 5   | 1.993020 | 1.992306 | 1.995300 | 1.980274 | 1.981060 | 1.973072 | 1.982834 | 1.966768 |  |
|                     | 6   | 1.993020 | 1.992304 | 1.995298 | 1.980276 | 1.981060 | 1.973068 | 1.982838 | 1.966768 |  |
|                     | 7   | 1.993020 | 1.992304 | 1.995302 | 1.980274 | 1.981058 | 1.973070 | 1.982832 | 1.966772 |  |
|                     | 8   | 1.993018 | 1.992300 | 1.995300 | 1.980276 | 1.981060 | 1.973070 | 1.982832 | 1.966770 |  |
|                     | 9   | 1.993020 | 1.992302 | 1.995304 | 1.980274 | 1.981060 | 1.973070 | 1.982832 | 1.966768 |  |
|                     | 10  | 1.993020 | 1.992302 | 1.995300 | 1.980274 | 1.981060 | 1.973072 | 1.982832 | 1.966770 |  |
| 800 hrs             | 1   |          |          |          |          |          |          |          |          |  |
|                     | 2   |          |          |          |          |          |          |          |          |  |
|                     | 3   |          |          |          |          |          |          |          |          |  |
|                     | 4   |          |          |          |          |          |          |          |          |  |
|                     | 5   |          |          |          |          |          |          |          |          |  |
|                     | 6   |          |          |          |          |          |          |          |          |  |
|                     | 7   |          |          |          |          |          |          |          |          |  |
|                     | 8   |          |          |          |          |          |          |          |          |  |
|                     | 9   |          |          |          |          |          |          |          |          |  |
|                     | 10  |          |          |          |          |          |          |          |          |  |
| 1000 hrs            | 1   |          |          |          |          |          |          |          |          |  |
|                     | 2   |          |          |          |          |          |          |          |          |  |
|                     | 3   |          |          |          |          |          |          |          |          |  |
|                     | 4   |          |          |          |          |          |          |          |          |  |
|                     | 5   |          |          |          |          |          |          |          |          |  |
|                     | 6   |          |          |          |          |          |          |          |          |  |
|                     | 7   |          |          |          |          |          |          |          |          |  |
|                     | 8   |          |          |          |          |          |          |          |          |  |
|                     | 9   |          |          |          |          |          |          |          |          |  |
|                     | 10  |          |          |          |          |          |          |          |          |  |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |  |
|                     | 2   |          |          |          |          |          |          |          |          |  |
|                     | 3   |          |          |          |          |          |          |          |          |  |
|                     | 4   |          |          |          |          |          |          |          |          |  |
|                     | 5   |          |          |          |          |          |          |          |          |  |
|                     | 6   |          |          |          |          |          |          |          |          |  |
|                     | 7   |          |          |          |          |          |          |          |          |  |
|                     | 8   |          |          |          |          |          |          |          |          |  |
|                     | 9   |          |          |          |          |          |          |          |          |  |
|                     | 10  |          |          |          |          |          |          |          |          |  |

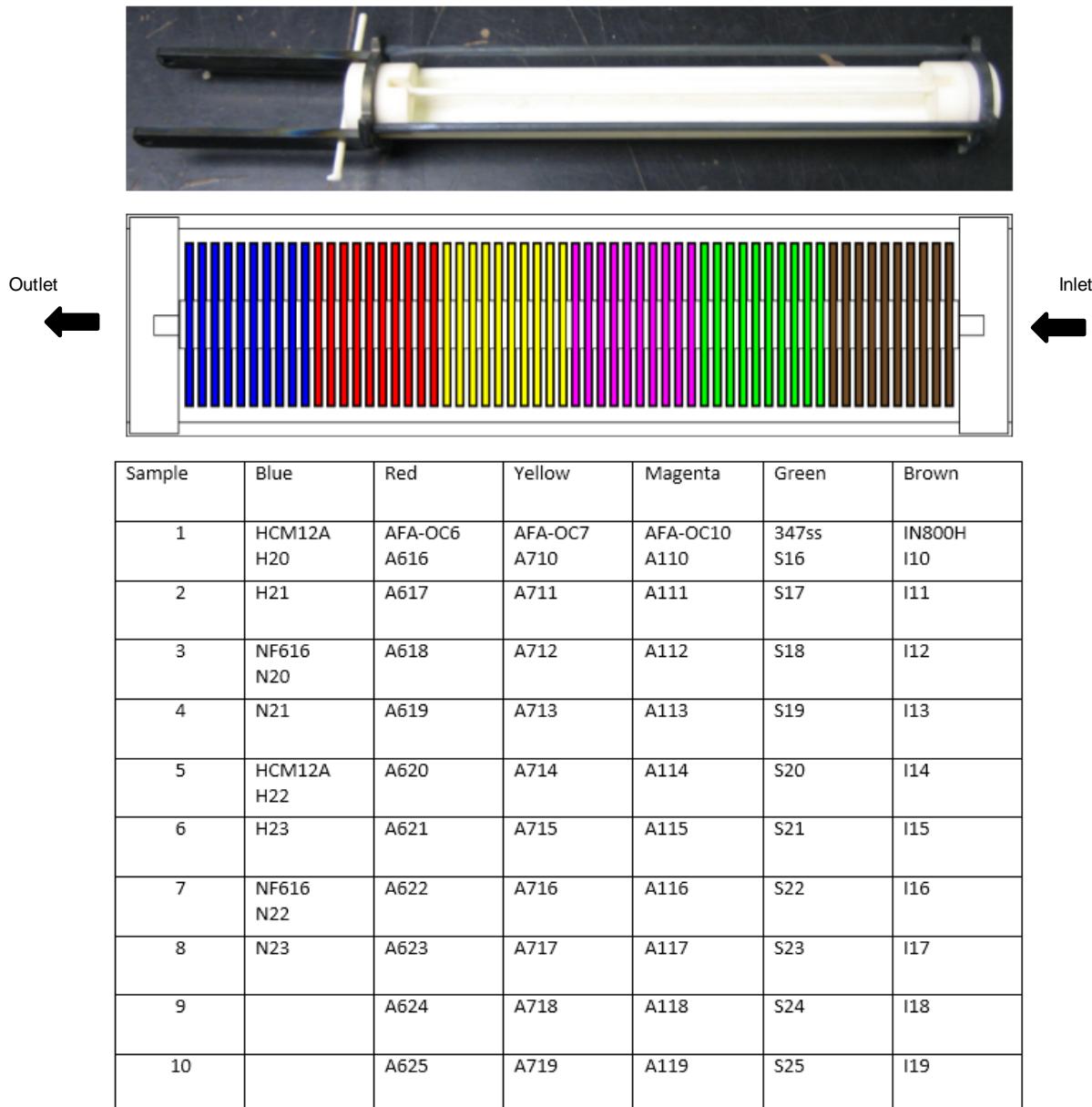

Table 30: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, Coupon Arrangement

Table 31: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, 347SS

|             |          |                                   |                                           |
|-------------|----------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2    | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC  | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386  | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 4        | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000182$ cm <sup>2</sup> |
| Phase:      | 1 of 4   | Supplier/UNS ID:                  | S34700                                    |
| Phase Type: | Pure CO2 | Metal Type:                       | Austenitic                                |
| Temp. (°C): | 550      | Color Designation:                | Green                                     |
| Pressure:   | 2900psi  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | 347SS    |                                   |                                           |
| Notes:      |          |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | S16                    | S17      | S18      | S19      | S20      | S21      | S22      | S23      | S24      | S25      |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.866140 | 1.882442 | 1.924338 | 1.892600 | 1.916802 | 1.907552 | 1.940288 | 1.929698 | 1.924058 | 1.938712 |
|                                 | <b>2</b>               | 1.866144 | 1.882442 | 1.924342 | 1.892602 | 1.916804 | 1.907554 | 1.940288 | 1.929704 | 1.924058 | 1.938712 |
|                                 | <b>3</b>               | 1.866144 | 1.882442 | 1.924338 | 1.892602 | 1.916804 | 1.907556 | 1.940284 | 1.929700 | 1.924060 | 1.938712 |
|                                 | <b>4</b>               | 1.866146 | 1.882444 | 1.924344 | 1.892598 | 1.916806 | 1.907556 | 1.940286 | 1.929702 | 1.924062 | 1.938718 |
|                                 | <b>5</b>               | 1.866142 | 1.882440 | 1.924342 | 1.892602 | 1.916800 | 1.907552 | 1.940288 | 1.929700 | 1.924064 | 1.938712 |
|                                 | <b>6</b>               | 1.866144 | 1.882444 | 1.924340 | 1.892602 | 1.916804 | 1.907554 | 1.940292 | 1.929702 | 1.924064 | 1.938716 |
|                                 | <b>7</b>               | 1.866146 | 1.882446 | 1.924344 | 1.892604 | 1.916804 | 1.907552 | 1.940294 | 1.929704 | 1.924058 | 1.938718 |
|                                 | <b>8</b>               | 1.866142 | 1.882440 | 1.924344 | 1.892606 | 1.916802 | 1.907556 | 1.940286 | 1.929708 | 1.924058 | 1.938710 |
|                                 | <b>9</b>               | 1.866138 | 1.882438 | 1.924340 | 1.892606 | 1.916798 | 1.907552 | 1.940284 | 1.929704 | 1.924058 | 1.938712 |
|                                 | <b>10</b>              | 1.866148 | 1.882444 | 1.924338 | 1.892600 | 1.916800 | 1.907554 | 1.940290 | 1.929700 | 1.924060 | 1.938712 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 13.063   | 13.144   | 13.147   | 13.133   | 13.142   | 13.188   | 13.179   | 13.160   | 13.158   | 13.175   |
|                                 | <b>2<sub>L</sub></b>   | 13.027   | 13.123   | 13.141   | 13.130   | 13.150   | 13.191   | 13.184   | 13.164   | 13.160   | 13.164   |
|                                 | <b>3<sub>L</sub></b>   | 13.018   | 13.095   | 13.142   | 13.134   | 13.153   | 13.183   | 13.185   | 13.184   | 13.165   | 13.160   |
|                                 | <b>4<sub>W</sub></b>   | 12.521   | 12.538   | 12.622   | 12.591   | 12.634   | 12.633   | 12.651   | 12.605   | 12.633   | 12.638   |
|                                 | <b>5<sub>W</sub></b>   | 12.542   | 12.552   | 12.621   | 12.595   | 12.632   | 12.634   | 12.650   | 12.600   | 12.629   | 12.641   |
|                                 | <b>6<sub>W</sub></b>   | 12.553   | 12.571   | 12.622   | 12.598   | 12.634   | 12.634   | 12.641   | 12.600   | 12.627   | 12.642   |
| BARE THICKNESS<br>(mm)          | <b>1</b>               | 1.534    | 1.528    | 1.542    | 1.531    | 1.538    | 1.520    | 1.552    | 1.547    | 1.541    | 1.551    |
|                                 | <b>2</b>               | 1.526    | 1.532    | 1.559    | 1.541    | 1.548    | 1.540    | 1.560    | 1.563    | 1.557    | 1.570    |
|                                 | <b>3</b>               | 1.533    | 1.534    | 1.560    | 1.535    | 1.549    | 1.547    | 1.556    | 1.565    | 1.561    | 1.568    |
|                                 | <b>4</b>               | 1.538    | 1.521    | 1.556    | 1.540    | 1.543    | 1.522    | 1.557    | 1.555    | 1.553    | 1.567    |
|                                 | <b>5</b>               | 1.532    | 1.538    | 1.557    | 1.528    | 1.546    | 1.546    | 1.555    | 1.561    | 1.554    | 1.558    |

Table 32: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, 347SS

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | S16 | S17      | S18      | S19      | S20      | S21      | S22      | S23      | S24      | S25      |          |
| 200 hrs             | 1   | 1.866262 | 1.882606 | 1.924432 | 1.892694 | 1.916892 | 1.907636 | 1.940368 | 1.929820 | 1.924144 | 1.938800 |
|                     | 2   | 1.866268 | 1.882604 | 1.924436 | 1.892690 | 1.916894 | 1.907642 | 1.940368 | 1.929828 | 1.924146 | 1.938800 |
|                     | 3   | 1.866266 | 1.882608 | 1.924438 | 1.892688 | 1.916890 | 1.907636 | 1.940368 | 1.929822 | 1.924144 | 1.938806 |
|                     | 4   | 1.866270 | 1.882610 | 1.924434 | 1.892690 | 1.916892 | 1.907636 | 1.940368 | 1.929826 | 1.924144 | 1.938798 |
|                     | 5   | 1.866264 | 1.882604 | 1.924438 | 1.892686 | 1.916890 | 1.907636 | 1.940370 | 1.929822 | 1.924148 | 1.938804 |
|                     | 6   | 1.866266 | 1.882606 | 1.924434 | 1.892686 | 1.916892 | 1.907636 | 1.940374 | 1.929826 | 1.924144 | 1.938802 |
|                     | 7   | 1.866262 | 1.882612 | 1.924436 | 1.892690 | 1.916890 | 1.907634 | 1.940374 | 1.929822 | 1.924140 | 1.938802 |
|                     | 8   | 1.866268 | 1.882612 | 1.924432 | 1.892686 | 1.916896 | 1.907636 | 1.940372 | 1.929828 | 1.924144 | 1.938798 |
|                     | 9   | 1.866266 | 1.882608 | 1.924436 | 1.892690 | 1.916894 | 1.907634 | 1.940370 | 1.929822 | 1.924148 | 1.938802 |
|                     | 10  | 1.866268 | 1.882610 | 1.924432 | 1.892686 | 1.916890 | 1.907638 | 1.940374 | 1.929822 | 1.924146 | 1.938800 |
| 400 hrs             | 1   |          |          | 1.924460 | 1.892716 | 1.916920 | 1.907664 | 1.940394 | 1.929856 | 1.924168 | 1.938832 |
|                     | 2   |          |          | 1.924454 | 1.892712 | 1.916918 | 1.907664 | 1.940394 | 1.929852 | 1.924170 | 1.938826 |
|                     | 3   |          |          | 1.924462 | 1.892708 | 1.916918 | 1.907658 | 1.940398 | 1.929850 | 1.924168 | 1.938826 |
|                     | 4   |          |          | 1.924460 | 1.892710 | 1.916912 | 1.907660 | 1.940390 | 1.929850 | 1.924170 | 1.938824 |
|                     | 5   |          |          | 1.924458 | 1.892714 | 1.916916 | 1.907658 | 1.940398 | 1.929852 | 1.924170 | 1.938834 |
|                     | 6   |          |          | 1.924458 | 1.892712 | 1.916912 | 1.907660 | 1.940396 | 1.929848 | 1.924172 | 1.938826 |
|                     | 7   |          |          | 1.924462 | 1.892714 | 1.916916 | 1.907666 | 1.940390 | 1.929844 | 1.924168 | 1.938832 |
|                     | 8   |          |          | 1.924458 | 1.892714 | 1.916914 | 1.907666 | 1.940390 | 1.929850 | 1.924166 | 1.938826 |
|                     | 9   |          |          | 1.924462 | 1.892712 | 1.916920 | 1.907660 | 1.940390 | 1.929846 | 1.924170 | 1.938826 |
|                     | 10  |          |          | 1.924462 | 1.892714 | 1.916912 | 1.907664 | 1.940390 | 1.929852 | 1.924164 | 1.938826 |
| 600 hrs             | 1   |          |          |          | 1.916928 | 1.907674 | 1.940406 | 1.929858 | 1.924182 | 1.938840 |          |
|                     | 2   |          |          |          | 1.916928 | 1.907676 | 1.940398 | 1.929860 | 1.924186 | 1.938840 |          |
|                     | 3   |          |          |          | 1.916928 | 1.907674 | 1.940398 | 1.929856 | 1.924180 | 1.938838 |          |
|                     | 4   |          |          |          | 1.916928 | 1.907672 | 1.940400 | 1.929860 | 1.924184 | 1.938836 |          |
|                     | 5   |          |          |          | 1.916932 | 1.907672 | 1.940402 | 1.929860 | 1.924180 | 1.938838 |          |
|                     | 6   |          |          |          | 1.916930 | 1.907672 | 1.940402 | 1.929858 | 1.924178 | 1.938838 |          |
|                     | 7   |          |          |          | 1.916930 | 1.907670 | 1.940402 | 1.929856 | 1.924180 | 1.938842 |          |
|                     | 8   |          |          |          | 1.916928 | 1.907672 | 1.940402 | 1.929860 | 1.924180 | 1.938838 |          |
|                     | 9   |          |          |          | 1.916934 | 1.907672 | 1.940400 | 1.929862 | 1.924178 | 1.938838 |          |
|                     | 10  |          |          |          | 1.916934 | 1.907670 | 1.940400 | 1.929856 | 1.924184 | 1.938838 |          |

Table 33: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, AFA-OC6

|             |                      |                                   |                             |
|-------------|----------------------|-----------------------------------|-----------------------------|
| Project:    | <b>SCCO2</b>         | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm   |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm   |
| Expt. #:    | <b>4</b>             | Uncertainty in Meas. Area:        |                             |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | Heat # 001919 (CRADA RPT)   |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Alumina-Forming Austenitic  |
| Temp. (°C): | 550                  | Color Designation:                | Red                         |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                           |
| Sample ID:  | <b>AFA-OC6</b>       |                                   |                             |
| Notes:      |                      |                                   |                             |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A616                   | A617     | A618     | A619     | A620     | A621     | A622     | A623     | A624     | A625     |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.856312 | 1.799754 | 1.829854 | 1.855590 | 1.811360 | 1.797166 | 1.777076 | 1.807394 | 1.813922 | 1.689866 |
|                                 | <b>2</b>               | 1.856310 | 1.799756 | 1.829856 | 1.855590 | 1.811364 | 1.797164 | 1.777076 | 1.807394 | 1.813926 | 1.689868 |
|                                 | <b>3</b>               | 1.856312 | 1.799756 | 1.829854 | 1.855586 | 1.811368 | 1.797170 | 1.777078 | 1.807388 | 1.813922 | 1.689866 |
|                                 | <b>4</b>               | 1.856310 | 1.799758 | 1.829852 | 1.855592 | 1.811368 | 1.797174 | 1.777070 | 1.807396 | 1.813924 | 1.689874 |
|                                 | <b>5</b>               | 1.856312 | 1.799760 | 1.829850 | 1.855586 | 1.811364 | 1.797172 | 1.777074 | 1.807390 | 1.813928 | 1.689878 |
|                                 | <b>6</b>               | 1.856314 | 1.799756 | 1.829854 | 1.855590 | 1.811368 | 1.797166 | 1.777078 | 1.807392 | 1.813928 | 1.689870 |
|                                 | <b>7</b>               | 1.856312 | 1.799756 | 1.829852 | 1.855586 | 1.811366 | 1.797166 | 1.777078 | 1.807394 | 1.813924 | 1.689872 |
|                                 | <b>8</b>               | 1.856310 | 1.799750 | 1.829852 | 1.855590 | 1.811368 | 1.797164 | 1.777076 | 1.807390 | 1.813920 | 1.689870 |
|                                 | <b>9</b>               | 1.856308 | 1.799756 | 1.829858 | 1.855588 | 1.811366 | 1.797164 | 1.777074 | 1.807394 | 1.813926 | 1.689868 |
|                                 | <b>10</b>              | 1.856310 | 1.799754 | 1.829854 | 1.855588 | 1.811366 | 1.797164 | 1.777074 | 1.807394 | 1.813926 | 1.689870 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.926   | 12.783   | 12.888   | 12.898   | 12.880   | 12.852   | 12.876   | 12.824   | 12.904   | 12.873   |
|                                 | <b>2<sub>L</sub></b>   | 12.908   | 12.786   | 12.900   | 12.900   | 12.868   | 12.860   | 12.873   | 12.813   | 12.906   | 12.858   |
|                                 | <b>3<sub>L</sub></b>   | 12.857   | 12.727   | 12.890   | 12.902   | 12.840   | 12.855   | 12.869   | 12.815   | 12.903   | 12.822   |
|                                 | <b>4<sub>W</sub></b>   | 12.636   | 12.598   | 12.626   | 12.606   | 12.551   | 12.445   | 12.617   | 12.558   | 12.616   | 12.464   |
|                                 | <b>5<sub>W</sub></b>   | 12.638   | 12.562   | 12.609   | 12.609   | 12.643   | 12.525   | 12.617   | 12.583   | 12.620   | 12.466   |
|                                 | <b>6<sub>W</sub></b>   | 12.649   | 12.472   | 12.579   | 12.603   | 12.669   | 12.621   | 12.616   | 12.588   | 12.615   | 12.469   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.571    | 1.550    | 1.532    | 1.555    | 1.544    | 1.548    | 1.490    | 1.541    | 1.537    | 1.426    |
|                                 | <b>2</b>               | 1.576    | 1.563    | 1.558    | 1.561    | 1.552    | 1.553    | 1.520    | 1.544    | 1.545    | 1.479    |
|                                 | <b>3</b>               | 1.571    | 1.560    | 1.567    | 1.569    | 1.558    | 1.559    | 1.528    | 1.550    | 1.550    | 1.492    |
|                                 | <b>4</b>               | 1.572    | 1.560    | 1.556    | 1.563    | 1.556    | 1.558    | 1.499    | 1.549    | 1.546    | 1.474    |
|                                 | <b>5</b>               | 1.575    | 1.562    | 1.555    | 1.561    | 1.554    | 1.551    | 1.522    | 1.547    | 1.545    | 1.468    |

Table 34: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, AFA-OC6

| Measured Weight (g) |      |          |          |          |          |          |          |          |          |          |          |
|---------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | A616 | A617     | A618     | A619     | A620     | A621     | A622     | A623     | A624     | A625     |          |
| 200 hrs             | 1    | 1.856536 | 1.799970 | 1.830020 | 1.855768 | 1.811524 | 1.797368 | 1.777250 | 1.807546 | 1.814104 | 1.690062 |
|                     | 2    | 1.856540 | 1.799966 | 1.830022 | 1.855768 | 1.811526 | 1.797368 | 1.777252 | 1.807542 | 1.814106 | 1.690064 |
|                     | 3    | 1.85654  | 1.799968 | 1.830018 | 1.855764 | 1.811524 | 1.797368 | 1.777250 | 1.807546 | 1.814108 | 1.690062 |
|                     | 4    | 1.856534 | 1.799970 | 1.830020 | 1.855766 | 1.811522 | 1.797372 | 1.777250 | 1.807548 | 1.814100 | 1.690058 |
|                     | 5    | 1.856538 | 1.799968 | 1.830020 | 1.855768 | 1.811526 | 1.797368 | 1.777248 | 1.807544 | 1.814102 | 1.690062 |
|                     | 6    | 1.856534 | 1.799968 | 1.830018 | 1.855764 | 1.811530 | 1.797366 | 1.777248 | 1.807542 | 1.814102 | 1.690060 |
|                     | 7    | 1.856534 | 1.799966 | 1.830018 | 1.855768 | 1.811530 | 1.797368 | 1.777250 | 1.807546 | 1.814104 | 1.690064 |
|                     | 8    | 1.856536 | 1.799970 | 1.830016 | 1.855768 | 1.811528 | 1.797370 | 1.777252 | 1.807546 | 1.814106 | 1.690064 |
|                     | 9    | 1.856536 | 1.799968 | 1.830020 | 1.855766 | 1.811526 | 1.797368 | 1.777252 | 1.807548 | 1.814102 | 1.690062 |
|                     | 10   | 1.856538 | 1.799968 | 1.830018 | 1.855764 | 1.811528 | 1.797370 | 1.777252 | 1.807546 | 1.814104 | 1.690066 |
| 400 hrs             | 1    |          | 1.830174 | 1.855948 | 1.811730 | 1.797474 | 1.777436 | 1.807728 | 1.814306 | 1.690328 |          |
|                     | 2    |          | 1.830174 | 1.855946 | 1.811728 | 1.797472 | 1.777434 | 1.807726 | 1.814310 | 1.690324 |          |
|                     | 3    |          | 1.830178 | 1.855942 | 1.811730 | 1.797476 | 1.777434 | 1.807728 | 1.814306 | 1.690326 |          |
|                     | 4    |          | 1.830176 | 1.855946 | 1.811732 | 1.797472 | 1.777436 | 1.807724 | 1.814310 | 1.690324 |          |
|                     | 5    |          | 1.830174 | 1.855944 | 1.811732 | 1.797474 | 1.777432 | 1.807726 | 1.814308 | 1.690324 |          |
|                     | 6    |          | 1.830176 | 1.855946 | 1.811734 | 1.797474 | 1.777434 | 1.807728 | 1.814308 | 1.690326 |          |
|                     | 7    |          | 1.830176 | 1.855944 | 1.811730 | 1.797476 | 1.777436 | 1.807728 | 1.814310 | 1.690322 |          |
|                     | 8    |          | 1.830178 | 1.855940 | 1.811732 | 1.797472 | 1.777434 | 1.807726 | 1.814308 | 1.690324 |          |
|                     | 9    |          | 1.830174 | 1.855942 | 1.811734 | 1.797474 | 1.777434 | 1.807728 | 1.814306 | 1.690324 |          |
|                     | 10   |          | 1.830174 | 1.855944 | 1.811734 | 1.797474 | 1.777436 | 1.807724 | 1.814308 | 1.690324 |          |
| 600 hrs             | 1    |          |          |          | 1.811946 | 1.797674 | 1.777680 | 1.807962 | 1.814526 | 1.690658 |          |
|                     | 2    |          |          |          | 1.811948 | 1.797668 | 1.777674 | 1.807966 | 1.814530 | 1.690660 |          |
|                     | 3    |          |          |          | 1.811942 | 1.797672 | 1.777674 | 1.807972 | 1.814526 | 1.690666 |          |
|                     | 4    |          |          |          | 1.811946 | 1.797670 | 1.777672 | 1.807964 | 1.814528 | 1.690660 |          |
|                     | 5    |          |          |          | 1.811952 | 1.797670 | 1.777674 | 1.807964 | 1.814528 | 1.690658 |          |
|                     | 6    |          |          |          | 1.811950 | 1.797672 | 1.777672 | 1.807966 | 1.814526 | 1.690662 |          |
|                     | 7    |          |          |          | 1.811948 | 1.797670 | 1.777678 | 1.807968 | 1.814528 | 1.690662 |          |
|                     | 8    |          |          |          | 1.811944 | 1.797668 | 1.777676 | 1.807968 | 1.814532 | 1.690662 |          |
|                     | 9    |          |          |          | 1.811950 | 1.797666 | 1.777676 | 1.807966 | 1.814532 | 1.690662 |          |
|                     | 10   |          |          |          | 1.811948 | 1.797668 | 1.777676 | 1.807966 | 1.814526 | 1.690660 |          |

Table 35: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, AFA-OC7

|             |                      |                                   |                             |
|-------------|----------------------|-----------------------------------|-----------------------------|
| Project:    | SCCO2                | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm   |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm   |
| Expt. #:    | 4                    | Uncertainty in Meas. Area:        |                             |
| Phase:      | 1 of 4               |                                   |                             |
| Phase Type: | Pure CO <sub>2</sub> | Supplier/UNS ID:                  | Heat # 001920               |
| Temp. (°C): | 550                  | Metal Type:                       | Alumina-Forming Austenitic  |
| Pressure:   | 2900psi              | Color Designation:                | Yellow                      |
| Sample ID:  | AFA-OC7              | Hole Diameter in Sample (mm):     | 3                           |
| Notes:      |                      |                                   |                             |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A710                   | A711     | A712     | A713     | A714     | A715     | A716     | A717     | A718     | A719     |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.834782 | 1.851494 | 1.805350 | 1.816360 | 1.813978 | 1.815826 | 1.799296 | 1.853808 | 1.709900 | 1.728920 |
|                                 | 2                      | 1.834780 | 1.851492 | 1.805350 | 1.816364 | 1.813982 | 1.815828 | 1.799296 | 1.853808 | 1.709902 | 1.728922 |
|                                 | 3                      | 1.834780 | 1.851494 | 1.805350 | 1.816354 | 1.813988 | 1.815826 | 1.799292 | 1.853810 | 1.709900 | 1.728918 |
|                                 | 4                      | 1.834782 | 1.851494 | 1.805348 | 1.816358 | 1.813984 | 1.815830 | 1.799294 | 1.853806 | 1.709904 | 1.728918 |
|                                 | 5                      | 1.834784 | 1.851492 | 1.805352 | 1.816354 | 1.813980 | 1.815832 | 1.799300 | 1.853808 | 1.709902 | 1.728914 |
|                                 | 6                      | 1.834780 | 1.851494 | 1.805354 | 1.816354 | 1.813982 | 1.815830 | 1.799296 | 1.853810 | 1.709906 | 1.728918 |
|                                 | 7                      | 1.834788 | 1.851492 | 1.805358 | 1.816362 | 1.813982 | 1.815828 | 1.799296 | 1.853812 | 1.709906 | 1.728916 |
|                                 | 8                      | 1.834780 | 1.851490 | 1.805350 | 1.816356 | 1.813984 | 1.815828 | 1.799294 | 1.853810 | 1.709906 | 1.728916 |
|                                 | 9                      | 1.834780 | 1.851490 | 1.805350 | 1.816354 | 1.813980 | 1.815830 | 1.799294 | 1.853812 | 1.709898 | 1.728918 |
|                                 | 10                     | 1.834784 | 1.851490 | 1.805350 | 1.816360 | 1.813984 | 1.815828 | 1.799294 | 1.853812 | 1.709906 | 1.728918 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 12.871   | 12.858   | 12.778   | 12.830   | 12.796   | 12.761   | 12.781   | 12.867   | 12.840   | 12.793   |
|                                 | 2 <sub>L</sub>         | 12.869   | 12.865   | 12.774   | 12.821   | 12.798   | 12.765   | 12.780   | 12.873   | 12.842   | 12.787   |
|                                 | 3 <sub>L</sub>         | 12.860   | 12.855   | 12.777   | 12.811   | 12.790   | 12.768   | 12.782   | 12.890   | 12.845   | 12.804   |
|                                 | 4 <sub>W</sub>         | 12.672   | 12.671   | 12.608   | 12.658   | 12.615   | 12.640   | 12.605   | 12.655   | 12.569   | 12.675   |
|                                 | 5 <sub>W</sub>         | 12.670   | 12.674   | 12.614   | 12.656   | 12.621   | 12.628   | 12.602   | 12.654   | 12.572   | 12.674   |
|                                 | 6 <sub>W</sub>         | 12.671   | 12.675   | 12.606   | 12.644   | 12.616   | 12.616   | 12.595   | 12.651   | 12.578   | 12.660   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.537    | 1.560    | 1.522    | 1.520    | 1.529    | 1.540    | 1.522    | 1.559    | 1.423    | 1.440    |
|                                 | 2                      | 1.552    | 1.570    | 1.535    | 1.549    | 1.543    | 1.557    | 1.542    | 1.571    | 1.495    | 1.480    |
|                                 | 3                      | 1.547    | 1.552    | 1.537    | 1.552    | 1.541    | 1.555    | 1.541    | 1.561    | 1.510    | 1.492    |
|                                 | 4                      | 1.542    | 1.560    | 1.530    | 1.541    | 1.531    | 1.554    | 1.538    | 1.566    | 1.530    | 1.473    |
|                                 | 5                      | 1.549    | 1.561    | 1.533    | 1.540    | 1.543    | 1.545    | 1.536    | 1.559    | 1.400    | 1.469    |

Table 36: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, AFA-OC7

|         |    | Measured Weight (g) |          |          |          |          |          |          |          |          |          |
|---------|----|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #  |    | A710                | A711     | A712     | A713     | A714     | A715     | A716     | A717     | A718     | A719     |
| 200 hrs | 1  | 1.834926            | 1.851674 | 1.805468 | 1.816478 | 1.814098 | 1.815946 | 1.799402 | 1.853910 | 1.710020 | 1.729026 |
|         | 2  | 1.834928            | 1.851674 | 1.805468 | 1.816478 | 1.814100 | 1.815944 | 1.799400 | 1.853908 | 1.710018 | 1.729026 |
|         | 3  | 1.834926            | 1.851674 | 1.805466 | 1.816474 | 1.814096 | 1.815944 | 1.799406 | 1.853908 | 1.710018 | 1.729022 |
|         | 4  | 1.834926            | 1.851668 | 1.805466 | 1.816478 | 1.814096 | 1.815944 | 1.799404 | 1.853908 | 1.710016 | 1.729026 |
|         | 5  | 1.834926            | 1.851674 | 1.805466 | 1.816476 | 1.814096 | 1.815944 | 1.799404 | 1.853908 | 1.710016 | 1.729024 |
|         | 6  | 1.834924            | 1.851668 | 1.805468 | 1.816476 | 1.814096 | 1.815948 | 1.799400 | 1.853908 | 1.710016 | 1.729024 |
|         | 7  | 1.834920            | 1.851668 | 1.805470 | 1.816476 | 1.814096 | 1.815946 | 1.799406 | 1.853904 | 1.710014 | 1.729020 |
|         | 8  | 1.834924            | 1.851672 | 1.805466 | 1.816476 | 1.814094 | 1.815946 | 1.799406 | 1.853906 | 1.710016 | 1.729026 |
|         | 9  | 1.834922            | 1.851668 | 1.805464 | 1.816474 | 1.814096 | 1.815942 | 1.799398 | 1.853910 | 1.710012 | 1.729020 |
|         | 10 | 1.834924            | 1.851668 | 1.805470 | 1.816474 | 1.814094 | 1.815944 | 1.799398 | 1.853906 | 1.710016 | 1.729026 |
| 400 hrs | 1  |                     |          | 1.805538 | 1.816550 | 1.814168 | 1.815996 | 1.799438 | 1.853968 | 1.710078 | 1.729078 |
|         | 2  |                     |          | 1.805532 | 1.816548 | 1.814168 | 1.815994 | 1.799438 | 1.853968 | 1.710076 | 1.729078 |
|         | 3  |                     |          | 1.805538 | 1.816548 | 1.814170 | 1.815996 | 1.799436 | 1.853968 | 1.710078 | 1.729078 |
|         | 4  |                     |          | 1.805538 | 1.816550 | 1.814166 | 1.815994 | 1.799432 | 1.853964 | 1.710078 | 1.729082 |
|         | 5  |                     |          | 1.805532 | 1.816550 | 1.814168 | 1.815994 | 1.799434 | 1.853968 | 1.710080 | 1.729082 |
|         | 6  |                     |          | 1.805534 | 1.816548 | 1.814166 | 1.815992 | 1.799436 | 1.853966 | 1.710076 | 1.729078 |
|         | 7  |                     |          | 1.805534 | 1.816548 | 1.814168 | 1.815994 | 1.799436 | 1.853966 | 1.710078 | 1.729080 |
|         | 8  |                     |          | 1.805536 | 1.816552 | 1.814170 | 1.815996 | 1.799438 | 1.853962 | 1.710078 | 1.729082 |
|         | 9  |                     |          | 1.805538 | 1.816550 | 1.814166 | 1.815996 | 1.799432 | 1.853964 | 1.710076 | 1.729080 |
|         | 10 |                     |          | 1.805536 | 1.816550 | 1.814168 | 1.815996 | 1.799436 | 1.853964 | 1.710076 | 1.729082 |
| 600 hrs | 1  |                     |          |          | 1.814256 | 1.816048 | 1.799442 | 1.854002 | 1.710114 | 1.729124 |          |
|         | 2  |                     |          |          | 1.814254 | 1.816050 | 1.799442 | 1.854000 | 1.710118 | 1.729124 |          |
|         | 3  |                     |          |          | 1.814256 | 1.816048 | 1.799442 | 1.853996 | 1.710118 | 1.729120 |          |
|         | 4  |                     |          |          | 1.814254 | 1.816052 | 1.799438 | 1.853994 | 1.710114 | 1.729124 |          |
|         | 5  |                     |          |          | 1.814254 | 1.816056 | 1.799442 | 1.854000 | 1.710120 | 1.729122 |          |
|         | 6  |                     |          |          | 1.814256 | 1.816050 | 1.799442 | 1.853994 | 1.710122 | 1.729124 |          |
|         | 7  |                     |          |          | 1.814254 | 1.816052 | 1.799440 | 1.853996 | 1.710114 | 1.729124 |          |
|         | 8  |                     |          |          | 1.814256 | 1.816050 | 1.799440 | 1.853992 | 1.710114 | 1.729124 |          |
|         | 9  |                     |          |          | 1.814256 | 1.816056 | 1.799446 | 1.853996 | 1.710120 | 1.729124 |          |
|         | 10 |                     |          |          | 1.814256 | 1.816052 | 1.799442 | 1.853998 | 1.710116 | 1.729126 |          |

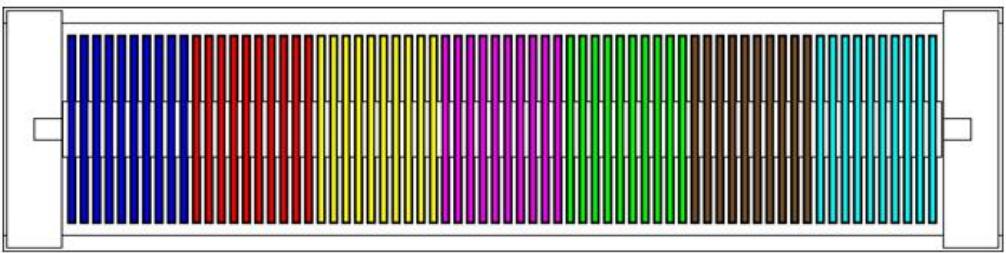
Table 37: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, AFA-OC10

|             |                      |  |                                   |                                           |
|-------------|----------------------|--|-----------------------------------|-------------------------------------------|
| Project:    | <b>SCCO2</b>         |  | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC              |  | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386              |  | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | <b>4</b>             |  | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000179$ cm <sup>2</sup> |
| Phase:      | 1 of 4               |  | Supplier/UNS ID:                  | Heat # 001923                             |
| Phase Type: | Pure CO <sub>2</sub> |  | Metal Type:                       | Alumina-Forming Austenitic                |
| Temp. (°C): | 550                  |  | Color Designation:                | Magenta                                   |
| Pressure:   | 2900psi              |  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | <b>AFA-OC10</b>      |  |                                   |                                           |
| Notes:      |                      |  |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A110                   | A111     | A112     | A113     | A114     | A115     | A116     | A117     | A118     | A119     |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.811442 | 1.806892 | 1.754132 | 1.786232 | 1.789378 | 1.783740 | 1.811856 | 1.803970 | 1.756768 | 1.809824 |
|                                 | <b>2</b>               | 1.811446 | 1.806896 | 1.754134 | 1.786234 | 1.789376 | 1.783744 | 1.811856 | 1.803972 | 1.756766 | 1.809828 |
|                                 | <b>3</b>               | 1.811438 | 1.806894 | 1.754134 | 1.786234 | 1.789378 | 1.783740 | 1.811858 | 1.803966 | 1.756766 | 1.809826 |
|                                 | <b>4</b>               | 1.811442 | 1.806900 | 1.754138 | 1.786230 | 1.789374 | 1.783738 | 1.811856 | 1.803970 | 1.756774 | 1.809828 |
|                                 | <b>5</b>               | 1.811440 | 1.806894 | 1.754134 | 1.786234 | 1.789378 | 1.783742 | 1.811854 | 1.803966 | 1.756774 | 1.809830 |
|                                 | <b>6</b>               | 1.811440 | 1.806894 | 1.754136 | 1.786234 | 1.789378 | 1.783736 | 1.811858 | 1.803970 | 1.756770 | 1.809824 |
|                                 | <b>7</b>               | 1.811442 | 1.806896 | 1.754138 | 1.786230 | 1.789376 | 1.783742 | 1.811858 | 1.803970 | 1.756776 | 1.809824 |
|                                 | <b>8</b>               | 1.811440 | 1.806894 | 1.754136 | 1.786236 | 1.789378 | 1.783740 | 1.811856 | 1.803968 | 1.756774 | 1.809824 |
|                                 | <b>9</b>               | 1.811442 | 1.806896 | 1.754136 | 1.786232 | 1.789376 | 1.783738 | 1.811858 | 1.803968 | 1.756774 | 1.809822 |
|                                 | <b>10</b>              | 1.811442 | 1.806892 | 1.754138 | 1.786232 | 1.789378 | 1.783742 | 1.811858 | 1.803972 | 1.756774 | 1.809826 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.764   | 12.758   | 12.675   | 12.690   | 12.745   | 12.741   | 12.756   | 12.732   | 12.700   | 12.734   |
|                                 | <b>2<sub>L</sub></b>   | 12.766   | 12.758   | 12.641   | 12.705   | 12.732   | 12.734   | 12.756   | 12.730   | 12.700   | 12.733   |
|                                 | <b>3<sub>L</sub></b>   | 12.770   | 12.753   | 12.588   | 12.718   | 12.694   | 12.718   | 12.728   | 12.721   | 12.635   | 12.722   |
|                                 | <b>4<sub>W</sub></b>   | 12.667   | 12.662   | 12.520   | 12.520   | 12.546   | 12.517   | 12.566   | 12.534   | 12.373   | 12.552   |
|                                 | <b>5<sub>W</sub></b>   | 12.666   | 12.658   | 12.541   | 12.533   | 12.552   | 12.522   | 12.577   | 12.534   | 12.360   | 12.549   |
|                                 | <b>6<sub>W</sub></b>   | 12.665   | 12.668   | 12.540   | 12.560   | 12.564   | 12.532   | 12.578   | 12.539   | 12.347   | 12.539   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.548    | 1.532    | 1.527    | 1.554    | 1.540    | 1.542    | 1.547    | 1.560    | 1.520    | 1.558    |
|                                 | <b>2</b>               | 1.547    | 1.541    | 1.544    | 1.560    | 1.558    | 1.554    | 1.564    | 1.567    | 1.570    | 1.570    |
|                                 | <b>3</b>               | 1.543    | 1.540    | 1.548    | 1.552    | 1.560    | 1.551    | 1.568    | 1.563    | 1.590    | 1.570    |
|                                 | <b>4</b>               | 1.540    | 1.542    | 1.537    | 1.557    | 1.563    | 1.551    | 1.562    | 1.561    | 1.530    | 1.569    |
|                                 | <b>5</b>               | 1.542    | 1.536    | 1.541    | 1.548    | 1.535    | 1.546    | 1.561    | 1.563    | 1.589    | 1.567    |

Table 38: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, AFA-OC10

| Measured Weight (g) |      |          |          |          |          |          |          |          |          |          |          |
|---------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | A110 | A111     | A112     | A113     | A114     | A115     | A116     | A117     | A118     | A119     |          |
| 200 hrs             | 1    | 1.811354 | 1.806972 | 1.754044 | 1.786214 | 1.789478 | 1.783586 | 1.811966 | 1.803998 | 1.756866 | 1.809924 |
|                     | 2    | 1.811362 | 1.806974 | 1.754042 | 1.786212 | 1.789484 | 1.783580 | 1.811968 | 1.803996 | 1.756872 | 1.809922 |
|                     | 3    | 1.811356 | 1.806980 | 1.754040 | 1.786210 | 1.789480 | 1.783586 | 1.811970 | 1.803994 | 1.756874 | 1.809916 |
|                     | 4    | 1.811356 | 1.806978 | 1.754044 | 1.786216 | 1.789484 | 1.783582 | 1.811964 | 1.803992 | 1.756866 | 1.809920 |
|                     | 5    | 1.811362 | 1.806974 | 1.754038 | 1.786216 | 1.789480 | 1.783580 | 1.811964 | 1.804000 | 1.756870 | 1.809918 |
|                     | 6    | 1.811362 | 1.806976 | 1.754042 | 1.786216 | 1.789486 | 1.783584 | 1.811962 | 1.803998 | 1.756870 | 1.809918 |
|                     | 7    | 1.811354 | 1.806976 | 1.754040 | 1.786216 | 1.789484 | 1.783580 | 1.811968 | 1.803994 | 1.756862 | 1.809920 |
|                     | 8    | 1.811356 | 1.806976 | 1.754042 | 1.786216 | 1.789484 | 1.783588 | 1.811968 | 1.803992 | 1.756862 | 1.809916 |
|                     | 9    | 1.811358 | 1.806978 | 1.754046 | 1.786208 | 1.789482 | 1.783584 | 1.811964 | 1.803996 | 1.756870 | 1.809920 |
|                     | 10   | 1.811360 | 1.806978 | 1.754040 | 1.786212 | 1.789486 | 1.783580 | 1.811964 | 1.803996 | 1.756870 | 1.809924 |
| 400 hrs             | 1    |          |          | 1.754058 | 1.786266 | 1.789528 | 1.783612 | 1.812034 | 1.804014 | 1.756878 | 1.809936 |
|                     | 2    |          |          | 1.754066 | 1.786266 | 1.789524 | 1.783612 | 1.812036 | 1.804018 | 1.756880 | 1.809930 |
|                     | 3    |          |          | 1.754064 | 1.786266 | 1.789520 | 1.783612 | 1.812026 | 1.804016 | 1.756880 | 1.809934 |
|                     | 4    |          |          | 1.754060 | 1.786260 | 1.789526 | 1.783602 | 1.812028 | 1.804016 | 1.756886 | 1.809932 |
|                     | 5    |          |          | 1.754056 | 1.786254 | 1.789520 | 1.783610 | 1.812030 | 1.804012 | 1.756882 | 1.809932 |
|                     | 6    |          |          | 1.754058 | 1.786258 | 1.789520 | 1.783612 | 1.812026 | 1.804004 | 1.756882 | 1.809934 |
|                     | 7    |          |          | 1.754062 | 1.786258 | 1.789520 | 1.783614 | 1.812030 | 1.804012 | 1.756882 | 1.809934 |
|                     | 8    |          |          | 1.754052 | 1.786252 | 1.789520 | 1.783608 | 1.812030 | 1.804010 | 1.756884 | 1.809932 |
|                     | 9    |          |          | 1.754052 | 1.786252 | 1.789516 | 1.783608 | 1.812032 | 1.804004 | 1.756880 | 1.809930 |
|                     | 10   |          |          | 1.754052 | 1.786254 | 1.789524 | 1.783608 | 1.812030 | 1.804012 | 1.756880 | 1.809932 |
| 600 hrs             | 1    |          |          |          | 1.789562 | 1.783620 | 1.812078 | 1.804018 | 1.756910 | 1.809952 |          |
|                     | 2    |          |          |          | 1.789560 | 1.783618 | 1.812078 | 1.804014 | 1.756910 | 1.809950 |          |
|                     | 3    |          |          |          | 1.789558 | 1.783622 | 1.812078 | 1.804014 | 1.756904 | 1.809950 |          |
|                     | 4    |          |          |          | 1.789564 | 1.783614 | 1.812078 | 1.804018 | 1.756906 | 1.809952 |          |
|                     | 5    |          |          |          | 1.789560 | 1.783620 | 1.812076 | 1.804016 | 1.756910 | 1.809952 |          |
|                     | 6    |          |          |          | 1.789566 | 1.783620 | 1.812074 | 1.804012 | 1.756906 | 1.809950 |          |
|                     | 7    |          |          |          | 1.789566 | 1.783616 | 1.812074 | 1.804010 | 1.756908 | 1.809948 |          |
|                     | 8    |          |          |          | 1.789560 | 1.783624 | 1.812078 | 1.804010 | 1.756906 | 1.809948 |          |
|                     | 9    |          |          |          | 1.789562 | 1.783620 | 1.812076 | 1.804010 | 1.756908 | 1.809954 |          |
|                     | 10   |          |          |          | 1.789564 | 1.783620 | 1.812074 | 1.804008 | 1.756910 | 1.809954 |          |


Table 39: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, IN800H

|             |                      |                                   |                                           |
|-------------|----------------------|-----------------------------------|-------------------------------------------|
| Project:    | <b>SCCO2</b>         | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | <b>4</b>             | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000183$ cm <sup>2</sup> |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | NO8810                                    |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Austenitic - Superalloy                   |
| Temp. (°C): | 550                  | Color Designation:                | Brown                                     |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | <b>IN800H</b>        |                                   |                                           |
| Notes:      |                      |                                   |                                           |

| Meas #                                | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                       | I10                    | I11      | I12      | I13      | I14      | I15      | I16      | I17      | I18      | I19      |          |
| <b>BARE WEIGHT<br/>(gm)</b>           | <b>1</b>               | 1.978208 | 1.947978 | 1.974216 | 1.939696 | 1.935084 | 1.936394 | 1.932060 | 1.955006 | 1.876692 | 1.936976 |
|                                       | <b>2</b>               | 1.978210 | 1.947984 | 1.974212 | 1.939700 | 1.935084 | 1.936386 | 1.932066 | 1.955016 | 1.876694 | 1.936974 |
|                                       | <b>3</b>               | 1.978212 | 1.947978 | 1.974214 | 1.939708 | 1.935082 | 1.936390 | 1.932066 | 1.955010 | 1.876696 | 1.936974 |
|                                       | <b>4</b>               | 1.978214 | 1.947982 | 1.974212 | 1.939706 | 1.935084 | 1.936390 | 1.932068 | 1.955012 | 1.876698 | 1.936978 |
|                                       | <b>5</b>               | 1.978216 | 1.947984 | 1.974214 | 1.939702 | 1.935086 | 1.936392 | 1.932062 | 1.955014 | 1.876700 | 1.936978 |
|                                       | <b>6</b>               | 1.978208 | 1.947978 | 1.974216 | 1.939708 | 1.935086 | 1.936390 | 1.932066 | 1.955012 | 1.876692 | 1.936978 |
|                                       | <b>7</b>               | 1.978208 | 1.947980 | 1.974216 | 1.939698 | 1.935086 | 1.936386 | 1.932064 | 1.955016 | 1.876694 | 1.936982 |
|                                       | <b>8</b>               | 1.978210 | 1.947982 | 1.974220 | 1.939702 | 1.935080 | 1.936386 | 1.932066 | 1.955016 | 1.876694 | 1.936982 |
|                                       | <b>9</b>               | 1.978208 | 1.947980 | 1.974212 | 1.939702 | 1.935084 | 1.936386 | 1.932062 | 1.955010 | 1.876698 | 1.936980 |
|                                       | <b>10</b>              | 1.978208 | 1.947982 | 1.974210 | 1.939706 | 1.935080 | 1.936384 | 1.932062 | 1.955016 | 1.876700 | 1.936982 |
| <b>BARE AREA<br/>(mm<sup>2</sup>)</b> | <b>1<sub>L</sub></b>   | 13.413   | 13.394   | 13.355   | 13.325   | 13.186   | 13.329   | 13.346   | 13.350   | 13.230   | 13.316   |
|                                       | <b>2<sub>L</sub></b>   | 13.415   | 13.398   | 13.360   | 13.353   | 13.200   | 13.329   | 13.352   | 13.341   | 13.230   | 13.318   |
|                                       | <b>3<sub>L</sub></b>   | 13.414   | 13.396   | 13.358   | 13.387   | 13.197   | 13.320   | 13.348   | 13.338   | 13.233   | 13.319   |
|                                       | <b>4<sub>W</sub></b>   | 12.652   | 12.648   | 12.601   | 12.580   | 12.612   | 12.580   | 12.478   | 12.605   | 12.337   | 12.526   |
|                                       | <b>5<sub>W</sub></b>   | 12.656   | 12.645   | 12.601   | 12.582   | 12.587   | 12.582   | 12.502   | 12.582   | 12.326   | 12.529   |
|                                       | <b>6<sub>W</sub></b>   | 12.657   | 12.645   | 12.600   | 12.580   | 12.568   | 12.586   | 12.509   | 12.545   | 12.319   | 12.529   |
| <b>BARE<br/>THICKNESS<br/>(mm)</b>    | <b>1</b>               | 1.543    | 1.516    | 1.528    | 1.503    | 1.525    | 1.499    | 1.509    | 1.521    | 1.504    | 1.512    |
|                                       | <b>2</b>               | 1.546    | 1.545    | 1.536    | 1.509    | 1.530    | 1.512    | 1.514    | 1.530    | 1.511    | 1.523    |
|                                       | <b>3</b>               | 1.546    | 1.558    | 1.538    | 1.519    | 1.528    | 1.518    | 1.521    | 1.537    | 1.518    | 1.530    |
|                                       | <b>4</b>               | 1.549    | 1.552    | 1.526    | 1.515    | 1.531    | 1.513    | 1.518    | 1.529    | 1.507    | 1.519    |
|                                       | <b>5</b>               | 1.540    | 1.535    | 1.535    | 1.517    | 1.526    | 1.516    | 1.519    | 1.532    | 1.516    | 1.524    |

Table 40: Raw Data, Expt. #4, RG-CO<sub>2</sub>/550°C/20MPa, IN800H

Table 41: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, Coupon Arrangement



The schematic diagram shows a horizontal arrangement of 100 coupons. The flow path is indicated by arrows: the 'Inlet' on the right side enters the first coupon, and the 'Outlet' on the left side exits the last coupon. The coupons are color-coded into groups: Blue (A626, A627, A628, A629, A630, A631, A632, A633, A634, A635), Red (A720, A721, A722, A723, A724, A725, A726, A727, A728, A729), Yellow (A120, A121, A122, A123, A124, A125, A126, A127, A128, A129), Magenta (AFA-OC6, AFA-OC7, AFA-OC10), Green (347SS), Brown (IN800H), and Cyan (Not Used).

| Sample | Blue          | Red<br>AFA-OC6 | Yellow<br>AFA-OC7 | Magenta<br>AFA-OC10 | Green<br>347SS | Brown<br>IN800H | Cyan<br>Not Used |
|--------|---------------|----------------|-------------------|---------------------|----------------|-----------------|------------------|
| 1      | HCM12A<br>H24 | A626           | A720              | A120                | S26            | I20             |                  |
| 2      | HCM12A<br>H25 | A627           | A721              | A121                | S27            | I21             |                  |
| 3      | NF616<br>N24  | A628           | A722              | A122                | S28            | I22             |                  |
| 4      | NF616<br>N25  | A629           | A723              | A123                | S29            | I23             |                  |
| 5      |               | A630           | A724              | A124                | S30            | I24             |                  |
| 6      |               | A631           | A725              | A125                | S31            | I25             |                  |
| 7      |               | A632           | A726              | A126                | S32            | I26             |                  |
| 8      |               | A633           | A727              | A127                | S33            | I27             |                  |
| 9      |               | A634           | A728              | A128                | S34            | I28             |                  |
| 10     |               | A635           | A729              | A129                | S35            | I29             |                  |

Table 42: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, 347SS

|             |                      |                                   |                             |
|-------------|----------------------|-----------------------------------|-----------------------------|
| Project:    | SCCO2                | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm   |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm   |
| Expt. #:    | 5                    | Uncertainty in Meas. Area:        |                             |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | S34700                      |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Austenitic                  |
| Temp. (°C): | 650                  | Color Designation:                | Green                       |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                           |
| Sample ID:  | 347SS                |                                   |                             |
| Notes:      |                      |                                   |                             |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | S26                    | S27      | S28      | S29      | S30      | S31      | S32      | S33      | S34      | S35      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.904076 | 1.917986 | 1.920220 | 1.919954 | 1.902840 | 1.904162 | 1.918242 | 1.913104 | 1.915730 | 1.908958 |
|                                 | 2                      | 1.904078 | 1.917988 | 1.920224 | 1.919950 | 1.902844 | 1.904156 | 1.918244 | 1.913100 | 1.915730 | 1.908960 |
|                                 | 3                      | 1.904076 | 1.917982 | 1.920220 | 1.919948 | 1.902842 | 1.904158 | 1.918248 | 1.913098 | 1.915738 | 1.908958 |
|                                 | 4                      | 1.904078 | 1.917988 | 1.920224 | 1.919948 | 1.902844 | 1.904156 | 1.918242 | 1.913098 | 1.915728 | 1.908960 |
|                                 | 5                      | 1.904078 | 1.917988 | 1.920222 | 1.919954 | 1.902844 | 1.904156 | 1.918240 | 1.913098 | 1.915726 | 1.908962 |
|                                 | 6                      | 1.904076 | 1.917988 | 1.920220 | 1.919952 | 1.902846 | 1.904160 | 1.918242 | 1.913098 | 1.915736 | 1.908958 |
|                                 | 7                      | 1.904074 | 1.917988 | 1.920224 | 1.919948 | 1.902840 | 1.904162 | 1.918244 | 1.913100 | 1.915736 | 1.908956 |
|                                 | 8                      | 1.904074 | 1.917988 | 1.920220 | 1.919948 | 1.902844 | 1.904160 | 1.918240 | 1.913102 | 1.915730 | 1.908952 |
|                                 | 9                      | 1.904074 | 1.917990 | 1.920224 | 1.919950 | 1.902840 | 1.904160 | 1.918242 | 1.913102 | 1.915728 | 1.908958 |
|                                 | 10                     | 1.904074 | 1.917988 | 1.920222 | 1.919950 | 1.902842 | 1.904162 | 1.918240 | 1.913104 | 1.915726 | 1.908962 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 13.148   | 13.174   | 13.176   | 13.181   | 13.130   | 13.151   | 13.142   | 13.167   | 13.139   | 13.184   |
|                                 | 2 <sub>L</sub>         | 13.148   | 13.176   | 13.191   | 13.192   | 13.133   | 13.150   | 13.166   | 13.182   | 13.145   | 13.186   |
|                                 | 3 <sub>L</sub>         | 13.143   | 13.171   | 13.193   | 13.192   | 13.134   | 13.148   | 13.170   | 13.178   | 13.153   | 13.189   |
|                                 | 4 <sub>W</sub>         | 12.658   | 12.651   | 12.636   | 12.644   | 12.617   | 12.627   | 12.654   | 12.656   | 12.639   | 12.644   |
|                                 | 5 <sub>W</sub>         | 12.656   | 12.650   | 12.644   | 12.643   | 12.618   | 12.630   | 12.659   | 12.655   | 12.643   | 12.646   |
|                                 | 6 <sub>W</sub>         | 12.654   | 12.652   | 12.639   | 12.643   | 12.617   | 12.627   | 12.663   | 12.650   | 12.642   | 12.638   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.522    | 1.537    | 1.535    | 1.530    | 1.527    | 1.534    | 1.541    | 1.542    | 1.540    | 1.535    |
|                                 | 2                      | 1.540    | 1.547    | 1.552    | 1.545    | 1.550    | 1.553    | 1.557    | 1.557    | 1.561    | 1.546    |
|                                 | 3                      | 1.543    | 1.545    | 1.550    | 1.544    | 1.548    | 1.553    | 1.555    | 1.554    | 1.560    | 1.543    |
|                                 | 4                      | 1.534    | 1.544    | 1.551    | 1.542    | 1.547    | 1.549    | 1.551    | 1.551    | 1.557    | 1.547    |
|                                 | 5                      | 1.535    | 1.543    | 1.540    | 1.542    | 1.537    | 1.545    | 1.552    | 1.552    | 1.550    | 1.534    |

Table 43: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, 347SS

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | S26 | S27      | S28      | S29      | S30      | S31      | S32      | S33      | S34      | S35      |          |          |          |
| 200 hrs             | 1   | 1.904396 | 1.918294 | 1.920524 | 1.920234 | 1.903104 | 1.904442 | 1.918508 | 1.913370 | 1.915986 | 1.909294 |          |          |
|                     | 2   | 1.904396 | 1.918292 | 1.920522 | 1.920236 | 1.903104 | 1.904436 | 1.918506 | 1.913372 | 1.915986 | 1.909296 |          |          |
|                     | 3   | 1.904398 | 1.918302 | 1.920524 | 1.920236 | 1.903100 | 1.904430 | 1.918508 | 1.913362 | 1.915984 | 1.909288 |          |          |
|                     | 4   | 1.904392 | 1.918300 | 1.920528 | 1.920230 | 1.903110 | 1.904432 | 1.918510 | 1.913368 | 1.915982 | 1.909288 |          |          |
|                     | 5   | 1.904400 | 1.918298 | 1.920526 | 1.920230 | 1.903114 | 1.904434 | 1.918510 | 1.913364 | 1.915982 | 1.909296 |          |          |
|                     | 6   | 1.904396 | 1.918300 | 1.920530 | 1.920228 | 1.903110 | 1.904434 | 1.918508 | 1.913366 | 1.915982 | 1.909292 |          |          |
|                     | 7   | 1.904394 | 1.918298 | 1.920526 | 1.920236 | 1.903104 | 1.904436 | 1.918504 | 1.913366 | 1.915984 | 1.909292 |          |          |
|                     | 8   | 1.904396 | 1.918296 | 1.920530 | 1.920234 | 1.903108 | 1.904430 | 1.918504 | 1.913366 | 1.915984 | 1.909294 |          |          |
|                     | 9   | 1.904400 | 1.918298 | 1.920530 | 1.920234 | 1.903110 | 1.904434 | 1.918502 | 1.913364 | 1.915986 | 1.909294 |          |          |
|                     | 10  | 1.904396 | 1.918292 | 1.920532 | 1.920236 | 1.903106 | 1.904434 | 1.918512 | 1.913372 | 1.915982 | 1.909294 |          |          |
| 400 hrs             | 1   |          |          | 1.920582 | 1.920298 | 1.903156 | 1.904480 | 1.918564 | 1.913426 | 1.916032 | 1.909366 |          |          |
|                     | 2   |          |          | 1.920582 | 1.920296 | 1.903156 | 1.904480 | 1.918562 | 1.913428 | 1.916034 | 1.909366 |          |          |
|                     | 3   |          |          | 1.920590 | 1.920298 | 1.903158 | 1.904484 | 1.918562 | 1.913426 | 1.916032 | 1.909368 |          |          |
|                     | 4   |          |          | 1.920590 | 1.920298 | 1.903162 | 1.904486 | 1.918562 | 1.913422 | 1.916032 | 1.909368 |          |          |
|                     | 5   |          |          | 1.920582 | 1.920294 | 1.903162 | 1.904484 | 1.918560 | 1.913422 | 1.916030 | 1.909370 |          |          |
|                     | 6   |          |          | 1.920582 | 1.920296 | 1.903158 | 1.904482 | 1.918560 | 1.913426 | 1.916034 | 1.909362 |          |          |
|                     | 7   |          |          | 1.920584 | 1.920296 | 1.903154 | 1.904478 | 1.918564 | 1.913426 | 1.916034 | 1.909370 |          |          |
|                     | 8   |          |          | 1.920586 | 1.920296 | 1.903158 | 1.904484 | 1.918560 | 1.913424 | 1.916038 | 1.909372 |          |          |
|                     | 9   |          |          | 1.920586 | 1.920298 | 1.903160 | 1.904486 | 1.918564 | 1.913428 | 1.916034 | 1.909368 |          |          |
|                     | 10  |          |          | 1.920586 | 1.920296 | 1.903158 | 1.904480 | 1.918568 | 1.913428 | 1.916030 | 1.909370 |          |          |
| 600 hrs             | 1   |          |          |          | 1.903314 | 1.904614 | 1.918690 | 1.913502 | 1.916168 | 1.909852 |          |          |          |
|                     | 2   |          |          |          | 1.903310 | 1.904608 | 1.918692 | 1.913508 | 1.916164 | 1.909852 |          |          |          |
|                     | 3   |          |          |          | 1.903314 | 1.904616 | 1.918686 | 1.913496 | 1.916170 | 1.909854 |          |          |          |
|                     | 4   |          |          |          | 1.903314 | 1.904614 | 1.918690 | 1.913506 | 1.916166 | 1.909846 |          |          |          |
|                     | 5   |          |          |          | 1.903314 | 1.904608 | 1.918688 | 1.913508 | 1.916164 | 1.909846 |          |          |          |
|                     | 6   |          |          |          | 1.903320 | 1.904610 | 1.918696 | 1.913500 | 1.916170 | 1.909848 |          |          |          |
|                     | 7   |          |          |          | 1.903320 | 1.904612 | 1.918686 | 1.913504 | 1.916172 | 1.909850 |          |          |          |
|                     | 8   |          |          |          | 1.903314 | 1.904610 | 1.918690 | 1.913504 | 1.916170 | 1.909854 |          |          |          |
|                     | 9   |          |          |          | 1.903310 | 1.904612 | 1.918698 | 1.913504 | 1.916164 | 1.909856 |          |          |          |
|                     | 10  |          |          |          | 1.903320 | 1.904612 | 1.918688 | 1.913498 | 1.916166 | 1.909852 |          |          |          |
| 800 hrs             | 1   |          |          |          |          |          |          |          |          | 1.919130 | 1.913852 | 1.916470 | 1.910440 |
|                     | 2   |          |          |          |          |          |          |          |          | 1.919130 | 1.913854 | 1.916466 | 1.910440 |
|                     | 3   |          |          |          |          |          |          |          |          | 1.919132 | 1.913848 | 1.916470 | 1.910456 |
|                     | 4   |          |          |          |          |          |          |          |          | 1.919130 | 1.913848 | 1.916466 | 1.910452 |
|                     | 5   |          |          |          |          |          |          |          |          | 1.919128 | 1.913850 | 1.916464 | 1.910448 |
|                     | 6   |          |          |          |          |          |          |          |          | 1.919134 | 1.913854 | 1.916468 | 1.910446 |
|                     | 7   |          |          |          |          |          |          |          |          | 1.919132 | 1.913848 | 1.916464 | 1.910448 |
|                     | 8   |          |          |          |          |          |          |          |          | 1.919134 | 1.913844 | 1.916466 | 1.910452 |
|                     | 9   |          |          |          |          |          |          |          |          | 1.919126 | 1.913842 | 1.916466 | 1.910448 |
|                     | 10  |          |          |          |          |          |          |          |          | 1.919126 | 1.913854 | 1.916466 | 1.910452 |
| 1000 hrs            | 1   |          |          |          |          |          |          |          |          |          | 1.916900 | 1.910878 |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          | 1.916888 | 1.910882 |
|                     | 3   |          |          |          |          |          |          |          |          |          |          | 1.916890 | 1.910882 |
|                     | 4   |          |          |          |          |          |          |          |          |          |          | 1.916892 | 1.910882 |
|                     | 5   |          |          |          |          |          |          |          |          |          |          | 1.916888 | 1.910884 |
|                     | 6   |          |          |          |          |          |          |          |          |          |          | 1.916890 | 1.910886 |
|                     | 7   |          |          |          |          |          |          |          |          |          |          | 1.916886 | 1.910882 |
|                     | 8   |          |          |          |          |          |          |          |          |          |          | 1.916890 | 1.910874 |
|                     | 9   |          |          |          |          |          |          |          |          |          |          | 1.916886 | 1.910874 |
|                     | 10  |          |          |          |          |          |          |          |          |          |          | 1.916900 | 1.910874 |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |          |          |

Table 44: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, AFA-OC6

|             |                      |                                   |                                           |
|-------------|----------------------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2                | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 5                    | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000181$ cm <sup>2</sup> |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | Heat # 001919                             |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Alumina-Forming Austenitic                |
| Temp. (°C): | 650                  | Color Designation:                | Red                                       |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | AFA-OC6              |                                   |                                           |
| Notes:      |                      |                                   |                                           |

| Meas #         | Sample # / Description |          |          |          |          |          |          |          |          |          |
|----------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                | A626                   | A627     | A628     | A629     | A630     | A631     | A632     | A633     | A634     | A635     |
| 1              | 1.804158               | 1.848620 | 1.844216 | 1.845394 | 1.845640 | 1.813092 | 1.840372 | 1.851586 | 1.821618 | 1.830446 |
| 2              | 1.804152               | 1.848618 | 1.844212 | 1.845392 | 1.845640 | 1.813092 | 1.840372 | 1.851588 | 1.821618 | 1.830448 |
| 3              | 1.804158               | 1.848620 | 1.844214 | 1.845394 | 1.845640 | 1.813094 | 1.840374 | 1.851584 | 1.821616 | 1.830448 |
| 4              | 1.804156               | 1.848618 | 1.844210 | 1.845392 | 1.845646 | 1.813094 | 1.840374 | 1.851586 | 1.821612 | 1.830450 |
| 5              | 1.804158               | 1.848616 | 1.844216 | 1.845392 | 1.845644 | 1.813094 | 1.840374 | 1.851584 | 1.821618 | 1.830448 |
| 6              | 1.804152               | 1.848622 | 1.844212 | 1.845398 | 1.845642 | 1.813088 | 1.840374 | 1.851590 | 1.821616 | 1.830448 |
| 7              | 1.804156               | 1.848618 | 1.844212 | 1.845394 | 1.845642 | 1.813090 | 1.840370 | 1.851584 | 1.821612 | 1.830448 |
| 8              | 1.804156               | 1.848620 | 1.844212 | 1.845392 | 1.845640 | 1.813092 | 1.840378 | 1.851586 | 1.821614 | 1.830452 |
| 9              | 1.804152               | 1.848618 | 1.844212 | 1.845396 | 1.845638 | 1.813094 | 1.840376 | 1.851584 | 1.821614 | 1.830446 |
| 10             | 1.804158               | 1.848622 | 1.844212 | 1.845396 | 1.845640 | 1.813090 | 1.840372 | 1.851588 | 1.821616 | 1.830448 |
| 1 <sub>L</sub> | 12.924                 | 12.937   | 12.979   | 12.962   | 12.940   | 12.919   | 12.956   | 12.937   | 12.906   | 12.885   |
| 2 <sub>L</sub> | 12.923                 | 12.934   | 12.979   | 12.957   | 12.939   | 12.914   | 12.956   | 12.941   | 12.892   | 12.879   |
| 3 <sub>L</sub> | 12.877                 | 12.935   | 12.980   | 12.954   | 12.939   | 12.903   | 12.962   | 12.942   | 12.869   | 12.867   |
| 4 <sub>W</sub> | 12.632                 | 12.634   | 12.670   | 12.633   | 12.652   | 12.626   | 12.613   | 12.649   | 12.658   | 12.657   |
| 5 <sub>W</sub> | 12.631                 | 12.640   | 12.673   | 12.639   | 12.655   | 12.640   | 12.612   | 12.646   | 12.659   | 12.658   |
| 6 <sub>W</sub> | 12.632                 | 12.644   | 12.673   | 12.642   | 12.667   | 12.649   | 12.612   | 12.638   | 12.658   | 12.653   |
| 1              | 1.535                  | 1.554    | 1.564    | 1.559    | 1.551    | 1.526    | 1.558    | 1.560    | 1.544    | 1.555    |
| 2              | 1.543                  | 1.570    | 1.571    | 1.571    | 1.564    | 1.551    | 1.570    | 1.577    | 1.559    | 1.569    |
| 3              | 1.541                  | 1.570    | 1.562    | 1.569    | 1.562    | 1.548    | 1.570    | 1.575    | 1.556    | 1.566    |
| 4              | 1.541                  | 1.568    | 1.567    | 1.565    | 1.556    | 1.542    | 1.565    | 1.574    | 1.556    | 1.565    |
| 5              | 1.538                  | 1.562    | 1.560    | 1.565    | 1.563    | 1.539    | 1.568    | 1.573    | 1.554    | 1.560    |

Table 45: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, AFA-OC6

| Meas #  | Measured Weight (g) |          |          |          |          |          |          |          |          |          |          |
|---------|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|         | A626                | A627     | A628     | A629     | A630     | A631     | A632     | A633     | A634     | A635     |          |
| 200 hrs | 1                   | 1.804656 | 1.848988 | 1.844492 | 1.845776 | 1.846008 | 1.813428 | 1.840688 | 1.852000 | 1.822056 | 1.830820 |
|         | 2                   | 1.804660 | 1.848986 | 1.844492 | 1.845778 | 1.846008 | 1.813430 | 1.840684 | 1.852002 | 1.822048 | 1.830816 |
|         | 3                   | 1.80466  | 1.848988 | 1.844498 | 1.845780 | 1.846006 | 1.813432 | 1.840684 | 1.852004 | 1.822052 | 1.830812 |
|         | 4                   | 1.804662 | 1.848988 | 1.844496 | 1.845780 | 1.846000 | 1.813430 | 1.840682 | 1.851998 | 1.822052 | 1.830812 |
|         | 5                   | 1.804662 | 1.848992 | 1.844490 | 1.845782 | 1.846006 | 1.813430 | 1.840684 | 1.852000 | 1.822048 | 1.830818 |
|         | 6                   | 1.804662 | 1.848990 | 1.844494 | 1.845784 | 1.846008 | 1.813430 | 1.840684 | 1.852000 | 1.822054 | 1.830816 |
|         | 7                   | 1.804660 | 1.848992 | 1.844490 | 1.845782 | 1.846008 | 1.813428 | 1.840682 | 1.852004 | 1.822050 | 1.830820 |
|         | 8                   | 1.804662 | 1.848992 | 1.844498 | 1.845782 | 1.846004 | 1.813428 | 1.840680 | 1.852000 | 1.822054 | 1.830824 |
|         | 9                   | 1.804656 | 1.848994 | 1.844494 | 1.845782 | 1.846008 | 1.813430 | 1.840688 | 1.851994 | 1.822050 | 1.830822 |
|         | 10                  | 1.804662 | 1.848994 | 1.844498 | 1.845782 | 1.846008 | 1.813428 | 1.840684 | 1.852002 | 1.822052 | 1.830820 |
| 400 hrs | 1                   |          |          | 1.844682 | 1.845904 | 1.846158 | 1.813550 | 1.840834 | 1.852166 | 1.822224 | 1.830930 |
|         | 2                   |          |          | 1.844684 | 1.845902 | 1.846160 | 1.813554 | 1.840836 | 1.852166 | 1.822224 | 1.830934 |
|         | 3                   |          |          | 1.844682 | 1.845906 | 1.846160 | 1.813554 | 1.840834 | 1.852170 | 1.822218 | 1.830932 |
|         | 4                   |          |          | 1.844686 | 1.845902 | 1.846162 | 1.813552 | 1.840830 | 1.852168 | 1.822222 | 1.830932 |
|         | 5                   |          |          | 1.844688 | 1.845906 | 1.846158 | 1.813552 | 1.840834 | 1.852168 | 1.822224 | 1.830932 |
|         | 6                   |          |          | 1.844688 | 1.845908 | 1.846160 | 1.813552 | 1.840832 | 1.852164 | 1.822222 | 1.830934 |
|         | 7                   |          |          | 1.844686 | 1.845906 | 1.846156 | 1.813554 | 1.840834 | 1.852166 | 1.822220 | 1.830936 |
|         | 8                   |          |          | 1.844688 | 1.845910 | 1.846160 | 1.813556 | 1.840836 | 1.852168 | 1.822224 | 1.830934 |
|         | 9                   |          |          | 1.844684 | 1.845906 | 1.846154 | 1.813556 | 1.840836 | 1.852166 | 1.822222 | 1.830930 |
|         | 10                  |          |          | 1.844688 | 1.845908 | 1.846158 | 1.813554 | 1.840834 | 1.852164 | 1.822224 | 1.830932 |
| 600 hrs | 1                   |          |          |          | 1.850908 | 1.816680 | 1.844084 | 1.854218 | 1.823396 | 1.832290 |          |
|         | 2                   |          |          |          | 1.850908 | 1.816678 | 1.844082 | 1.854216 | 1.823396 | 1.832294 |          |
|         | 3                   |          |          |          | 1.850910 | 1.816686 | 1.844086 | 1.854216 | 1.823388 | 1.832290 |          |
|         | 4                   |          |          |          | 1.850910 | 1.816680 | 1.844080 | 1.854214 | 1.823388 | 1.832296 |          |
|         | 5                   |          |          |          | 1.850910 | 1.816686 | 1.844080 | 1.854212 | 1.823390 | 1.832292 |          |
|         | 6                   |          |          |          | 1.850912 | 1.816686 | 1.844088 | 1.854208 | 1.823388 | 1.832294 |          |
|         | 7                   |          |          |          | 1.850914 | 1.816680 | 1.844086 | 1.854212 | 1.823390 | 1.832300 |          |
|         | 8                   |          |          |          | 1.850908 | 1.816678 | 1.844082 | 1.854214 | 1.823386 | 1.832292 |          |
|         | 9                   |          |          |          | 1.850910 | 1.816678 | 1.844086 | 1.854212 | 1.823388 | 1.832300 |          |
|         | 10                  |          |          |          | 1.850912 | 1.816680 | 1.844086 | 1.854214 | 1.823390 | 1.832292 |          |

| Meas #   | Measured Weight (g) |      |      |      |      |      |      |      |          |          |          |          |
|----------|---------------------|------|------|------|------|------|------|------|----------|----------|----------|----------|
|          | A626                | A627 | A628 | A629 | A630 | A631 | A632 | A633 | A634     | A635     |          |          |
| 800 hrs  | 1                   |      |      |      |      |      |      |      | 1.845034 | 1.854854 | 1.823774 | 1.832730 |
|          | 2                   |      |      |      |      |      |      |      | 1.845034 | 1.854858 | 1.823780 | 1.832728 |
|          | 3                   |      |      |      |      |      |      |      | 1.845032 | 1.854858 | 1.823770 | 1.832734 |
|          | 4                   |      |      |      |      |      |      |      | 1.845030 | 1.854856 | 1.823770 | 1.832734 |
|          | 5                   |      |      |      |      |      |      |      | 1.845032 | 1.854858 | 1.823772 | 1.832736 |
|          | 6                   |      |      |      |      |      |      |      | 1.845030 | 1.854858 | 1.823770 | 1.832736 |
|          | 7                   |      |      |      |      |      |      |      | 1.845028 | 1.854862 | 1.823774 | 1.832736 |
|          | 8                   |      |      |      |      |      |      |      | 1.845026 | 1.854856 | 1.823774 | 1.832738 |
|          | 9                   |      |      |      |      |      |      |      | 1.845028 | 1.854854 | 1.823774 | 1.832736 |
|          | 10                  |      |      |      |      |      |      |      | 1.845030 | 1.854858 | 1.823776 | 1.832734 |
| 1000 hrs | 1                   |      |      |      |      |      |      |      |          |          | 1.824118 | 1.833122 |
|          | 2                   |      |      |      |      |      |      |      |          |          | 1.824110 | 1.833124 |
|          | 3                   |      |      |      |      |      |      |      |          |          | 1.824108 | 1.833114 |
|          | 4                   |      |      |      |      |      |      |      |          |          | 1.824114 | 1.833114 |
|          | 5                   |      |      |      |      |      |      |      |          |          | 1.824122 | 1.833118 |
|          | 6                   |      |      |      |      |      |      |      |          |          | 1.824116 | 1.833116 |
|          | 7                   |      |      |      |      |      |      |      |          |          | 1.824120 | 1.833122 |
|          | 8                   |      |      |      |      |      |      |      |          |          | 1.824122 | 1.833130 |
|          | 9                   |      |      |      |      |      |      |      |          |          | 1.824116 | 1.833128 |
|          | 10                  |      |      |      |      |      |      |      |          |          | 1.824108 | 1.833114 |
| 1200 hrs | 1                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 2                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 3                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 4                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 5                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 6                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 7                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 8                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 9                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 10                  |      |      |      |      |      |      |      |          |          |          |          |

Table 46: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, AFA-OC7

|             |                      |                                   |                                          |
|-------------|----------------------|-----------------------------------|------------------------------------------|
| Project:    | SCCO2                | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g              |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                |
| Expt. #:    | 5                    | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.00018$ cm <sup>2</sup> |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | Heat # 001920                            |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Alumina-Forming Austenitic               |
| Temp. (°C): | 650                  | Color Designation:                | Yellow                                   |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                        |
| Sample ID:  | AFA-OC7              |                                   |                                          |
| Notes:      |                      |                                   |                                          |

| Meas #                    | Sample # / Description |          |          |          |          |          |          |          |          |          |        |
|---------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|
|                           | A720                   | A721     | A722     | A723     | A724     | A725     | A726     | A727     | A728     | A729     |        |
| 1                         | 1.796972               | 1.836310 | 1.823408 | 1.820662 | 1.836004 | 1.826656 | 1.833042 | 1.837836 | 1.846054 | 1.844638 |        |
| 2                         | 1.796972               | 1.836310 | 1.823412 | 1.820656 | 1.836004 | 1.826652 | 1.833050 | 1.837840 | 1.846058 | 1.844642 |        |
| 3                         | 1.796976               | 1.836314 | 1.823414 | 1.820660 | 1.836004 | 1.826650 | 1.833048 | 1.837834 | 1.846060 | 1.844642 |        |
| 4                         | 1.796970               | 1.836314 | 1.823412 | 1.820662 | 1.836002 | 1.826652 | 1.833048 | 1.837836 | 1.846056 | 1.844640 |        |
| 5                         | 1.796974               | 1.836310 | 1.823406 | 1.820658 | 1.836002 | 1.826650 | 1.833044 | 1.837838 | 1.846054 | 1.844638 |        |
| 6                         | 1.796974               | 1.836308 | 1.823412 | 1.820656 | 1.836008 | 1.826654 | 1.833044 | 1.837842 | 1.846062 | 1.844640 |        |
| 7                         | 1.796972               | 1.836308 | 1.823408 | 1.820662 | 1.836008 | 1.826650 | 1.833044 | 1.837840 | 1.846060 | 1.844638 |        |
| 8                         | 1.796974               | 1.836314 | 1.823408 | 1.820656 | 1.836002 | 1.826650 | 1.833048 | 1.837840 | 1.846054 | 1.844636 |        |
| 9                         | 1.796974               | 1.836312 | 1.823408 | 1.820658 | 1.836008 | 1.826650 | 1.833042 | 1.837836 | 1.846056 | 1.844640 |        |
| 10                        | 1.796970               | 1.836314 | 1.823412 | 1.820656 | 1.836002 | 1.826652 | 1.833046 | 1.837838 | 1.846058 | 1.844638 |        |
| BARE WEIGHT<br>(gm)       | 1 <sub>L</sub>         | 12.848   | 12.836   | 12.825   | 12.808   | 12.816   | 12.827   | 12.832   | 12.836   | 12.796   | 12.820 |
|                           | 2 <sub>L</sub>         | 12.847   | 12.838   | 12.822   | 12.809   | 12.815   | 12.828   | 12.833   | 12.828   | 12.797   | 12.817 |
|                           | 3 <sub>L</sub>         | 12.841   | 12.838   | 12.817   | 12.806   | 12.817   | 12.824   | 12.832   | 12.820   | 12.805   | 12.822 |
|                           | 4 <sub>W</sub>         | 12.622   | 12.651   | 12.650   | 12.548   | 12.644   | 12.605   | 12.628   | 12.673   | 12.625   | 12.652 |
|                           | 5 <sub>W</sub>         | 12.620   | 12.650   | 12.648   | 12.572   | 12.639   | 12.638   | 12.631   | 12.674   | 12.625   | 12.654 |
|                           | 6 <sub>W</sub>         | 12.619   | 12.653   | 12.643   | 12.583   | 12.643   | 12.648   | 12.637   | 12.674   | 12.629   | 12.646 |
| BARE<br>THICKNESS<br>(mm) | 1                      | 1.523    | 1.545    | 1.528    | 1.539    | 1.543    | 1.539    | 1.539    | 1.539    | 1.557    | 1.558  |
|                           | 2                      | 1.528    | 1.560    | 1.549    | 1.565    | 1.568    | 1.568    | 1.570    | 1.558    | 1.571    | 1.572  |
|                           | 3                      | 1.519    | 1.556    | 1.548    | 1.565    | 1.564    | 1.566    | 1.569    | 1.555    | 1.566    | 1.568  |
|                           | 4                      | 1.525    | 1.554    | 1.544    | 1.553    | 1.562    | 1.560    | 1.558    | 1.550    | 1.564    | 1.567  |
|                           | 5                      | 1.518    | 1.552    | 1.540    | 1.559    | 1.557    | 1.555    | 1.558    | 1.554    | 1.566    | 1.561  |

Table 47: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, AFA-OC7

| Measured Weight (g) |      |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | A720 | A721     | A722     | A723     | A724     | A725     | A726     | A727     | A728     | A729     |          |          |          |          |          |          |          |          |          |
| 200 hrs             | 1    | 1.797504 | 1.836476 | 1.823678 | 1.821010 | 1.836262 | 1.826998 | 1.833300 | 1.838090 | 1.846292 | 1.844878 |          |          |          |          |          |          |          |          |
|                     | 2    | 1.797500 | 1.836482 | 1.823674 | 1.821014 | 1.836260 | 1.827004 | 1.833298 | 1.838096 | 1.846288 | 1.844880 |          |          |          |          |          |          |          |          |
|                     | 3    | 1.797504 | 1.836478 | 1.823672 | 1.821004 | 1.836260 | 1.827008 | 1.833300 | 1.838092 | 1.846292 | 1.844874 |          |          |          |          |          |          |          |          |
|                     | 4    | 1.797502 | 1.836478 | 1.823676 | 1.821016 | 1.836258 | 1.826998 | 1.833292 | 1.838086 | 1.846286 | 1.844874 |          |          |          |          |          |          |          |          |
|                     | 5    | 1.797502 | 1.836480 | 1.823672 | 1.821018 | 1.836258 | 1.827006 | 1.833296 | 1.838094 | 1.846284 | 1.844870 |          |          |          |          |          |          |          |          |
|                     | 6    | 1.797498 | 1.836480 | 1.823676 | 1.821014 | 1.836262 | 1.827006 | 1.833298 | 1.838092 | 1.846292 | 1.844872 |          |          |          |          |          |          |          |          |
|                     | 7    | 1.797498 | 1.836476 | 1.823674 | 1.821016 | 1.836262 | 1.827004 | 1.833294 | 1.838094 | 1.846292 | 1.844880 |          |          |          |          |          |          |          |          |
|                     | 8    | 1.797502 | 1.836474 | 1.823674 | 1.821006 | 1.836258 | 1.827000 | 1.833296 | 1.838086 | 1.846286 | 1.844878 |          |          |          |          |          |          |          |          |
|                     | 9    | 1.797502 | 1.836478 | 1.823676 | 1.821014 | 1.836260 | 1.826998 | 1.833294 | 1.838090 | 1.846290 | 1.844878 |          |          |          |          |          |          |          |          |
|                     | 10   | 1.797504 | 1.836474 | 1.823670 | 1.821016 | 1.836256 | 1.826998 | 1.833294 | 1.838092 | 1.846290 | 1.844876 |          |          |          |          |          |          |          |          |
| 400 hrs             | 1    |          |          | 1.824002 | 1.821238 | 1.836410 | 1.827168 | 1.833444 | 1.838164 | 1.846382 | 1.844958 |          |          |          |          |          |          |          |          |
|                     | 2    |          |          |          | 1.823998 | 1.821232 | 1.836406 | 1.827164 | 1.833438 | 1.838166 | 1.846382 | 1.844954 |          |          |          |          |          |          |          |
|                     | 3    |          |          |          |          | 1.824000 | 1.821238 | 1.836414 | 1.827168 | 1.833440 | 1.838166 | 1.846384 | 1.844954 |          |          |          |          |          |          |
|                     | 4    |          |          |          |          |          | 1.824000 | 1.821232 | 1.836412 | 1.827164 | 1.833440 | 1.838166 | 1.846378 | 1.844952 |          |          |          |          |          |
|                     | 5    |          |          |          |          |          |          | 1.824002 | 1.821234 | 1.836412 | 1.827166 | 1.833442 | 1.838164 | 1.846380 | 1.844950 |          |          |          |          |
|                     | 6    |          |          |          |          |          |          |          | 1.824002 | 1.821236 | 1.836414 | 1.827168 | 1.833438 | 1.838164 | 1.846382 | 1.844954 |          |          |          |
|                     | 7    |          |          |          |          |          |          |          |          | 1.824000 | 1.821236 | 1.836412 | 1.827166 | 1.833440 | 1.838166 | 1.846380 | 1.844954 |          |          |
|                     | 8    |          |          |          |          |          |          |          |          |          | 1.824004 | 1.821234 | 1.836410 | 1.827168 | 1.833436 | 1.838164 | 1.846382 | 1.844956 |          |
|                     | 9    |          |          |          |          |          |          |          |          |          |          | 1.824002 | 1.821238 | 1.836406 | 1.827164 | 1.833440 | 1.838166 | 1.846380 | 1.844954 |
|                     | 10   |          |          |          |          |          |          |          |          |          |          |          | 1.824002 | 1.821234 | 1.836412 | 1.827168 | 1.833442 | 1.838168 | 1.846380 |
| 600 hrs             | 1    |          |          |          |          | 1.837370 | 1.828080 | 1.834356 | 1.838916 | 1.847048 | 1.845472 |          |          |          |          |          |          |          |          |
|                     | 2    |          |          |          |          |          | 1.837370 | 1.828084 | 1.834354 | 1.838912 | 1.847046 | 1.845468 |          |          |          |          |          |          |          |
|                     | 3    |          |          |          |          |          |          | 1.837370 | 1.828084 | 1.834352 | 1.838910 | 1.847046 | 1.845468 |          |          |          |          |          |          |
|                     | 4    |          |          |          |          |          |          |          | 1.837370 | 1.828084 | 1.834354 | 1.838910 | 1.847046 | 1.845468 |          |          |          |          |          |
|                     | 5    |          |          |          |          |          |          |          |          | 1.837366 | 1.828080 | 1.834350 | 1.838908 | 1.847048 | 1.845464 |          |          |          |          |
|                     | 6    |          |          |          |          |          |          |          |          |          | 1.837366 | 1.828080 | 1.834350 | 1.838916 | 1.847048 | 1.845468 |          |          |          |
|                     | 7    |          |          |          |          |          |          |          |          |          |          | 1.837372 | 1.828076 | 1.834354 | 1.838910 | 1.847042 | 1.845470 |          |          |
|                     | 8    |          |          |          |          |          |          |          |          |          |          |          | 1.837370 | 1.828080 | 1.834354 | 1.838912 | 1.847048 | 1.845474 |          |
|                     | 9    |          |          |          |          |          |          |          |          |          |          |          |          | 1.837372 | 1.828078 | 1.834356 | 1.838908 | 1.847046 | 1.845472 |
|                     | 10   |          |          |          |          |          |          |          |          |          |          |          |          |          | 1.837372 | 1.828076 | 1.834354 | 1.838910 | 1.847044 |

| Measured Weight (g) |      |      |      |      |      |      |      |      |          |          |          |          |          |          |
|---------------------|------|------|------|------|------|------|------|------|----------|----------|----------|----------|----------|----------|
| Meas #              | A720 | A721 | A722 | A723 | A724 | A725 | A726 | A727 | A728     | A729     |          |          |          |          |
| 800 hrs             | 1    |      |      |      |      |      |      |      | 1.834816 | 1.839282 | 1.847404 | 1.845756 |          |          |
|                     | 2    |      |      |      |      |      |      |      |          | 1.834814 | 1.839284 | 1.847404 | 1.845754 |          |
|                     | 3    |      |      |      |      |      |      |      |          | 1.834818 | 1.839282 | 1.847404 | 1.845752 |          |
|                     | 4    |      |      |      |      |      |      |      |          | 1.834816 | 1.839286 | 1.847404 | 1.845752 |          |
|                     | 5    |      |      |      |      |      |      |      |          | 1.834808 | 1.839286 | 1.847406 | 1.845754 |          |
|                     | 6    |      |      |      |      |      |      |      |          |          | 1.834818 | 1.839282 | 1.847408 | 1.845756 |
|                     | 7    |      |      |      |      |      |      |      |          |          | 1.834818 | 1.839280 | 1.847404 | 1.845752 |
|                     | 8    |      |      |      |      |      |      |      |          |          | 1.834820 | 1.839284 | 1.847408 | 1.845750 |
|                     | 9    |      |      |      |      |      |      |      |          |          | 1.834810 | 1.839280 | 1.847408 | 1.845752 |
|                     | 10   |      |      |      |      |      |      |      |          |          |          | 1.834816 | 1.839286 | 1.847406 |
| 1000 hrs            | 1    |      |      |      |      |      |      |      |          |          | 1.847676 | 1.845968 |          |          |
|                     | 2    |      |      |      |      |      |      |      |          |          |          | 1.847670 | 1.845964 |          |
|                     | 3    |      |      |      |      |      |      |      |          |          |          | 1.847672 | 1.845974 |          |
|                     | 4    |      |      |      |      |      |      |      |          |          |          | 1.847684 | 1.845964 |          |
|                     | 5    |      |      |      |      |      |      |      |          |          |          | 1.847676 | 1.845956 |          |
|                     | 6    |      |      |      |      |      |      |      |          |          |          | 1.847672 | 1.845970 |          |
|                     | 7    |      |      |      |      |      |      |      |          |          |          | 1.847680 | 1.845964 |          |
|                     | 8    |      |      |      |      |      |      |      |          |          |          | 1.847664 | 1.845960 |          |
|                     | 9    |      |      |      |      |      |      |      |          |          |          | 1.847682 | 1.845960 |          |
|                     | 10   |      |      |      |      |      |      |      |          |          |          |          | 1.847684 | 1.845968 |
| 1200 hrs            | 1    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 2    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 3    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 4    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 5    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 6    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 7    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 8    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 9    |      |      |      |      |      |      |      |          |          |          |          |          |          |
|                     | 10   |      |      |      |      |      |      |      |          |          |          |          |          |          |

Table 48: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, AFA-OC10

|             |          |                                   |                                           |
|-------------|----------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2    | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC  | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386  | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 5        | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000179$ cm <sup>2</sup> |
| Phase:      | 1 of 4   | Supplier/UNS ID:                  | Heat # 001923                             |
| Phase Type: | Pure CO2 | Metal Type:                       | Alumina-Forming Austenitic                |
| Temp. (°C): | 650      | Color Designation:                | Magenta                                   |
| Pressure:   | 2900psi  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | AFA-OC10 |                                   |                                           |
| Notes:      |          |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A120                   | A121     | A122     | A123     | A124     | A125     | A126     | A127     | A128     | A129     |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.746112 | 1.742236 | 1.783362 | 1.787412 | 1.795808 | 1.796040 | 1.793900 | 1.768478 | 1.773248 | 1.785582 |
|                                 | 2                      | 1.746112 | 1.742240 | 1.783362 | 1.787408 | 1.795808 | 1.796040 | 1.793894 | 1.768476 | 1.773244 | 1.785588 |
|                                 | 3                      | 1.746106 | 1.742240 | 1.783366 | 1.787410 | 1.795810 | 1.796038 | 1.793898 | 1.768472 | 1.773248 | 1.785584 |
|                                 | 4                      | 1.746110 | 1.742236 | 1.783362 | 1.787406 | 1.795810 | 1.796036 | 1.793894 | 1.768478 | 1.773248 | 1.785584 |
|                                 | 5                      | 1.746110 | 1.742234 | 1.783368 | 1.787408 | 1.795806 | 1.796036 | 1.793894 | 1.768476 | 1.773246 | 1.785584 |
|                                 | 6                      | 1.746110 | 1.742240 | 1.783368 | 1.787412 | 1.795810 | 1.796042 | 1.793896 | 1.768480 | 1.773248 | 1.785582 |
|                                 | 7                      | 1.746108 | 1.742236 | 1.783366 | 1.787406 | 1.795808 | 1.796042 | 1.793900 | 1.768476 | 1.773244 | 1.785586 |
|                                 | 8                      | 1.746106 | 1.742236 | 1.783364 | 1.787410 | 1.795812 | 1.796038 | 1.793894 | 1.768478 | 1.773246 | 1.785584 |
|                                 | 9                      | 1.746108 | 1.742238 | 1.783364 | 1.787406 | 1.795808 | 1.796042 | 1.793896 | 1.768478 | 1.773248 | 1.785582 |
|                                 | 10                     | 1.746108 | 1.742238 | 1.783364 | 1.787406 | 1.795806 | 1.796042 | 1.793896 | 1.768476 | 1.773248 | 1.785584 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 12.709   | 12.651   | 12.728   | 12.745   | 12.726   | 12.743   | 12.741   | 12.759   | 12.750   | 12.732   |
|                                 | 2 <sub>L</sub>         | 12.710   | 12.667   | 12.740   | 12.749   | 12.733   | 12.743   | 12.740   | 12.756   | 12.746   | 12.731   |
|                                 | 3 <sub>L</sub>         | 12.706   | 12.666   | 12.739   | 12.738   | 12.730   | 12.743   | 12.743   | 12.751   | 12.747   | 12.741   |
|                                 | 4 <sub>W</sub>         | 12.451   | 12.401   | 12.602   | 12.610   | 12.620   | 12.621   | 12.605   | 12.636   | 12.603   | 12.591   |
|                                 | 5 <sub>W</sub>         | 12.465   | 12.407   | 12.610   | 12.624   | 12.624   | 12.620   | 12.604   | 12.632   | 12.602   | 12.595   |
|                                 | 6 <sub>W</sub>         | 12.475   | 12.413   | 12.613   | 12.624   | 12.622   | 12.616   | 12.601   | 12.622   | 12.602   | 12.590   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.527    | 1.535    | 1.532    | 1.532    | 1.533    | 1.538    | 1.537    | 1.507    | 1.524    | 1.529    |
|                                 | 2                      | 1.542    | 1.552    | 1.546    | 1.550    | 1.559    | 1.558    | 1.558    | 1.531    | 1.547    | 1.558    |
|                                 | 3                      | 1.542    | 1.553    | 1.543    | 1.549    | 1.557    | 1.555    | 1.554    | 1.529    | 1.545    | 1.555    |
|                                 | 4                      | 1.537    | 1.550    | 1.542    | 1.544    | 1.549    | 1.554    | 1.554    | 1.525    | 1.533    | 1.546    |
|                                 | 5                      | 1.536    | 1.545    | 1.536    | 1.549    | 1.550    | 1.546    | 1.546    | 1.522    | 1.542    | 1.547    |

Table 49: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, AFA-OC10

| Meas #  | Measured Weight (g) |          |          |          |          |          |          |          |          |          |          |
|---------|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|         | A120                | A121     | A122     | A123     | A124     | A125     | A126     | A127     | A128     | A129     |          |
| 200 hrs | 1                   | 1.746624 | 1.742368 | 1.783854 | 1.787616 | 1.796136 | 1.796372 | 1.794408 | 1.768820 | 1.773640 | 1.785918 |
|         | 2                   | 1.746628 | 1.742374 | 1.783866 | 1.787616 | 1.796134 | 1.796372 | 1.794410 | 1.768818 | 1.773636 | 1.785908 |
|         | 3                   | 1.746628 | 1.742372 | 1.783862 | 1.787618 | 1.796136 | 1.796374 | 1.794414 | 1.768816 | 1.773638 | 1.785918 |
|         | 4                   | 1.746620 | 1.742374 | 1.783862 | 1.787618 | 1.796134 | 1.796366 | 1.794408 | 1.768812 | 1.773632 | 1.785912 |
|         | 5                   | 1.746620 | 1.742368 | 1.783862 | 1.787612 | 1.796138 | 1.796370 | 1.794406 | 1.768810 | 1.773632 | 1.785912 |
|         | 6                   | 1.746620 | 1.742370 | 1.783864 | 1.787614 | 1.796132 | 1.796368 | 1.794404 | 1.768812 | 1.773632 | 1.785914 |
|         | 7                   | 1.746624 | 1.742374 | 1.783864 | 1.787614 | 1.796132 | 1.796364 | 1.794406 | 1.768816 | 1.773634 | 1.785910 |
|         | 8                   | 1.746626 | 1.742374 | 1.783864 | 1.787616 | 1.796136 | 1.796372 | 1.794404 | 1.768812 | 1.773636 | 1.785910 |
|         | 9                   | 1.746622 | 1.742370 | 1.783862 | 1.787616 | 1.796136 | 1.796372 | 1.794404 | 1.768812 | 1.773630 | 1.785906 |
|         | 10                  | 1.746626 | 1.742374 | 1.783862 | 1.787616 | 1.796136 | 1.796370 | 1.794406 | 1.768812 | 1.773630 | 1.785906 |
| 400 hrs | 1                   |          |          | 1.784520 | 1.788348 | 1.797124 | 1.797042 | 1.795142 | 1.769882 | 1.774222 | 1.788708 |
|         | 2                   |          |          | 1.784512 | 1.788344 | 1.797128 | 1.797042 | 1.795138 | 1.769882 | 1.774228 | 1.788706 |
|         | 3                   |          |          | 1.784512 | 1.788344 | 1.797132 | 1.797042 | 1.795140 | 1.769882 | 1.774230 | 1.788708 |
|         | 4                   |          |          | 1.784512 | 1.788346 | 1.797126 | 1.797042 | 1.795142 | 1.769882 | 1.774224 | 1.788704 |
|         | 5                   |          |          | 1.784520 | 1.788346 | 1.797126 | 1.797040 | 1.795142 | 1.769884 | 1.774226 | 1.788708 |
|         | 6                   |          |          | 1.784516 | 1.788344 | 1.797122 | 1.797042 | 1.795144 | 1.769880 | 1.774226 | 1.788702 |
|         | 7                   |          |          | 1.784518 | 1.788342 | 1.797124 | 1.797044 | 1.795140 | 1.769878 | 1.774228 | 1.788704 |
|         | 8                   |          |          | 1.784516 | 1.788344 | 1.797128 | 1.797046 | 1.795138 | 1.769880 | 1.774224 | 1.788708 |
|         | 9                   |          |          | 1.784518 | 1.788342 | 1.797128 | 1.797048 | 1.795138 | 1.769878 | 1.774226 | 1.788706 |
|         | 10                  |          |          | 1.784518 | 1.788348 | 1.797126 | 1.797048 | 1.795144 | 1.769884 | 1.774222 | 1.788702 |
| 600 hrs | 1                   |          |          |          | 1.797698 | 1.797440 | 1.795506 | 1.770390 | 1.774602 | 1.789738 |          |
|         | 2                   |          |          |          | 1.797690 | 1.797446 | 1.795506 | 1.770396 | 1.774598 | 1.789748 |          |
|         | 3                   |          |          |          | 1.797698 | 1.797446 | 1.795504 | 1.770392 | 1.774600 | 1.789742 |          |
|         | 4                   |          |          |          | 1.797700 | 1.797450 | 1.795502 | 1.770390 | 1.774600 | 1.789740 |          |
|         | 5                   |          |          |          | 1.797704 | 1.797444 | 1.795502 | 1.770392 | 1.774606 | 1.789746 |          |
|         | 6                   |          |          |          | 1.797700 | 1.797450 | 1.795504 | 1.770386 | 1.774602 | 1.789740 |          |
|         | 7                   |          |          |          | 1.797698 | 1.797448 | 1.795506 | 1.770390 | 1.774604 | 1.789742 |          |
|         | 8                   |          |          |          | 1.797698 | 1.797446 | 1.795502 | 1.770388 | 1.774602 | 1.789738 |          |
|         | 9                   |          |          |          | 1.797700 | 1.797444 | 1.795500 | 1.770390 | 1.774600 | 1.789742 |          |
|         | 10                  |          |          |          | 1.797696 | 1.797446 | 1.795504 | 1.770388 | 1.774600 | 1.789742 |          |

| Meas #   | Measured Weight (g) |      |      |      |      |      |      |      |          |          |          |          |
|----------|---------------------|------|------|------|------|------|------|------|----------|----------|----------|----------|
|          | A120                | A121 | A122 | A123 | A124 | A125 | A126 | A127 | A128     | A129     |          |          |
| 800 hrs  | 1                   |      |      |      |      |      |      |      | 1.795784 | 1.770776 | 1.774894 | 1.790462 |
|          | 2                   |      |      |      |      |      |      |      | 1.795784 | 1.770778 | 1.774890 | 1.790464 |
|          | 3                   |      |      |      |      |      |      |      | 1.795780 | 1.770780 | 1.774890 | 1.790464 |
|          | 4                   |      |      |      |      |      |      |      | 1.795784 | 1.770776 | 1.774888 | 1.790464 |
|          | 5                   |      |      |      |      |      |      |      | 1.795784 | 1.770772 | 1.774896 | 1.790462 |
|          | 6                   |      |      |      |      |      |      |      | 1.795782 | 1.770772 | 1.774886 | 1.790458 |
|          | 7                   |      |      |      |      |      |      |      | 1.795782 | 1.770780 | 1.774890 | 1.790460 |
|          | 8                   |      |      |      |      |      |      |      | 1.795784 | 1.770772 | 1.774890 | 1.790458 |
|          | 9                   |      |      |      |      |      |      |      | 1.795784 | 1.770776 | 1.774892 | 1.790458 |
|          | 10                  |      |      |      |      |      |      |      | 1.795786 | 1.770774 | 1.774890 | 1.790458 |
| 1000 hrs | 1                   |      |      |      |      |      |      |      |          |          | 1.775218 | 1.791086 |
|          | 2                   |      |      |      |      |      |      |      |          |          | 1.775214 | 1.791090 |
|          | 3                   |      |      |      |      |      |      |      |          |          | 1.775222 | 1.791084 |
|          | 4                   |      |      |      |      |      |      |      |          |          | 1.775220 | 1.791090 |
|          | 5                   |      |      |      |      |      |      |      |          |          | 1.775216 | 1.791088 |
|          | 6                   |      |      |      |      |      |      |      |          |          | 1.775224 | 1.791084 |
|          | 7                   |      |      |      |      |      |      |      |          |          | 1.775224 | 1.791090 |
|          | 8                   |      |      |      |      |      |      |      |          |          | 1.775222 | 1.791076 |
|          | 9                   |      |      |      |      |      |      |      |          |          | 1.775220 | 1.791084 |
|          | 10                  |      |      |      |      |      |      |      |          |          | 1.775224 | 1.791090 |
| 1200 hrs | 1                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 2                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 3                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 4                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 5                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 6                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 7                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 8                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 9                   |      |      |      |      |      |      |      |          |          |          |          |
|          | 10                  |      |      |      |      |      |      |      |          |          |          |          |

Table 50: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, IN800H

|             |                      |                                   |                                           |
|-------------|----------------------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2                | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC              | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386              | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 5                    | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000184$ cm <sup>2</sup> |
| Phase:      | 1 of 4               | Supplier/UNS ID:                  | NO8810                                    |
| Phase Type: | Pure CO <sub>2</sub> | Metal Type:                       | Austenitic - Superalloy                   |
| Temp. (°C): | 650                  | Color Designation:                | Brown                                     |
| Pressure:   | 2900psi              | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | IN800H               |                                   |                                           |
| Notes:      |                      |                                   |                                           |

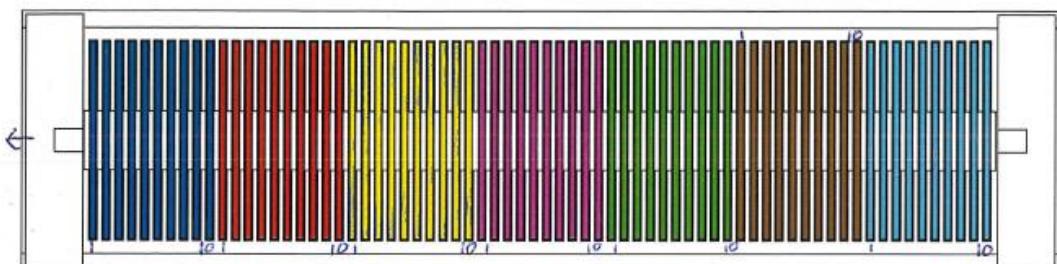

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | I20                    | I21      | I22      | I23      | I24      | I25      | I26      | I27      | I28      | I29      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.872210 | 1.883292 | 1.916614 | 1.946878 | 1.909606 | 1.941210 | 1.969402 | 1.953678 | 1.968812 | 1.960034 |
|                                 | 2                      | 1.872208 | 1.883298 | 1.916616 | 1.946876 | 1.909606 | 1.941206 | 1.969398 | 1.953682 | 1.968816 | 1.960030 |
|                                 | 3                      | 1.872210 | 1.883296 | 1.916616 | 1.946874 | 1.909600 | 1.941208 | 1.969396 | 1.953678 | 1.968810 | 1.960030 |
|                                 | 4                      | 1.872216 | 1.883296 | 1.916612 | 1.946880 | 1.909604 | 1.941208 | 1.969402 | 1.953682 | 1.968810 | 1.960034 |
|                                 | 5                      | 1.872212 | 1.883292 | 1.916610 | 1.946880 | 1.909602 | 1.941212 | 1.969400 | 1.953680 | 1.968810 | 1.960030 |
|                                 | 6                      | 1.872212 | 1.883292 | 1.916612 | 1.946874 | 1.909600 | 1.941208 | 1.969402 | 1.953676 | 1.968808 | 1.960032 |
|                                 | 7                      | 1.872212 | 1.883292 | 1.916612 | 1.946880 | 1.909602 | 1.941210 | 1.969402 | 1.953676 | 1.968808 | 1.960034 |
|                                 | 8                      | 1.872214 | 1.883296 | 1.916612 | 1.946872 | 1.909604 | 1.941206 | 1.969398 | 1.953682 | 1.968810 | 1.960036 |
|                                 | 9                      | 1.872214 | 1.883290 | 1.916612 | 1.946878 | 1.909602 | 1.941208 | 1.969400 | 1.953680 | 1.968810 | 1.960032 |
|                                 | 10                     | 1.872212 | 1.883292 | 1.916614 | 1.946878 | 1.909600 | 1.941208 | 1.969402 | 1.953680 | 1.968810 | 1.960030 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 13.297   | 13.304   | 13.341   | 13.416   | 13.242   | 13.404   | 13.380   | 13.411   | 13.405   | 13.395   |
|                                 | 2 <sub>L</sub>         | 13.303   | 13.303   | 13.339   | 13.415   | 13.268   | 13.418   | 13.384   | 13.418   | 13.409   | 13.396   |
|                                 | 3 <sub>L</sub>         | 13.306   | 13.284   | 13.338   | 13.404   | 13.270   | 13.405   | 13.386   | 13.414   | 13.412   | 13.387   |
|                                 | 4 <sub>W</sub>         | 12.510   | 12.542   | 12.567   | 12.626   | 12.620   | 12.650   | 12.640   | 12.631   | 12.658   | 12.645   |
|                                 | 5 <sub>W</sub>         | 12.507   | 12.525   | 12.559   | 12.626   | 12.627   | 12.648   | 12.640   | 12.630   | 12.650   | 12.645   |
|                                 | 6 <sub>W</sub>         | 12.492   | 12.486   | 12.552   | 12.625   | 12.620   | 12.638   | 12.636   | 12.628   | 12.646   | 12.650   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.486    | 1.486    | 1.517    | 1.522    | 1.527    | 1.532    | 1.535    | 1.527    | 1.534    | 1.534    |
|                                 | 2                      | 1.512    | 1.510    | 1.527    | 1.539    | 1.545    | 1.553    | 1.554    | 1.543    | 1.550    | 1.547    |
|                                 | 3                      | 1.515    | 1.512    | 1.521    | 1.537    | 1.547    | 1.552    | 1.555    | 1.544    | 1.545    | 1.544    |
|                                 | 4                      | 1.512    | 1.504    | 1.527    | 1.533    | 1.532    | 1.546    | 1.546    | 1.540    | 1.547    | 1.543    |
|                                 | 5                      | 1.491    | 1.505    | 1.511    | 1.531    | 1.549    | 1.541    | 1.549    | 1.539    | 1.538    | 1.543    |

Table 51: Raw Data, Expt. #5, RG-CO<sub>2</sub>/650°C/20MPa, IN800H

| Meas #  | Measured Weight (g) |          |          |          |          |          |          |          |          |          |          |
|---------|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|         | I20                 | I21      | I22      | I23      | I24      | I25      | I26      | I27      | I28      | I29      |          |
| 200 hrs | 1                   | 1.872562 | 1.883750 | 1.916996 | 1.947360 | 1.910000 | 1.941646 | 1.969864 | 1.954004 | 1.969234 | 1.960364 |
|         | 2                   | 1.872566 | 1.883756 | 1.917000 | 1.947360 | 1.910002 | 1.941642 | 1.969864 | 1.954004 | 1.969230 | 1.960360 |
|         | 3                   | 1.87257  | 1.883748 | 1.916998 | 1.947360 | 1.910004 | 1.941640 | 1.969868 | 1.954002 | 1.969232 | 1.960364 |
|         | 4                   | 1.872560 | 1.883754 | 1.917000 | 1.947358 | 1.909998 | 1.941642 | 1.969864 | 1.954008 | 1.969232 | 1.960366 |
|         | 5                   | 1.872560 | 1.883754 | 1.917002 | 1.947358 | 1.910008 | 1.941646 | 1.969864 | 1.954010 | 1.969238 | 1.960368 |
|         | 6                   | 1.872564 | 1.883752 | 1.917004 | 1.947362 | 1.910002 | 1.941640 | 1.969868 | 1.954004 | 1.969234 | 1.960366 |
|         | 7                   | 1.872564 | 1.883754 | 1.917006 | 1.947364 | 1.910000 | 1.941636 | 1.969866 | 1.954006 | 1.969238 | 1.960362 |
|         | 8                   | 1.872564 | 1.883760 | 1.916998 | 1.947358 | 1.910008 | 1.941642 | 1.969868 | 1.954008 | 1.969234 | 1.960360 |
|         | 9                   | 1.872564 | 1.883758 | 1.916998 | 1.947362 | 1.910008 | 1.941640 | 1.969870 | 1.954006 | 1.969236 | 1.960360 |
|         | 10                  | 1.872564 | 1.883758 | 1.917000 | 1.947358 | 1.910008 | 1.941640 | 1.969872 | 1.954008 | 1.969236 | 1.960360 |
| 400 hrs | 1                   |          |          | 1.917076 | 1.947418 | 1.910082 | 1.941728 | 1.969926 | 1.954094 | 1.969298 | 1.960446 |
|         | 2                   |          |          | 1.917078 | 1.947418 | 1.910084 | 1.941732 | 1.969922 | 1.954096 | 1.969304 | 1.960450 |
|         | 3                   |          |          | 1.917072 | 1.947412 | 1.910082 | 1.941734 | 1.969920 | 1.954100 | 1.969300 | 1.960456 |
|         | 4                   |          |          | 1.917078 | 1.947418 | 1.910080 | 1.941734 | 1.969922 | 1.954098 | 1.969302 | 1.960448 |
|         | 5                   |          |          | 1.917074 | 1.947414 | 1.910084 | 1.941732 | 1.969930 | 1.954102 | 1.969294 | 1.960452 |
|         | 6                   |          |          | 1.917074 | 1.947418 | 1.910080 | 1.941732 | 1.969930 | 1.954098 | 1.969302 | 1.960454 |
|         | 7                   |          |          | 1.917078 | 1.947418 | 1.910080 | 1.941730 | 1.969926 | 1.954098 | 1.969302 | 1.960446 |
|         | 8                   |          |          | 1.917074 | 1.947418 | 1.910086 | 1.941734 | 1.969926 | 1.954100 | 1.969306 | 1.960454 |
|         | 9                   |          |          | 1.917074 | 1.947418 | 1.910086 | 1.941734 | 1.969926 | 1.954100 | 1.969300 | 1.960450 |
|         | 10                  |          |          | 1.917076 | 1.947418 | 1.910088 | 1.941732 | 1.969924 | 1.954100 | 1.969300 | 1.960452 |
| 600 hrs | 1                   |          |          |          | 1.910128 | 1.941778 | 1.969954 | 1.954150 | 1.969334 | 1.960486 |          |
|         | 2                   |          |          |          | 1.910132 | 1.941780 | 1.969956 | 1.954150 | 1.969326 | 1.960494 |          |
|         | 3                   |          |          |          | 1.910128 | 1.941784 | 1.969958 | 1.954160 | 1.969330 | 1.960492 |          |
|         | 4                   |          |          |          | 1.910120 | 1.941788 | 1.969954 | 1.954150 | 1.969326 | 1.960486 |          |
|         | 5                   |          |          |          | 1.910128 | 1.941786 | 1.969962 | 1.954154 | 1.969326 | 1.960486 |          |
|         | 6                   |          |          |          | 1.910130 | 1.941790 | 1.969956 | 1.954150 | 1.969328 | 1.960486 |          |
|         | 7                   |          |          |          | 1.910128 | 1.941786 | 1.969964 | 1.954148 | 1.969326 | 1.960486 |          |
|         | 8                   |          |          |          | 1.910128 | 1.941790 | 1.969954 | 1.954146 | 1.969326 | 1.960490 |          |
|         | 9                   |          |          |          | 1.910124 | 1.941788 | 1.969964 | 1.954146 | 1.969326 | 1.960492 |          |
|         | 10                  |          |          |          | 1.910122 | 1.941780 | 1.969962 | 1.954154 | 1.969332 | 1.960486 |          |

| Meas #   | Measured Weight (g) |     |     |     |     |     |     |     |          |          |          |          |
|----------|---------------------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|
|          | I20                 | I21 | I22 | I23 | I24 | I25 | I26 | I27 | I28      | I29      |          |          |
| 800 hrs  | 1                   |     |     |     |     |     |     |     | 1.970002 | 1.954198 | 1.969360 | 1.960514 |
|          | 2                   |     |     |     |     |     |     |     | 1.970000 | 1.954194 | 1.969360 | 1.960528 |
|          | 3                   |     |     |     |     |     |     |     | 1.969998 | 1.954198 | 1.969362 | 1.960528 |
|          | 4                   |     |     |     |     |     |     |     | 1.969996 | 1.954192 | 1.969370 | 1.960526 |
|          | 5                   |     |     |     |     |     |     |     | 1.969996 | 1.954196 | 1.969358 | 1.960512 |
|          | 6                   |     |     |     |     |     |     |     | 1.970000 | 1.954194 | 1.969360 | 1.960524 |
|          | 7                   |     |     |     |     |     |     |     | 1.969998 | 1.954192 | 1.969362 | 1.960512 |
|          | 8                   |     |     |     |     |     |     |     | 1.969998 | 1.954188 | 1.969368 | 1.960518 |
|          | 9                   |     |     |     |     |     |     |     | 1.970000 | 1.954188 | 1.969362 | 1.960522 |
|          | 10                  |     |     |     |     |     |     |     | 1.970004 | 1.954190 | 1.969358 | 1.960524 |
| 1000 hrs | 1                   |     |     |     |     |     |     |     |          |          | 1.969388 | 1.960548 |
|          | 2                   |     |     |     |     |     |     |     |          |          | 1.969386 | 1.960548 |
|          | 3                   |     |     |     |     |     |     |     |          |          | 1.969386 | 1.960560 |
|          | 4                   |     |     |     |     |     |     |     |          |          | 1.969396 | 1.960564 |
|          | 5                   |     |     |     |     |     |     |     |          |          | 1.969396 | 1.960552 |
|          | 6                   |     |     |     |     |     |     |     |          |          | 1.969392 | 1.960566 |
|          | 7                   |     |     |     |     |     |     |     |          |          | 1.969394 | 1.960556 |
|          | 8                   |     |     |     |     |     |     |     |          |          | 1.969388 | 1.960550 |
|          | 9                   |     |     |     |     |     |     |     |          |          | 1.969390 | 1.960554 |
|          | 10                  |     |     |     |     |     |     |     |          |          | 1.969388 | 1.960552 |
| 1200 hrs | 1                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 2                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 3                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 4                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 5                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 6                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 7                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 8                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 9                   |     |     |     |     |     |     |     |          |          |          |          |
|          | 10                  |     |     |     |     |     |     |     |          |          |          |          |

Table 52: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, Coupon Arrangement



| Sample | Blue<br>HCM12A | Red<br>NF616 | Yellow<br>347SS | Magenta<br>AFA-OC6 | Green<br>AFA-OC7 | Brown<br>AFA-OC10 | Cyan<br>IN800H | Orange<br>316/316Ls |
|--------|----------------|--------------|-----------------|--------------------|------------------|-------------------|----------------|---------------------|
| 1      | H27            | N26          | \$36            | A636               | A730             | A140              | I30            |                     |
| 2      | H28            | N27          | \$37            | A637               | A731             | A141              | I40            |                     |
| 3      | H29            | N28          | \$38            | A638               | A732             | A142              | I32            |                     |
| 4      | H30            | N29          | \$39            | A639               | A733             | A143              | I33            |                     |
| 5      | H31            | N30          | \$40            | A640               | A734             | A144              | I34            | L1                  |
| 6      |                |              | \$41            | A641               | A735             | A145              | I35            | L2                  |
| 7      |                |              | \$42            | A642               | A736             | A146              | I36            | L3                  |
| 8      |                |              | \$43            | A643               | A737             | A147              | I37            | L4                  |
| 9      |                |              | \$44            | A644               | A738             | A148              | I38            | L5                  |
| 10     |                |              | \$45            | A645               | A739             | A149              | I39            | L6                  |

Table 53: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, HCM12A

|             |                |                                   |                                           |
|-------------|----------------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC        | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386        | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 6              | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000179$ cm <sup>2</sup> |
| Phase:      | 2              | Supplier/UNS ID:                  | K91271                                    |
| Phase Type: | Industrial CO2 | Metal Type:                       | Ferritic-Martensitic                      |
| Temp. (°C): | 550            | Color Designation:                | Blue                                      |
| Pressure:   | 2900psi        | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | HCM12A         |                                   |                                           |
| Notes:      |                |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | H27                    | H28      | H29      | H30      | H31      | H32      | H33      | H34      | H35      | H36      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.814370 | 1.831666 | 1.784466 | 1.794466 | 1.804712 | 1.824782 | 1.845344 | 1.791018 | 1.792564 | 1.810910 |
|                                 | 2                      | 1.814380 | 1.831672 | 1.784468 | 1.794468 | 1.804708 | 1.824784 | 1.845352 | 1.791022 | 1.792562 | 1.810908 |
|                                 | 3                      | 1.814382 | 1.831666 | 1.784468 | 1.794468 | 1.804714 | 1.824786 | 1.845352 | 1.791020 | 1.792556 | 1.810916 |
|                                 | 4                      | 1.814380 | 1.831670 | 1.784462 | 1.794462 | 1.804714 | 1.824786 | 1.845350 | 1.791020 | 1.792564 | 1.810910 |
|                                 | 5                      | 1.814374 | 1.831670 | 1.784468 | 1.794468 | 1.804716 | 1.824784 | 1.845350 | 1.791020 | 1.792562 | 1.810900 |
|                                 | 6                      | 1.814376 | 1.831666 | 1.784468 | 1.794468 | 1.804714 | 1.824778 | 1.845346 | 1.791020 | 1.792562 | 1.810908 |
|                                 | 7                      | 1.814380 | 1.831666 | 1.784462 | 1.794462 | 1.804714 | 1.824786 | 1.845350 | 1.791022 | 1.792554 | 1.810910 |
|                                 | 8                      | 1.814380 | 1.831672 | 1.784462 | 1.794462 | 1.804714 | 1.824786 | 1.845348 | 1.791022 | 1.792558 | 1.810906 |
|                                 | 9                      | 1.814382 | 1.831666 | 1.784460 | 1.794460 | 1.804708 | 1.824786 | 1.845350 | 1.791024 | 1.792556 | 1.810914 |
|                                 | 10                     | 1.814380 | 1.831670 | 1.784464 | 1.794464 | 1.804712 | 1.824784 | 1.845352 | 1.791016 | 1.792560 | 1.810906 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 12.716   | 12.703   | 12.690   | 12.703   | 12.699   | 12.671   | 12.686   | 12.626   | 12.699   | 12.710   |
|                                 | 2 <sub>L</sub>         | 12.716   | 12.700   | 12.691   | 12.699   | 12.701   | 12.691   | 12.691   | 12.679   | 12.717   | 12.712   |
|                                 | 3 <sub>L</sub>         | 12.717   | 12.686   | 12.689   | 12.686   | 12.685   | 12.694   | 12.685   | 12.699   | 12.719   | 12.710   |
|                                 | 4 <sub>W</sub>         | 12.671   | 12.627   | 12.689   | 12.613   | 12.511   | 12.582   | 12.652   | 12.598   | 12.644   | 12.641   |
|                                 | 5 <sub>W</sub>         | 12.669   | 12.642   | 12.689   | 12.633   | 12.598   | 12.590   | 12.678   | 12.609   | 12.647   | 12.644   |
|                                 | 6 <sub>W</sub>         | 12.669   | 12.648   | 12.689   | 12.626   | 12.626   | 12.593   | 12.689   | 12.610   | 12.622   | 12.641   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.509    | 1.521    | 1.495    | 1.509    | 1.542    | 1.528    | 1.549    | 1.504    | 1.509    | 1.531    |
|                                 | 2                      | 1.530    | 1.545    | 1.496    | 1.523    | 1.542    | 1.540    | 1.556    | 1.524    | 1.510    | 1.534    |
|                                 | 3                      | 1.529    | 1.547    | 1.479    | 1.523    | 1.515    | 1.536    | 1.547    | 1.524    | 1.495    | 1.513    |
|                                 | 4                      | 1.492    | 1.541    | 1.469    | 1.482    | 1.511    | 1.533    | 1.550    | 1.531    | 1.505    | 1.529    |
|                                 | 5                      | 1.537    | 1.532    | 1.495    | 1.539    | 1.545    | 1.531    | 1.548    | 1.503    | 1.503    | 1.513    |

Table 54: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, HCM12A

Table 55: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, NF616

|             |                |                                   |                                           |
|-------------|----------------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC        | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386        | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 6              | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:      | 2              | Supplier/UNS ID:                  | K91271                                    |
| Phase Type: | Industrial CO2 | Metal Type:                       | Ferritic-Martensitic                      |
| Temp. (°C): | 550            | Color Designation:                | Red                                       |
| Pressure:   | 2900psi        | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | NF616          |                                   |                                           |
| Notes:      |                |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | N26                    | N27      | N28      | N29      | N30      | N31      | N32      | N33      | N34      | N35      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.764516 | 1.811328 | 1.776658 | 1.780604 | 1.803764 | 1.805914 | 1.811454 | 1.804234 | 1.775890 | 1.800982 |
|                                 | 2                      | 1.764522 | 1.811340 | 1.776662 | 1.780608 | 1.803766 | 1.805908 | 1.811452 | 1.804242 | 1.775898 | 1.800984 |
|                                 | 3                      | 1.764522 | 1.811328 | 1.776660 | 1.780606 | 1.803766 | 1.805908 | 1.811454 | 1.804242 | 1.775894 | 1.800982 |
|                                 | 4                      | 1.764524 | 1.811338 | 1.776660 | 1.780604 | 1.803762 | 1.805912 | 1.811454 | 1.804242 | 1.775894 | 1.800984 |
|                                 | 5                      | 1.764516 | 1.811338 | 1.776654 | 1.780604 | 1.803764 | 1.805910 | 1.811452 | 1.804242 | 1.775892 | 1.800982 |
|                                 | 6                      | 1.764528 | 1.811334 | 1.776656 | 1.780600 | 1.803772 | 1.805912 | 1.811458 | 1.804236 | 1.775902 | 1.800984 |
|                                 | 7                      | 1.764522 | 1.811340 | 1.776652 | 1.780604 | 1.803768 | 1.805912 | 1.811450 | 1.804238 | 1.775896 | 1.800986 |
|                                 | 8                      | 1.764520 | 1.811340 | 1.776660 | 1.780608 | 1.803764 | 1.805916 | 1.811450 | 1.804240 | 1.775896 | 1.800982 |
|                                 | 9                      | 1.764516 | 1.811336 | 1.776652 | 1.780606 | 1.803768 | 1.805920 | 1.811458 | 1.804240 | 1.775896 | 1.800986 |
|                                 | 10                     | 1.764520 | 1.811332 | 1.776660 | 1.780604 | 1.803766 | 1.805920 | 1.811450 | 1.804244 | 1.775902 | 1.800984 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 12.568   | 12.600   | 12.656   | 12.635   | 12.558   | 12.612   | 12.638   | 12.592   | 12.617   | 12.621   |
|                                 | 2 <sub>L</sub>         | 12.572   | 12.620   | 12.643   | 12.636   | 12.596   | 12.590   | 12.634   | 12.591   | 12.611   | 12.627   |
|                                 | 3 <sub>L</sub>         | 12.576   | 12.629   | 12.621   | 12.627   | 12.609   | 12.549   | 12.606   | 12.586   | 12.604   | 12.606   |
|                                 | 4 <sub>W</sub>         | 12.541   | 12.592   | 12.364   | 12.457   | 12.579   | 12.583   | 12.545   | 12.568   | 12.383   | 12.551   |
|                                 | 5 <sub>W</sub>         | 12.530   | 12.586   | 12.369   | 12.451   | 12.587   | 12.581   | 12.549   | 12.576   | 12.425   | 12.554   |
|                                 | 6 <sub>W</sub>         | 12.537   | 12.573   | 12.371   | 12.447   | 12.577   | 12.575   | 12.548   | 12.580   | 12.444   | 12.563   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.560    | 1.578    | 1.576    | 1.578    | 1.579    | 1.585    | 1.587    | 1.574    | 1.586    | 1.586    |
|                                 | 2                      | 1.564    | 1.581    | 1.585    | 1.581    | 1.581    | 1.585    | 1.587    | 1.576    | 1.585    | 1.587    |
|                                 | 3                      | 1.563    | 1.579    | 1.584    | 1.578    | 1.582    | 1.587    | 1.587    | 1.576    | 1.584    | 1.586    |
|                                 | 4                      | 1.565    | 1.582    | 1.585    | 1.581    | 1.582    | 1.587    | 1.590    | 1.576    | 1.587    | 1.586    |
|                                 | 5                      | 1.546    | 1.568    | 1.579    | 1.571    | 1.577    | 1.582    | 1.581    | 1.573    | 1.577    | 1.578    |

Table 56: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, NF616

Table 57: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, 347SS

|             |                |                                   |                                           |
|-------------|----------------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC        | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386        | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 6              | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000182$ cm <sup>2</sup> |
| Phase:      | 2              | Supplier/UNS ID:                  |                                           |
| Phase Type: | Industrial CO2 | Metal Type:                       | Austenitic                                |
| Temp. (°C): | 550            | Color Designation:                | Yellow                                    |
| Pressure:   | 2900psi        | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | 347SS          |                                   |                                           |
| Notes:      |                |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | S36                    | S37      | S38      | S39      | S40      | S41      | S42      | S43      | S44      | S45      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.885434 | 1.885916 | 1.904196 | 1.891536 | 1.914592 | 1.902000 | 1.905980 | 1.898732 | 1.906838 | 1.906052 |
|                                 | 2                      | 1.885448 | 1.885920 | 1.904198 | 1.891538 | 1.914586 | 1.902000 | 1.905970 | 1.898738 | 1.906830 | 1.906046 |
|                                 | 3                      | 1.885444 | 1.885928 | 1.904192 | 1.891536 | 1.914586 | 1.902012 | 1.905972 | 1.898728 | 1.906838 | 1.906054 |
|                                 | 4                      | 1.885436 | 1.885920 | 1.904192 | 1.891542 | 1.914594 | 1.902008 | 1.905968 | 1.898732 | 1.906834 | 1.906054 |
|                                 | 5                      | 1.885448 | 1.885924 | 1.904204 | 1.891536 | 1.914590 | 1.902010 | 1.905982 | 1.898734 | 1.906840 | 1.906050 |
|                                 | 6                      | 1.885436 | 1.885922 | 1.904202 | 1.891528 | 1.914588 | 1.902008 | 1.905976 | 1.898730 | 1.906836 | 1.906048 |
|                                 | 7                      | 1.885438 | 1.885926 | 1.904198 | 1.891540 | 1.914590 | 1.902006 | 1.905978 | 1.898732 | 1.906828 | 1.906060 |
|                                 | 8                      | 1.885438 | 1.885918 | 1.904204 | 1.891538 | 1.914588 | 1.902014 | 1.905976 | 1.898742 | 1.906830 | 1.906062 |
|                                 | 9                      | 1.885434 | 1.885916 | 1.904202 | 1.891532 | 1.914592 | 1.902010 | 1.905972 | 1.898728 | 1.906834 | 1.906050 |
|                                 | 10                     | 1.885444 | 1.885918 | 1.904198 | 1.891540 | 1.914586 | 1.902014 | 1.905978 | 1.898738 | 1.906832 | 1.906056 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 13.110   | 13.114   | 13.139   | 13.011   | 13.152   | 13.098   | 13.160   | 13.076   | 13.128   | 13.122   |
|                                 | 2 <sub>L</sub>         | 13.128   | 13.107   | 13.141   | 13.009   | 13.147   | 13.108   | 13.152   | 13.074   | 13.120   | 13.116   |
|                                 | 3 <sub>L</sub>         | 13.130   | 13.097   | 13.129   | 12.992   | 13.131   | 13.120   | 13.124   | 13.064   | 13.088   | 13.092   |
|                                 | 4 <sub>W</sub>         | 12.616   | 12.600   | 12.617   | 12.618   | 12.640   | 12.600   | 12.613   | 12.624   | 12.648   | 12.631   |
|                                 | 5 <sub>W</sub>         | 12.624   | 12.598   | 12.617   | 12.623   | 12.628   | 12.612   | 12.612   | 12.610   | 12.643   | 12.623   |
| BARE THICKNESS<br>(mm)          | 6 <sub>W</sub>         | 12.625   | 12.579   | 12.620   | 12.623   | 12.615   | 12.614   | 12.595   | 12.593   | 12.620   | 12.612   |
|                                 | 1                      | 1.562    | 1.564    | 1.572    | 1.575    | 1.572    | 1.573    | 1.570    | 1.572    | 1.574    | 1.573    |
|                                 | 2                      | 1.560    | 1.562    | 1.573    | 1.576    | 1.576    | 1.573    | 1.572    | 1.575    | 1.577    | 1.573    |
|                                 | 3                      | 1.529    | 1.531    | 1.538    | 1.551    | 1.549    | 1.556    | 1.552    | 1.561    | 1.558    | 1.559    |
|                                 | 4                      | 1.541    | 1.560    | 1.559    | 1.569    | 1.566    | 1.566    | 1.567    | 1.569    | 1.573    | 1.567    |
|                                 | 5                      | 1.552    | 1.548    | 1.567    | 1.567    | 1.570    | 1.566    | 1.564    | 1.570    | 1.562    | 1.571    |

Table 58: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, 347SS

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | S36 | S37      | S38      | S39      | S40      | S41      | S42      | S43      | S44      | S45      |
| 200 hrs             | 1   | 1.885542 | 1.885988 | 1.904378 | 1.891618 | 1.914662 | 1.902116 | 1.906060 | 1.898886 | 1.906900 |
|                     | 2   | 1.885534 | 1.885982 | 1.904374 | 1.891614 | 1.914656 | 1.902126 | 1.906058 | 1.898882 | 1.906902 |
|                     | 3   | 1.885526 | 1.885990 | 1.904382 | 1.891616 | 1.914650 | 1.902116 | 1.906056 | 1.898870 | 1.906910 |
|                     | 4   | 1.885536 | 1.885990 | 1.904376 | 1.891616 | 1.914662 | 1.902118 | 1.906050 | 1.898880 | 1.906910 |
|                     | 5   | 1.885536 | 1.885986 | 1.904374 | 1.891618 | 1.914662 | 1.902110 | 1.906060 | 1.898880 | 1.906910 |
|                     | 6   | 1.885530 | 1.885982 | 1.904376 | 1.891616 | 1.914652 | 1.902128 | 1.906046 | 1.898888 | 1.906910 |
|                     | 7   | 1.885536 | 1.885980 | 1.904374 | 1.891618 | 1.914650 | 1.902116 | 1.906060 | 1.898882 | 1.906908 |
|                     | 8   | 1.885540 | 1.885988 | 1.904374 | 1.891622 | 1.914664 | 1.902116 | 1.906062 | 1.898872 | 1.906902 |
|                     | 9   | 1.885526 | 1.885990 | 1.904374 | 1.891616 | 1.914658 | 1.902126 | 1.906068 | 1.898886 | 1.906902 |
|                     | 10  | 1.885534 | 1.885988 | 1.904370 | 1.891614 | 1.914650 | 1.902114 | 1.906050 | 1.898880 | 1.906902 |
| 400 hrs             | 1   |          | 1.904406 | 1.891638 | 1.914670 | 1.902126 | 1.906074 | 1.898916 | 1.906920 | 1.906140 |
|                     | 2   |          | 1.904404 | 1.891634 | 1.914666 | 1.902128 | 1.906066 | 1.898916 | 1.906920 | 1.906140 |
|                     | 3   |          | 1.904414 | 1.891632 | 1.914664 | 1.902126 | 1.906080 | 1.898914 | 1.906926 | 1.906132 |
|                     | 4   |          | 1.904400 | 1.891634 | 1.914666 | 1.902118 | 1.906072 | 1.898914 | 1.906924 | 1.906130 |
|                     | 5   |          | 1.904398 | 1.891634 | 1.914664 | 1.902122 | 1.906074 | 1.898920 | 1.906918 | 1.906142 |
|                     | 6   |          | 1.904412 | 1.891626 | 1.914670 | 1.902118 | 1.906074 | 1.898920 | 1.906918 | 1.906140 |
|                     | 7   |          | 1.904412 | 1.891628 | 1.914672 | 1.902126 | 1.906070 | 1.898922 | 1.906922 | 1.906136 |
|                     | 8   |          | 1.904398 | 1.891636 | 1.914662 | 1.902126 | 1.906082 | 1.898918 | 1.906920 | 1.906140 |
|                     | 9   |          | 1.904408 | 1.891630 | 1.914670 | 1.902122 | 1.906080 | 1.898918 | 1.906922 | 1.906144 |
|                     | 10  |          | 1.904402 | 1.891632 | 1.914668 | 1.902120 | 1.906070 | 1.898906 | 1.906926 | 1.906134 |
| 600 hrs             | 1   |          |          |          | 1.914674 | 1.902142 | 1.906092 | 1.898930 | 1.906924 | 1.906150 |
|                     | 2   |          |          |          | 1.914682 | 1.902144 | 1.906086 | 1.898928 | 1.906932 | 1.906152 |
|                     | 3   |          |          |          | 1.914684 | 1.902138 | 1.906096 | 1.898932 | 1.906934 | 1.906154 |
|                     | 4   |          |          |          | 1.914680 | 1.902136 | 1.906086 | 1.898928 | 1.906932 | 1.906154 |
|                     | 5   |          |          |          | 1.914680 | 1.902134 | 1.906080 | 1.898938 | 1.906928 | 1.906152 |
|                     | 6   |          |          |          | 1.914680 | 1.902132 | 1.906086 | 1.898940 | 1.906930 | 1.906148 |
|                     | 7   |          |          |          | 1.914676 | 1.902138 | 1.906082 | 1.898932 | 1.906928 | 1.906154 |
|                     | 8   |          |          |          | 1.914684 | 1.902134 | 1.906094 | 1.898940 | 1.906928 | 1.906152 |
|                     | 9   |          |          |          | 1.914678 | 1.902136 | 1.906088 | 1.898934 | 1.906928 | 1.906154 |
|                     | 10  |          |          |          | 1.914678 | 1.902138 | 1.906088 | 1.898934 | 1.906926 | 1.906152 |

Table 59: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, AFA-OC6

|             |                |                                                                           |                                          |
|-------------|----------------|---------------------------------------------------------------------------|------------------------------------------|
| Project:    | SCCO2          | Rel. Uncertainty in Meas. Mass:                                           | $\Delta m = \pm 0.000002$ g              |
| Grant #:    | PRJ39TC        | Rel. Uncertainty in Meas. Length:                                         | $\Delta l = \pm 0.001$ mm                |
| MDS:        | MD24386        | Rel. Uncertainty in Meas. Width:                                          | $\Delta w = \pm 0.001$ mm                |
| Expt. #:    | 6              | Uncertainty in Meas. Area:                                                | $\Delta A = \pm 0.00018$ cm <sup>2</sup> |
| Phase:      | 2              | Supplier/UNS ID:                                                          |                                          |
| Phase Type: | Industrial CO2 | Metal Type:                                                               | Alumina Forming Austenitic               |
| Temp. (°C): | 550            | Color Designation:                                                        | Magenta                                  |
| Pressure:   | 2900psi        | Hole Diameter in Sample (mm):                                             | [3]                                      |
| Sample ID:  | AFA-OC6        | AFA = Alumina Forming Austenitic provided by Oakridge National Laboratory |                                          |
| Notes:      |                |                                                                           |                                          |

| Meas #         | Sample # / Description |          |          |          |          |          |          |          |          |          |
|----------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                | A636                   | A637     | A638     | A639     | A640     | A641     | A642     | A643     | A644     | A645     |
| 1              | 1.795814               | 1.810142 | 1.805446 | 1.809784 | 1.816454 | 1.812938 | 1.817558 | 1.820638 | 1.830004 | 1.797296 |
| 2              | 1.795816               | 1.810154 | 1.805452 | 1.809792 | 1.816454 | 1.812934 | 1.817564 | 1.820640 | 1.830006 | 1.797302 |
| 3              | 1.795820               | 1.810150 | 1.805448 | 1.809786 | 1.816454 | 1.812936 | 1.817554 | 1.820634 | 1.830010 | 1.797296 |
| 4              | 1.795810               | 1.810150 | 1.805452 | 1.809790 | 1.816450 | 1.812938 | 1.817560 | 1.820638 | 1.830014 | 1.797292 |
| 5              | 1.795816               | 1.810150 | 1.805450 | 1.809784 | 1.816448 | 1.812938 | 1.817558 | 1.820640 | 1.830004 | 1.797300 |
| 6              | 1.795820               | 1.810146 | 1.805446 | 1.809786 | 1.816448 | 1.812942 | 1.817560 | 1.820634 | 1.830010 | 1.797298 |
| 7              | 1.795818               | 1.810144 | 1.805448 | 1.809788 | 1.816452 | 1.812934 | 1.817556 | 1.820634 | 1.830006 | 1.797294 |
| 8              | 1.795814               | 1.810146 | 1.805452 | 1.809780 | 1.816444 | 1.812936 | 1.817560 | 1.820638 | 1.830010 | 1.797296 |
| 9              | 1.795814               | 1.810144 | 1.805448 | 1.809780 | 1.816446 | 1.812936 | 1.817562 | 1.820634 | 1.830010 | 1.797302 |
| 10             | 1.795814               | 1.810148 | 1.805450 | 1.809782 | 1.816448 | 1.812932 | 1.817564 | 1.820628 | 1.830014 | 1.797296 |
| 1 <sub>L</sub> | 12.870                 | 12.883   | 12.859   | 12.881   | 12.931   | 12.926   | 12.940   | 12.896   | 12.912   | 12.927   |
| 2 <sub>L</sub> | 12.900                 | 12.905   | 12.858   | 12.846   | 12.950   | 12.913   | 12.938   | 12.917   | 12.945   | 12.921   |
| 3 <sub>L</sub> | 12.905                 | 12.905   | 12.845   | 12.787   | 12.904   | 12.878   | 12.911   | 12.918   | 12.959   | 12.899   |
| 4 <sub>W</sub> | 12.550                 | 12.619   | 12.625   | 12.642   | 12.636   | 12.615   | 12.612   | 12.630   | 12.653   | 12.619   |
| 5 <sub>W</sub> | 12.558                 | 12.617   | 12.631   | 12.672   | 12.636   | 12.611   | 12.606   | 12.625   | 12.652   | 12.628   |
| 6 <sub>W</sub> | 12.553                 | 12.597   | 12.629   | 12.677   | 12.591   | 12.591   | 12.606   | 12.615   | 12.652   | 12.627   |
| 1              | 1.585                  | 1.583    | 1.589    | 1.580    | 1.584    | 1.590    | 1.583    | 1.584    | 1.584    | 1.574    |
| 2              | 1.586                  | 1.593    | 1.593    | 1.592    | 1.592    | 1.591    | 1.586    | 1.588    | 1.591    | 1.577    |
| 3              | 1.556                  | 1.570    | 1.556    | 1.571    | 1.559    | 1.565    | 1.558    | 1.560    | 1.553    | 1.529    |
| 4              | 1.576                  | 1.586    | 1.581    | 1.577    | 1.579    | 1.577    | 1.577    | 1.576    | 1.573    | 1.559    |
| 5              | 1.578                  | 1.584    | 1.581    | 1.585    | 1.578    | 1.586    | 1.577    | 1.575    | 1.576    | 1.546    |

Table 60: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, AFA-OC6

|         |    | Measured Weight (g) |          |          |          |          |          |          |          |          |          |
|---------|----|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #  |    | A636                | A637     | A638     | A639     | A640     | A641     | A642     | A643     | A644     | A645     |
| 200 hrs | 1  | 1.79593             | 1.810372 | 1.805630 | 1.809858 | 1.816594 | 1.813118 | 1.817598 | 1.820768 | 1.830140 | 1.797502 |
|         | 2  | 1.795920            | 1.810378 | 1.805632 | 1.809870 | 1.816592 | 1.813122 | 1.817590 | 1.820770 | 1.830132 | 1.797496 |
|         | 3  | 1.795926            | 1.810370 | 1.805634 | 1.809870 | 1.816596 | 1.813126 | 1.817592 | 1.820774 | 1.830148 | 1.797496 |
|         | 4  | 1.795918            | 1.810374 | 1.805630 | 1.809866 | 1.816594 | 1.813126 | 1.817596 | 1.820774 | 1.830132 | 1.797490 |
|         | 5  | 1.795932            | 1.810370 | 1.805630 | 1.809872 | 1.816598 | 1.813120 | 1.817584 | 1.820774 | 1.830134 | 1.797492 |
|         | 6  | 1.795926            | 1.810380 | 1.805634 | 1.809858 | 1.816602 | 1.813126 | 1.817598 | 1.820770 | 1.830148 | 1.797504 |
|         | 7  | 1.795930            | 1.810364 | 1.805624 | 1.809874 | 1.816600 | 1.813128 | 1.817588 | 1.820768 | 1.830138 | 1.797494 |
|         | 8  | 1.795920            | 1.810376 | 1.805634 | 1.809862 | 1.816608 | 1.813132 | 1.817592 | 1.820774 | 1.830146 | 1.797500 |
|         | 9  | 1.795928            | 1.810380 | 1.805628 | 1.809874 | 1.816608 | 1.813128 | 1.817592 | 1.820774 | 1.830136 | 1.797506 |
|         | 10 | 1.795924            | 1.810364 | 1.805634 | 1.809876 | 1.816596 | 1.813118 | 1.817586 | 1.820764 | 1.830130 | 1.797502 |
| 400 hrs | 1  |                     |          | 1.805684 | 1.809882 | 1.816628 | 1.813138 | 1.817614 | 1.820794 | 1.830158 | 1.797508 |
|         | 2  |                     |          | 1.805680 | 1.809882 | 1.816624 | 1.813140 | 1.817606 | 1.820788 | 1.830152 | 1.797510 |
|         | 3  |                     |          | 1.805670 | 1.809880 | 1.816622 | 1.813146 | 1.817616 | 1.820784 | 1.830156 | 1.797508 |
|         | 4  |                     |          | 1.805684 | 1.809884 | 1.816622 | 1.813148 | 1.817618 | 1.820780 | 1.830146 | 1.797510 |
|         | 5  |                     |          | 1.805684 | 1.809884 | 1.816634 | 1.813152 | 1.817610 | 1.820784 | 1.830154 | 1.797506 |
|         | 6  |                     |          | 1.805678 | 1.809874 | 1.816622 | 1.813146 | 1.817608 | 1.820788 | 1.830150 | 1.797502 |
|         | 7  |                     |          | 1.805670 | 1.809874 | 1.816628 | 1.813144 | 1.817606 | 1.820784 | 1.830146 | 1.797504 |
|         | 8  |                     |          | 1.805678 | 1.809884 | 1.816624 | 1.813150 | 1.817606 | 1.820794 | 1.830150 | 1.797508 |
|         | 9  |                     |          | 1.805678 | 1.809882 | 1.816620 | 1.813144 | 1.817614 | 1.820786 | 1.830154 | 1.797502 |
|         | 10 |                     |          | 1.805670 | 1.809870 | 1.816620 | 1.813152 | 1.817606 | 1.820784 | 1.830156 | 1.797510 |
| 600 hrs | 1  |                     |          |          | 1.816616 | 1.813154 | 1.817594 | 1.820798 | 1.830158 | 1.797520 |          |
|         | 2  |                     |          |          | 1.816610 | 1.813150 | 1.817600 | 1.820798 | 1.830156 | 1.797522 |          |
|         | 3  |                     |          |          | 1.816614 | 1.813150 | 1.817594 | 1.820796 | 1.830154 | 1.797528 |          |
|         | 4  |                     |          |          | 1.816610 | 1.813144 | 1.817594 | 1.820790 | 1.830154 | 1.797526 |          |
|         | 5  |                     |          |          | 1.816620 | 1.813150 | 1.817598 | 1.820792 | 1.830152 | 1.797526 |          |
|         | 6  |                     |          |          | 1.816612 | 1.813148 | 1.817590 | 1.820788 | 1.830152 | 1.797532 |          |
|         | 7  |                     |          |          | 1.816608 | 1.813154 | 1.817592 | 1.820802 | 1.830150 | 1.797534 |          |
|         | 8  |                     |          |          | 1.816618 | 1.813152 | 1.817602 | 1.820790 | 1.830160 | 1.797522 |          |
|         | 9  |                     |          |          | 1.816614 | 1.813152 | 1.817596 | 1.820790 | 1.830152 | 1.797530 |          |
|         | 10 |                     |          |          | 1.816616 | 1.813148 | 1.817600 | 1.820788 | 1.830158 | 1.797526 |          |

Table 61: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, AFA-OC7

|             |                            |                                   |                                          |
|-------------|----------------------------|-----------------------------------|------------------------------------------|
| Project:    | <b>SCCO2</b>               | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g              |
| Grant #:    | PRJ39TC                    | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                |
| MDS:        | MD24386                    | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                |
| Expt. #:    | <b>6</b>                   | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.00018$ cm <sup>2</sup> |
| Phase:      | 2                          | Supplier/UNS ID:                  |                                          |
| Phase Type: | Industrial CO <sub>2</sub> | Metal Type:                       | Alumina Forming Austenitic               |
| Temp. (°C): | 550                        | Color Designation:                | Green                                    |
| Pressure:   | 2900psi                    | Hole Diameter in Sample (mm):     | 3                                        |
| Sample ID:  | <b>AFA-OC7</b>             |                                   |                                          |
| Notes:      |                            |                                   |                                          |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | A730                   | A731     | A732     | A733     | A734     | A735     | A736     | A737     | A738     | A739     |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.734642 | 1.777750 | 1.778046 | 1.760834 | 1.795342 | 1.762408 | 1.788922 | 1.823470 | 1.825202 | 1.842104 |
|                                 | <b>2</b>               | 1.734640 | 1.777748 | 1.778052 | 1.760834 | 1.795346 | 1.762408 | 1.788916 | 1.823468 | 1.825204 | 1.842100 |
|                                 | <b>3</b>               | 1.734644 | 1.777758 | 1.778044 | 1.760826 | 1.795338 | 1.762412 | 1.788924 | 1.823470 | 1.825210 | 1.842102 |
|                                 | <b>4</b>               | 1.734636 | 1.777746 | 1.778052 | 1.760828 | 1.795336 | 1.762408 | 1.788912 | 1.823470 | 1.825212 | 1.842110 |
|                                 | <b>5</b>               | 1.734642 | 1.777750 | 1.778044 | 1.760836 | 1.795342 | 1.762404 | 1.788910 | 1.823468 | 1.825208 | 1.842110 |
|                                 | <b>6</b>               | 1.734644 | 1.777754 | 1.778044 | 1.760832 | 1.795338 | 1.762410 | 1.788922 | 1.823466 | 1.825212 | 1.842112 |
|                                 | <b>7</b>               | 1.734646 | 1.777750 | 1.778046 | 1.760826 | 1.795340 | 1.762408 | 1.788918 | 1.823468 | 1.825200 | 1.842110 |
|                                 | <b>8</b>               | 1.734646 | 1.777752 | 1.778048 | 1.760830 | 1.795340 | 1.762406 | 1.788916 | 1.823472 | 1.825204 | 1.842104 |
|                                 | <b>9</b>               | 1.734642 | 1.777750 | 1.778044 | 1.760832 | 1.795336 | 1.762410 | 1.788914 | 1.823470 | 1.825204 | 1.842102 |
|                                 | <b>10</b>              | 1.734640 | 1.777754 | 1.778042 | 1.760828 | 1.795336 | 1.762406 | 1.788918 | 1.823460 | 1.825202 | 1.842112 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.809   | 12.811   | 12.763   | 12.765   | 12.802   | 12.799   | 12.835   | 12.814   | 12.825   | 12.866   |
|                                 | <b>2<sub>L</sub></b>   | 12.830   | 12.823   | 12.768   | 12.756   | 12.849   | 12.803   | 12.849   | 12.830   | 12.832   | 12.873   |
|                                 | <b>3<sub>L</sub></b>   | 12.832   | 12.824   | 12.768   | 12.737   | 12.850   | 12.791   | 12.850   | 12.824   | 12.829   | 12.875   |
|                                 | <b>4<sub>W</sub></b>   | 12.624   | 12.553   | 12.606   | 12.547   | 12.593   | 12.662   | 12.593   | 12.661   | 12.675   | 12.649   |
|                                 | <b>5<sub>W</sub></b>   | 12.633   | 12.610   | 12.617   | 12.569   | 12.629   | 12.657   | 12.629   | 12.657   | 12.671   | 12.658   |
|                                 | <b>6<sub>W</sub></b>   | 12.634   | 12.615   | 12.609   | 12.574   | 12.640   | 12.629   | 12.640   | 12.652   | 12.656   | 12.656   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.505    | 1.546    | 1.544    | 1.544    | 1.549    | 1.535    | 1.553    | 1.573    | 1.572    | 1.580    |
|                                 | <b>2</b>               | 1.501    | 1.549    | 1.544    | 1.545    | 1.551    | 1.534    | 1.552    | 1.572    | 1.570    | 1.579    |
|                                 | <b>3</b>               | 1.474    | 1.525    | 1.521    | 1.512    | 1.517    | 1.488    | 1.529    | 1.540    | 1.549    | 1.554    |
|                                 | <b>4</b>               | 1.501    | 1.535    | 1.536    | 1.519    | 1.540    | 1.529    | 1.549    | 1.564    | 1.561    | 1.564    |
|                                 | <b>5</b>               | 1.481    | 1.537    | 1.535    | 1.536    | 1.539    | 1.517    | 1.541    | 1.558    | 1.559    | 1.572    |

Table 62: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, AFA-OC7

|         |    | Measured Weight (g) |          |          |          |          |          |          |          |          |          |
|---------|----|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #  |    | A730                | A731     | A732     | A733     | A734     | A735     | A736     | A737     | A738     | A739     |
| 200 hrs | 1  | 1.734778            | 1.777910 | 1.778160 | 1.760968 | 1.795466 | 1.762590 | 1.789080 | 1.823594 | 1.825312 | 1.842272 |
|         | 2  | 1.734788            | 1.777910 | 1.778162 | 1.760970 | 1.795458 | 1.762590 | 1.789086 | 1.823596 | 1.825326 | 1.842276 |
|         | 3  | 1.734786            | 1.777908 | 1.778158 | 1.760976 | 1.795470 | 1.762592 | 1.789086 | 1.823596 | 1.825328 | 1.842276 |
|         | 4  | 1.734778            | 1.777908 | 1.778142 | 1.760964 | 1.795456 | 1.762590 | 1.789070 | 1.823600 | 1.825322 | 1.842274 |
|         | 5  | 1.734772            | 1.777922 | 1.778162 | 1.760974 | 1.795464 | 1.762594 | 1.789086 | 1.823592 | 1.825324 | 1.842276 |
|         | 6  | 1.734778            | 1.777922 | 1.778142 | 1.760978 | 1.795460 | 1.762596 | 1.789084 | 1.823592 | 1.825322 | 1.842274 |
|         | 7  | 1.734786            | 1.777910 | 1.778150 | 1.760966 | 1.795468 | 1.762592 | 1.789084 | 1.823602 | 1.825314 | 1.842272 |
|         | 8  | 1.734776            | 1.777914 | 1.778146 | 1.760972 | 1.795456 | 1.762588 | 1.789078 | 1.823588 | 1.825320 | 1.842278 |
|         | 9  | 1.734776            | 1.777918 | 1.778142 | 1.760966 | 1.795468 | 1.762590 | 1.789072 | 1.823590 | 1.825320 | 1.842270 |
|         | 10 | 1.734772            | 1.777916 | 1.778142 | 1.760968 | 1.795462 | 1.762590 | 1.789086 | 1.823598 | 1.825318 | 1.842274 |
| 400 hrs | 1  |                     |          | 1.778166 | 1.760982 | 1.795480 | 1.762604 | 1.789064 | 1.823608 | 1.825324 | 1.842298 |
|         | 2  |                     |          | 1.778162 | 1.760984 | 1.795478 | 1.762600 | 1.789058 | 1.823610 | 1.825318 | 1.842296 |
|         | 3  |                     |          | 1.778170 | 1.760984 | 1.795478 | 1.762596 | 1.789058 | 1.823610 | 1.825318 | 1.842300 |
|         | 4  |                     |          | 1.778168 | 1.760984 | 1.795480 | 1.762600 | 1.789058 | 1.823608 | 1.825324 | 1.842294 |
|         | 5  |                     |          | 1.778168 | 1.760978 | 1.795478 | 1.762600 | 1.789058 | 1.823610 | 1.825324 | 1.842306 |
|         | 6  |                     |          | 1.778168 | 1.760978 | 1.795476 | 1.762598 | 1.789064 | 1.823608 | 1.825312 | 1.842302 |
|         | 7  |                     |          | 1.778170 | 1.760976 | 1.795484 | 1.762600 | 1.789066 | 1.823614 | 1.825320 | 1.842296 |
|         | 8  |                     |          | 1.778168 | 1.760976 | 1.795478 | 1.762602 | 1.789056 | 1.823612 | 1.825312 | 1.842304 |
|         | 9  |                     |          | 1.778160 | 1.760984 | 1.795478 | 1.762602 | 1.789062 | 1.823608 | 1.825320 | 1.842302 |
|         | 10 |                     |          | 1.778168 | 1.760976 | 1.795482 | 1.762602 | 1.789060 | 1.823604 | 1.825316 | 1.842300 |
| 600 hrs | 1  |                     |          |          |          | 1.795492 | 1.762588 | 1.789060 | 1.823612 | 1.825306 | 1.842300 |
|         | 2  |                     |          |          |          | 1.795494 | 1.762592 | 1.789064 | 1.823614 | 1.825302 | 1.842294 |
|         | 3  |                     |          |          |          | 1.795482 | 1.762588 | 1.789070 | 1.823618 | 1.825310 | 1.842292 |
|         | 4  |                     |          |          |          | 1.795486 | 1.762590 | 1.789064 | 1.823614 | 1.825310 | 1.842300 |
|         | 5  |                     |          |          |          | 1.795496 | 1.762590 | 1.789070 | 1.823614 | 1.825304 | 1.842292 |
|         | 6  |                     |          |          |          | 1.795484 | 1.762592 | 1.789064 | 1.823620 | 1.825312 | 1.842286 |
|         | 7  |                     |          |          |          | 1.795486 | 1.762584 | 1.789064 | 1.823618 | 1.825310 | 1.842296 |
|         | 8  |                     |          |          |          | 1.795488 | 1.762592 | 1.789066 | 1.823612 | 1.825310 | 1.842300 |
|         | 9  |                     |          |          |          | 1.795488 | 1.762584 | 1.789062 | 1.823612 | 1.825300 | 1.842300 |
|         | 10 |                     |          |          |          | 1.795488 | 1.762590 | 1.789060 | 1.823620 | 1.825306 | 1.842294 |

Table 63: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, AFA-OC10

|             |                |                                   |                                           |
|-------------|----------------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC        | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386        | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 6              | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000179$ cm <sup>2</sup> |
| Phase:      | 2              | Supplier/UNS ID:                  |                                           |
| Phase Type: | Industrial CO2 | Metal Type:                       | Alumina Forming Austenitic                |
| Temp. (°C): | 550            | Color Designation:                | Brown                                     |
| Pressure:   | 2900psi        | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | AFA-OC10       |                                   |                                           |
| Notes:      |                |                                   |                                           |

| Meas #         | Sample # / Description |          |          |          |          |          |          |          |          |          |
|----------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                | A140                   | A141     | A142     | A143     | A144     | A145     | A146     | A147     | A148     | A149     |
| 1              | 1.755098               | 1.751892 | 1.740304 | 1.756148 | 1.667722 | 1.746890 | 1.762642 | 1.726382 | 1.763102 | 1.766780 |
| 2              | 1.755108               | 1.751896 | 1.740300 | 1.756150 | 1.667724 | 1.746890 | 1.762640 | 1.726386 | 1.763104 | 1.766780 |
| 3              | 1.755106               | 1.751890 | 1.740298 | 1.756146 | 1.667726 | 1.746890 | 1.762636 | 1.726382 | 1.763102 | 1.766784 |
| 4              | 1.755102               | 1.751892 | 1.740304 | 1.756152 | 1.667722 | 1.746892 | 1.762640 | 1.726382 | 1.763108 | 1.766782 |
| 5              | 1.755108               | 1.751898 | 1.740306 | 1.756148 | 1.667726 | 1.746886 | 1.762646 | 1.726384 | 1.763102 | 1.766782 |
| 6              | 1.755112               | 1.751898 | 1.740296 | 1.756150 | 1.667722 | 1.746890 | 1.762642 | 1.726386 | 1.763108 | 1.766782 |
| 7              | 1.755102               | 1.751898 | 1.740296 | 1.756152 | 1.667722 | 1.746884 | 1.762636 | 1.726384 | 1.763108 | 1.766782 |
| 8              | 1.755106               | 1.751894 | 1.740298 | 1.756148 | 1.667726 | 1.746886 | 1.762644 | 1.726388 | 1.763106 | 1.766778 |
| 9              | 1.755106               | 1.751896 | 1.740298 | 1.756148 | 1.667720 | 1.746890 | 1.762642 | 1.726384 | 1.763102 | 1.766784 |
| 10             | 1.755104               | 1.751898 | 1.740296 | 1.756148 | 1.667722 | 1.746890 | 1.762646 | 1.726384 | 1.763106 | 1.766780 |
| 1 <sub>L</sub> | 12.701                 | 12.659   | 12.715   | 12.660   | 12.709   | 12.649   | 12.683   | 12.639   | 12.685   | 12.715   |
| 2 <sub>L</sub> | 12.692                 | 12.673   | 12.699   | 12.657   | 12.681   | 12.660   | 12.683   | 12.644   | 12.673   | 12.711   |
| 3 <sub>L</sub> | 12.682                 | 12.678   | 12.679   | 12.655   | 12.652   | 12.668   | 12.688   | 12.647   | 12.660   | 12.698   |
| 4 <sub>W</sub> | 12.567                 | 12.614   | 12.596   | 12.510   | 12.553   | 12.592   | 12.568   | 12.573   | 12.601   | 12.566   |
| 5 <sub>W</sub> | 12.571                 | 12.614   | 12.603   | 12.531   | 12.570   | 12.595   | 12.567   | 12.569   | 12.604   | 12.569   |
| 6 <sub>W</sub> | 12.566                 | 12.605   | 12.609   | 12.552   | 12.591   | 12.570   | 12.556   | 12.565   | 12.604   | 12.569   |
| 1              | 1.564                  | 1.572    | 1.545    | 1.574    | 1.498    | 1.574    | 1.574    | 1.558    | 1.572    | 1.570    |
| 2              | 1.573                  | 1.572    | 1.551    | 1.575    | 1.533    | 1.574    | 1.573    | 1.562    | 1.574    | 1.577    |
| 3              | 1.571                  | 1.571    | 1.548    | 1.574    | 1.534    | 1.573    | 1.574    | 1.555    | 1.571    | 1.573    |
| 4              | 1.572                  | 1.574    | 1.550    | 1.577    | 1.536    | 1.575    | 1.577    | 1.562    | 1.575    | 1.579    |
| 5              | 1.556                  | 1.569    | 1.544    | 1.570    | 1.495    | 1.564    | 1.571    | 1.548    | 1.568    | 1.571    |

Table 64: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, AFA-OC10

| Measured Weight (g) |      |          |          |          |          |          |          |          |          |          |          |
|---------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | A140 | A141     | A142     | A143     | A144     | A145     | A146     | A147     | A148     | A149     |          |
| 200 hrs             | 1    | 1.754954 | 1.752006 | 1.740130 | 1.756074 | 1.667736 | 1.746922 | 1.762594 | 1.726404 | 1.763138 | 1.766922 |
|                     | 2    | 1.754932 | 1.752000 | 1.740124 | 1.756072 | 1.667742 | 1.746920 | 1.762602 | 1.726404 | 1.763128 | 1.766916 |
|                     | 3    | 1.754926 | 1.752000 | 1.740122 | 1.756072 | 1.667742 | 1.746918 | 1.762590 | 1.726394 | 1.763134 | 1.766916 |
|                     | 4    | 1.754926 | 1.752006 | 1.740118 | 1.756068 | 1.667736 | 1.746918 | 1.762602 | 1.726386 | 1.763132 | 1.766906 |
|                     | 5    | 1.754926 | 1.752004 | 1.740120 | 1.756076 | 1.667730 | 1.746918 | 1.762598 | 1.726386 | 1.763128 | 1.766912 |
|                     | 6    | 1.754940 | 1.752004 | 1.740120 | 1.756074 | 1.667738 | 1.746916 | 1.762592 | 1.726396 | 1.763128 | 1.766916 |
|                     | 7    | 1.754928 | 1.752002 | 1.740118 | 1.756072 | 1.667736 | 1.746914 | 1.762600 | 1.726386 | 1.763138 | 1.766922 |
|                     | 8    | 1.754926 | 1.752000 | 1.740114 | 1.756076 | 1.667734 | 1.746914 | 1.762596 | 1.726384 | 1.763126 | 1.766916 |
|                     | 9    | 1.754940 | 1.752002 | 1.740114 | 1.756074 | 1.667738 | 1.746924 | 1.762596 | 1.726384 | 1.763128 | 1.766910 |
|                     | 10   | 1.754930 | 1.752000 | 1.740114 | 1.756080 | 1.667734 | 1.746918 | 1.762590 | 1.726386 | 1.763126 | 1.766912 |
| 400 hrs             | 1    |          |          | 1.739896 | 1.756070 | 1.667722 | 1.746964 | 1.762626 | 1.726432 | 1.763164 | 1.766852 |
|                     | 2    |          |          | 1.739894 | 1.756068 | 1.667712 | 1.746960 | 1.762632 | 1.726432 | 1.763164 | 1.766850 |
|                     | 3    |          |          | 1.739900 | 1.756068 | 1.667710 | 1.746958 | 1.762634 | 1.726430 | 1.763162 | 1.766862 |
|                     | 4    |          |          | 1.739902 | 1.756074 | 1.667710 | 1.746958 | 1.762634 | 1.726432 | 1.763156 | 1.766850 |
|                     | 5    |          |          | 1.739902 | 1.756072 | 1.667710 | 1.746964 | 1.762628 | 1.726432 | 1.763162 | 1.766862 |
|                     | 6    |          |          | 1.739896 | 1.756064 | 1.667712 | 1.746954 | 1.762632 | 1.726438 | 1.763166 | 1.766852 |
|                     | 7    |          |          | 1.739892 | 1.756064 | 1.667718 | 1.746960 | 1.762632 | 1.726430 | 1.763162 | 1.766852 |
|                     | 8    |          |          | 1.739898 | 1.756064 | 1.667704 | 1.746954 | 1.762630 | 1.726432 | 1.763166 | 1.766852 |
|                     | 9    |          |          | 1.739894 | 1.756066 | 1.667704 | 1.746956 | 1.762634 | 1.726426 | 1.763162 | 1.766852 |
|                     | 10   |          |          | 1.739890 | 1.756074 | 1.667704 | 1.746950 | 1.762634 | 1.726432 | 1.763158 | 1.766860 |
| 600 hrs             | 1    |          |          |          |          | 1.667612 | 1.747000 | 1.762656 | 1.726504 | 1.763214 | 1.766896 |
|                     | 2    |          |          |          |          | 1.667612 | 1.747000 | 1.762658 | 1.726504 | 1.763208 | 1.766892 |
|                     | 3    |          |          |          |          | 1.667614 | 1.746996 | 1.762660 | 1.726504 | 1.763212 | 1.766896 |
|                     | 4    |          |          |          |          | 1.667616 | 1.746998 | 1.762654 | 1.726504 | 1.763210 | 1.766884 |
|                     | 5    |          |          |          |          | 1.667612 | 1.746998 | 1.762656 | 1.726506 | 1.763212 | 1.766890 |
|                     | 6    |          |          |          |          | 1.667610 | 1.746998 | 1.762660 | 1.726510 | 1.763212 | 1.766888 |
|                     | 7    |          |          |          |          | 1.667612 | 1.746998 | 1.762660 | 1.726500 | 1.763208 | 1.766888 |
|                     | 8    |          |          |          |          | 1.667612 | 1.746998 | 1.762660 | 1.726506 | 1.763208 | 1.766892 |
|                     | 9    |          |          |          |          | 1.667612 | 1.746994 | 1.762656 | 1.726500 | 1.763210 | 1.766892 |
|                     | 10   |          |          |          |          | 1.667614 | 1.746996 | 1.762662 | 1.726504 | 1.763214 | 1.766892 |

Table 65: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, IN800H

|             |                                                                                 |                                   |                                           |
|-------------|---------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| Project:    | SCCO2                                                                           | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC                                                                         | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386                                                                         | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | 6                                                                               | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000182$ cm <sup>2</sup> |
| Phase:      | 2                                                                               | Operator:                         | Paul Roman                                |
| Phase Type: | Industrial CO2                                                                  | Polished Surface:                 | 800 Grit Silicon Carbide                  |
| Temp. (°C): | 550                                                                             | Color Designation:                | Cyan                                      |
| Pressure:   | 2900psi                                                                         | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | IN800H                                                                          |                                   |                                           |
| Notes:      | Incoloy® Alloy 800H from Special Metals Corporation, nickel-iron-chromium alloy |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | I30                    | I40      | I32      | I33      | I34      | I35      | I36      | I37      | I38      | I39      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.821524 | 1.912302 | 1.881558 | 1.855268 | 1.864560 | 1.838876 | 1.877704 | 1.833784 | 1.842200 | 1.825618 |
|                                 | 2                      | 1.821522 | 1.912288 | 1.881558 | 1.855270 | 1.864566 | 1.838886 | 1.877716 | 1.833782 | 1.842202 | 1.825624 |
|                                 | 3                      | 1.821534 | 1.912302 | 1.881558 | 1.855268 | 1.864562 | 1.838872 | 1.877714 | 1.833784 | 1.842208 | 1.825610 |
|                                 | 4                      | 1.821532 | 1.912284 | 1.881558 | 1.855272 | 1.864560 | 1.838874 | 1.877716 | 1.833782 | 1.842208 | 1.825616 |
|                                 | 5                      | 1.821526 | 1.912296 | 1.881550 | 1.855270 | 1.864568 | 1.838874 | 1.877716 | 1.833782 | 1.842206 | 1.825622 |
|                                 | 6                      | 1.821522 | 1.912286 | 1.881556 | 1.855278 | 1.864562 | 1.838876 | 1.877708 | 1.833780 | 1.842206 | 1.825618 |
|                                 | 7                      | 1.821522 | 1.912302 | 1.881562 | 1.855280 | 1.864560 | 1.838882 | 1.877706 | 1.833780 | 1.842198 | 1.825628 |
|                                 | 8                      | 1.821528 | 1.912292 | 1.881560 | 1.855270 | 1.864564 | 1.838882 | 1.877718 | 1.833784 | 1.842210 | 1.825616 |
|                                 | 9                      | 1.821524 | 1.912296 | 1.881554 | 1.855268 | 1.864562 | 1.838886 | 1.877706 | 1.833782 | 1.842206 | 1.825620 |
|                                 | 10                     | 1.821534 | 1.912290 | 1.881550 | 1.855274 | 1.864560 | 1.838872 | 1.877716 | 1.833774 | 1.842200 | 1.825622 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 13.218   | 13.347   | 13.292   | 13.138   | 13.224   | 13.147   | 13.219   | 13.234   | 13.205   | 13.141   |
|                                 | 2 <sub>L</sub>         | 13.218   | 13.329   | 13.296   | 13.142   | 13.204   | 13.183   | 13.240   | 13.240   | 13.222   | 13.145   |
|                                 | 3 <sub>L</sub>         | 13.198   | 13.287   | 13.256   | 13.132   | 13.112   | 13.203   | 13.242   | 13.242   | 13.230   | 13.143   |
|                                 | 4 <sub>W</sub>         | 12.497   | 12.619   | 12.481   | 12.406   | 12.425   | 12.490   | 12.508   | 12.508   | 12.544   | 12.521   |
|                                 | 5 <sub>W</sub>         | 12.531   | 12.631   | 12.577   | 12.411   | 12.423   | 12.508   | 12.510   | 12.510   | 12.522   | 12.483   |
|                                 | 6 <sub>W</sub>         | 12.534   | 12.617   | 12.582   | 12.398   | 12.416   | 12.507   | 12.485   | 12.485   | 12.486   | 12.434   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.503    | 1.563    | 1.537    | 1.540    | 1.557    | 1.527    | 1.553    | 1.520    | 1.510    | 1.514    |
|                                 | 2                      | 1.499    | 1.566    | 1.535    | 1.539    | 1.553    | 1.522    | 1.546    | 1.517    | 1.513    | 1.510    |
|                                 | 3                      | 1.476    | 1.494    | 1.510    | 1.526    | 1.516    | 1.490    | 1.504    | 1.483    | 1.496    | 1.475    |
|                                 | 4                      | 1.485    | 1.557    | 1.521    | 1.531    | 1.540    | 1.507    | 1.530    | 1.504    | 1.503    | 1.494    |
|                                 | 5                      | 1.494    | 1.541    | 1.530    | 1.535    | 1.537    | 1.517    | 1.535    | 1.497    | 1.502    | 1.504    |

Table 66: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, IN800H

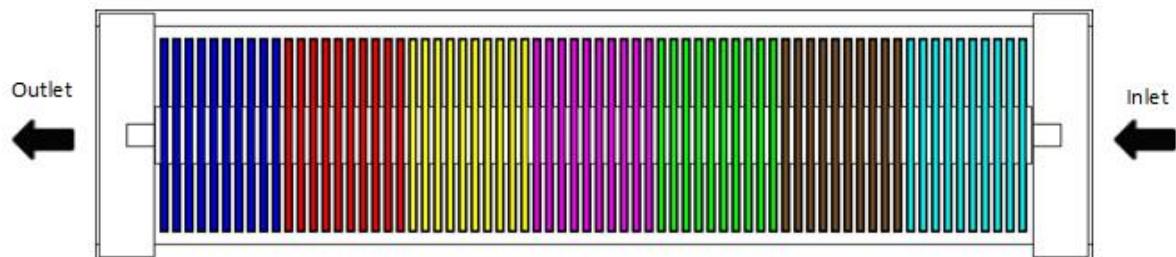

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | I30 | I40      | I32      | I33      | I34      | I35      | I36      | I37      | I38      | I39      |          |
| 200 hrs             | 1   | 1.821682 | 1.912368 | 1.881690 | 1.855386 | 1.864656 | 1.838972 | 1.877870 | 1.833856 | 1.842302 | 1.825708 |
|                     | 2   | 1.821668 | 1.912374 | 1.881688 | 1.855414 | 1.864652 | 1.838974 | 1.877854 | 1.833864 | 1.842314 | 1.825706 |
|                     | 3   | 1.821670 | 1.912372 | 1.881686 | 1.855386 | 1.864648 | 1.838960 | 1.877862 | 1.833860 | 1.842298 | 1.825692 |
|                     | 4   | 1.821674 | 1.912368 | 1.881684 | 1.855384 | 1.864658 | 1.838976 | 1.877848 | 1.833856 | 1.842304 | 1.825698 |
|                     | 5   | 1.821668 | 1.912372 | 1.881682 | 1.855384 | 1.864642 | 1.838972 | 1.877870 | 1.833854 | 1.842314 | 1.825696 |
|                     | 6   | 1.821674 | 1.912368 | 1.881684 | 1.855374 | 1.864652 | 1.838958 | 1.877846 | 1.833854 | 1.842302 | 1.825704 |
|                     | 7   | 1.821682 | 1.912384 | 1.881686 | 1.855376 | 1.864656 | 1.838986 | 1.877880 | 1.833856 | 1.842310 | 1.825692 |
|                     | 8   | 1.821682 | 1.912368 | 1.881690 | 1.855380 | 1.864640 | 1.838982 | 1.877872 | 1.833868 | 1.842310 | 1.825694 |
|                     | 9   | 1.821676 | 1.912368 | 1.881690 | 1.855382 | 1.864644 | 1.838974 | 1.877830 | 1.833862 | 1.842310 | 1.825696 |
|                     | 10  | 1.821664 | 1.912374 | 1.881694 | 1.855376 | 1.864648 | 1.838964 | 1.877856 | 1.833858 | 1.842308 | 1.825704 |
| 400 hrs             | 1   |          |          | 1.881718 | 1.855404 | 1.864676 | 1.839012 | 1.877878 | 1.833884 | 1.842336 | 1.825714 |
|                     | 2   |          |          | 1.881714 | 1.855402 | 1.864674 | 1.839006 | 1.877896 | 1.833874 | 1.842328 | 1.825726 |
|                     | 3   |          |          | 1.881724 | 1.855406 | 1.864672 | 1.839002 | 1.877888 | 1.833884 | 1.842340 | 1.825714 |
|                     | 4   |          |          | 1.881720 | 1.855404 | 1.864684 | 1.839000 | 1.877888 | 1.833880 | 1.842336 | 1.825716 |
|                     | 5   |          |          | 1.881720 | 1.855402 | 1.864676 | 1.839004 | 1.877890 | 1.833878 | 1.842326 | 1.825712 |
|                     | 6   |          |          | 1.881722 | 1.855396 | 1.864680 | 1.839004 | 1.877882 | 1.833880 | 1.842328 | 1.825716 |
|                     | 7   |          |          | 1.881718 | 1.855402 | 1.864670 | 1.839002 | 1.877884 | 1.833874 | 1.842330 | 1.825718 |
|                     | 8   |          |          | 1.881720 | 1.855398 | 1.864676 | 1.839008 | 1.877888 | 1.833872 | 1.842334 | 1.825722 |
|                     | 9   |          |          | 1.881722 | 1.855400 | 1.864670 | 1.839006 | 1.877894 | 1.833878 | 1.842338 | 1.825716 |
|                     | 10  |          |          | 1.881718 | 1.855402 | 1.864678 | 1.839006 | 1.877884 | 1.833876 | 1.842336 | 1.825724 |
| 600 hrs             | 1   |          |          |          |          | 1.864690 | 1.839022 | 1.877892 | 1.833886 | 1.842354 | 1.825716 |
|                     | 2   |          |          |          |          | 1.864690 | 1.839020 | 1.877898 | 1.833886 | 1.842356 | 1.825720 |
|                     | 3   |          |          |          |          | 1.864688 | 1.839022 | 1.877900 | 1.833882 | 1.842352 | 1.825724 |
|                     | 4   |          |          |          |          | 1.864690 | 1.839016 | 1.877894 | 1.833888 | 1.842354 | 1.825724 |
|                     | 5   |          |          |          |          | 1.864696 | 1.839016 | 1.877896 | 1.833888 | 1.842354 | 1.825714 |
|                     | 6   |          |          |          |          | 1.864688 | 1.839022 | 1.877900 | 1.833884 | 1.842358 | 1.825724 |
|                     | 7   |          |          |          |          | 1.864692 | 1.839024 | 1.877900 | 1.833882 | 1.842352 | 1.825724 |
|                     | 8   |          |          |          |          | 1.864686 | 1.839020 | 1.877900 | 1.833882 | 1.842360 | 1.825714 |
|                     | 9   |          |          |          |          | 1.864684 | 1.839020 | 1.877900 | 1.833884 | 1.842360 | 1.825722 |
|                     | 10  |          |          |          |          | 1.864688 | 1.839018 | 1.877890 | 1.833886 | 1.842352 | 1.825720 |

Table 67: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, 316L

|             |                            |                                   |                                           |
|-------------|----------------------------|-----------------------------------|-------------------------------------------|
| Project:    | <b>SCCO2</b>               | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Grant #:    | PRJ39TC                    | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:        | MD24386                    | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:    | <b>6</b>                   | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:      | 2                          | Supplier/UNS ID:                  | S31603                                    |
| Phase Type: | Industrial CO <sub>2</sub> | Metal Type:                       | Austenitic                                |
| Temp. (°C): | 550                        | Color Designation:                | Orange                                    |
| Pressure:   | 2900psi                    | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:  | <b>316L</b>                |                                   |                                           |
| Notes:      |                            |                                   |                                           |

| Meas #                      | Sample # / Description |          |          |          |          |          |        |    |    |     |
|-----------------------------|------------------------|----------|----------|----------|----------|----------|--------|----|----|-----|
|                             | L1                     | L2       | L3       | L4       | L5       | L6       | L7     | L8 | L9 | L10 |
| <b>1</b>                    | 1.304420               | 1.332888 | 1.333676 | 1.342098 | 1.336316 | 1.349456 |        |    |    |     |
| <b>2</b>                    | 1.304416               | 1.332890 | 1.333668 | 1.342100 | 1.336320 | 1.349456 |        |    |    |     |
| <b>3</b>                    | 1.304418               | 1.332884 | 1.333672 | 1.342094 | 1.336326 | 1.349458 |        |    |    |     |
| <b>4</b>                    | 1.304424               | 1.332884 | 1.333676 | 1.342100 | 1.336320 | 1.349448 |        |    |    |     |
| <b>5</b>                    | 1.304422               | 1.332880 | 1.333674 | 1.342098 | 1.336316 | 1.349454 |        |    |    |     |
| <b>6</b>                    | 1.304416               | 1.332886 | 1.333666 | 1.342094 | 1.336324 | 1.349454 |        |    |    |     |
| <b>7</b>                    | 1.304418               | 1.332886 | 1.333672 | 1.342098 | 1.336326 | 1.349450 |        |    |    |     |
| <b>8</b>                    | 1.304414               | 1.332884 | 1.333672 | 1.342096 | 1.336324 | 1.349456 |        |    |    |     |
| <b>9</b>                    | 1.304414               | 1.332880 | 1.333678 | 1.342098 | 1.336316 | 1.349456 |        |    |    |     |
| <b>10</b>                   | 1.304414               | 1.332880 | 1.333670 | 1.342098 | 1.336326 | 1.349452 |        |    |    |     |
| <b>BARE WEIGHT<br/>(gm)</b> | <b>1<sub>L</sub></b>   | 12.515   | 12.571   | 12.563   | 12.569   | 12.529   | 12.561 |    |    |     |
|                             | <b>2<sub>L</sub></b>   | 12.541   | 12.578   | 12.563   | 12.566   | 12.527   | 12.558 |    |    |     |
|                             | <b>3<sub>L</sub></b>   | 12.554   | 12.572   | 12.556   | 12.541   | 12.521   | 12.548 |    |    |     |
|                             | <b>4<sub>W</sub></b>   | 12.569   | 12.605   | 12.570   | 12.573   | 12.586   | 12.545 |    |    |     |
|                             | <b>5<sub>W</sub></b>   | 12.557   | 12.593   | 12.560   | 12.564   | 12.555   | 12.549 |    |    |     |
|                             | <b>6<sub>W</sub></b>   | 12.542   | 12.560   | 12.548   | 12.577   | 12.510   | 12.538 |    |    |     |
|                             | <b>1</b>               | 1.137    | 1.149    | 1.154    | 1.158    | 1.162    | 1.168  |    |    |     |
|                             | <b>2</b>               | 1.137    | 1.153    | 1.157    | 1.162    | 1.163    | 1.170  |    |    |     |
|                             | <b>3</b>               | 1.132    | 1.155    | 1.160    | 1.163    | 1.164    | 1.170  |    |    |     |
|                             | <b>4</b>               | 1.122    | 1.147    | 1.154    | 1.159    | 1.157    | 1.166  |    |    |     |
|                             | <b>5</b>               | 1.139    | 1.154    | 1.158    | 1.160    | 1.166    | 1.171  |    |    |     |

Table 68: Raw Data, Expt. #6, IG-CO<sub>2</sub>/550°C/20MPa, 316L

Table 69: Raw Data, Expt. #7, RG-CO<sub>2</sub>/650°C/20MPa, Coupon Arrangement

| Sample | Blue<br>316L | Red<br>Haynes<br>230 | Yellow<br>347SS | Magenta<br>AFA-OC6 | Green<br>IN800H | Brown | Cyan |
|--------|--------------|----------------------|-----------------|--------------------|-----------------|-------|------|
| 1      | L7           | HAY01                | S46             | A646               | I41             |       |      |
| 2      | L8           | HAY02                | S47             | A647               | I42             |       |      |
| 3      | L9           | HAY03                | S48             | A648               | I43             |       |      |
| 4      | L10          | HAY04                | S49             | A649               | I44             |       |      |
| 5      | L11          | HAY05                | S50             | A650               | I45             |       |      |
| 6      | L12          | HAY06                | S51             | A651               | I46             |       |      |
| 7      |              |                      |                 |                    |                 |       |      |
| 8      |              |                      |                 |                    |                 |       |      |
| 9      |              |                      |                 |                    |                 |       |      |
| 10     |              |                      |                 |                    |                 |       |      |

Table 70: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, 316L

|                 |                            |                                   |                                           |
|-----------------|----------------------------|-----------------------------------|-------------------------------------------|
| Project:        |                            | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                            | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                            | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        |                            | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000176$ cm <sup>2</sup> |
| Phase:          |                            | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Industrial CO <sub>2</sub> | Metal Type:                       |                                           |
| Temp. (°C):     | 650                        | Color Designation:                |                                           |
| Pressure (MPa): | 20                         | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>316L</b>                |                                   |                                           |
| Notes:          |                            |                                   |                                           |

| Meas #               | Sample # / Description |          |          |          |          |          |     |  |     |  |     |  |
|----------------------|------------------------|----------|----------|----------|----------|----------|-----|--|-----|--|-----|--|
|                      | L7                     |          | L8       |          | L9       |          | L10 |  | L11 |  | L12 |  |
| <b>1</b>             | 1.224104               | 1.238256 | 1.271206 | 1.286662 | 1.327576 | 1.325858 |     |  |     |  |     |  |
| <b>2</b>             | 1.224102               | 1.238256 | 1.271202 | 1.286652 | 1.327578 | 1.325856 |     |  |     |  |     |  |
| <b>3</b>             | 1.224100               | 1.238262 | 1.271204 | 1.286658 | 1.327578 | 1.325856 |     |  |     |  |     |  |
| <b>4</b>             | 1.224102               | 1.238256 | 1.271206 | 1.286654 | 1.327578 | 1.325854 |     |  |     |  |     |  |
| <b>5</b>             | 1.224102               | 1.238256 | 1.271206 | 1.286658 | 1.327578 | 1.325860 |     |  |     |  |     |  |
| <b>6</b>             | 1.224096               | 1.238258 | 1.271204 | 1.286654 | 1.327580 | 1.325862 |     |  |     |  |     |  |
| <b>7</b>             | 1.224098               | 1.238260 | 1.271206 | 1.286662 | 1.327576 | 1.325858 |     |  |     |  |     |  |
| <b>8</b>             | 1.224098               | 1.238258 | 1.271208 | 1.286656 | 1.327576 | 1.325860 |     |  |     |  |     |  |
| <b>9</b>             | 1.224098               | 1.238258 | 1.271204 | 1.286660 | 1.327576 | 1.325858 |     |  |     |  |     |  |
| <b>10</b>            | 1.224100               | 1.238260 | 1.271206 | 1.286662 | 1.327574 | 1.325858 |     |  |     |  |     |  |
| <b>1<sub>L</sub></b> | 12.478                 | 12.474   | 12.501   | 12.478   | 12.482   | 12.451   |     |  |     |  |     |  |
| <b>2<sub>L</sub></b> | 12.479                 | 12.472   | 12.501   | 12.480   | 12.484   | 12.464   |     |  |     |  |     |  |
| <b>3<sub>L</sub></b> | 12.470                 | 12.467   | 12.499   | 12.468   | 12.478   | 12.468   |     |  |     |  |     |  |
| <b>4<sub>W</sub></b> | 12.463                 | 12.481   | 12.473   | 12.421   | 12.463   | 12.441   |     |  |     |  |     |  |
| <b>5<sub>W</sub></b> | 12.461                 | 12.481   | 12.480   | 12.422   | 12.445   | 12.442   |     |  |     |  |     |  |
| <b>6<sub>W</sub></b> | 12.462                 | 12.480   | 12.481   | 12.420   | 12.429   | 12.437   |     |  |     |  |     |  |
| <b>1</b>             | 1.098                  | 1.117    | 1.109    | 1.142    | 1.170    | 1.164    |     |  |     |  |     |  |
| <b>2</b>             | 1.095                  | 1.104    | 1.110    | 1.138    | 1.173    | 1.170    |     |  |     |  |     |  |
| <b>3</b>             | 1.025                  | 1.037    | 1.080    | 1.095    | 1.143    | 1.149    |     |  |     |  |     |  |
| <b>4</b>             | 1.075                  | 1.092    | 1.099    | 1.134    | 1.165    | 1.161    |     |  |     |  |     |  |
| <b>5</b>             | 1.072                  | 1.076    | 1.096    | 1.117    | 1.158    | 1.156    |     |  |     |  |     |  |

Table 71: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, 316L

| Meas # | Measured Weight (g) |          |          |          |          |          |
|--------|---------------------|----------|----------|----------|----------|----------|
|        | L7                  | L8       | L9       | L10      | L11      | L12      |
| 1      | 1.224684            | 1.238728 | 1.271626 | 1.287038 | 1.327986 | 1.326282 |
| 2      | 1.224682            | 1.238728 | 1.271622 | 1.287032 | 1.327986 | 1.326284 |
| 3      | 1.224684            | 1.238730 | 1.271618 | 1.287034 | 1.327988 | 1.326280 |
| 4      | 1.224680            | 1.238728 | 1.271624 | 1.287032 | 1.327990 | 1.326282 |
| 5      | 1.224680            | 1.238726 | 1.271622 | 1.287034 | 1.327988 | 1.326278 |
| 6      | 1.224680            | 1.238726 | 1.271620 | 1.287032 | 1.327992 | 1.326280 |
| 7      | 1.224682            | 1.238730 | 1.271620 | 1.287034 | 1.327986 | 1.326276 |
| 8      | 1.224674            | 1.238726 | 1.271620 | 1.287036 | 1.327988 | 1.326278 |
| 9      | 1.224674            | 1.238728 | 1.271620 | 1.287036 | 1.327990 | 1.326280 |
| 10     | 1.224680            | 1.238728 | 1.271618 | 1.287030 | 1.327990 | 1.326278 |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |

| Meas # | Measured Weight (g) |    |    |     |     |     |
|--------|---------------------|----|----|-----|-----|-----|
|        | L7                  | L8 | L9 | L10 | L11 | L12 |
| 1      |                     |    |    |     |     |     |
| 2      |                     |    |    |     |     |     |
| 3      |                     |    |    |     |     |     |
| 4      |                     |    |    |     |     |     |
| 5      |                     |    |    |     |     |     |
| 6      |                     |    |    |     |     |     |
| 7      |                     |    |    |     |     |     |
| 8      |                     |    |    |     |     |     |
| 9      |                     |    |    |     |     |     |
| 10     |                     |    |    |     |     |     |
| 1      |                     |    |    |     |     |     |
| 2      |                     |    |    |     |     |     |
| 3      |                     |    |    |     |     |     |
| 4      |                     |    |    |     |     |     |
| 5      |                     |    |    |     |     |     |
| 6      |                     |    |    |     |     |     |
| 7      |                     |    |    |     |     |     |
| 8      |                     |    |    |     |     |     |
| 9      |                     |    |    |     |     |     |
| 10     |                     |    |    |     |     |     |
| 1      |                     |    |    |     |     |     |
| 2      |                     |    |    |     |     |     |
| 3      |                     |    |    |     |     |     |
| 4      |                     |    |    |     |     |     |
| 5      |                     |    |    |     |     |     |
| 6      |                     |    |    |     |     |     |
| 7      |                     |    |    |     |     |     |
| 8      |                     |    |    |     |     |     |
| 9      |                     |    |    |     |     |     |
| 10     |                     |    |    |     |     |     |
| 1      |                     |    |    |     |     |     |
| 2      |                     |    |    |     |     |     |
| 3      |                     |    |    |     |     |     |
| 4      |                     |    |    |     |     |     |
| 5      |                     |    |    |     |     |     |
| 6      |                     |    |    |     |     |     |
| 7      |                     |    |    |     |     |     |
| 8      |                     |    |    |     |     |     |
| 9      |                     |    |    |     |     |     |
| 10     |                     |    |    |     |     |     |

Table 72: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, Haynes 230

|                 |                            |                                   |                                           |
|-----------------|----------------------------|-----------------------------------|-------------------------------------------|
| Project:        |                            | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                            | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                            | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | 7                          | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:          |                            | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Industrial CO <sub>2</sub> | Metal Type:                       |                                           |
| Temp. (°C):     | 650                        | Color Designation:                |                                           |
| Pressure (MPa): | 20                         | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | Haynes 230                 |                                   |                                           |
| Notes:          |                            |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|
|                                 | HAY01                  | HAY02    | HAY03    | HAY04    | HAY05    | HAY06    |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 2.575222 | 2.614884 | 2.647468 | 2.619572 | 2.651816 | 2.561152 |
|                                 | <b>2</b>               | 2.575232 | 2.614878 | 2.647472 | 2.619576 | 2.651812 | 2.561152 |
|                                 | <b>3</b>               | 2.575230 | 2.614886 | 2.647474 | 2.619576 | 2.651818 | 2.561150 |
|                                 | <b>4</b>               | 2.575230 | 2.614882 | 2.647472 | 2.619576 | 2.651818 | 2.561154 |
|                                 | <b>5</b>               | 2.575232 | 2.614886 | 2.647474 | 2.619574 | 2.651814 | 2.561154 |
|                                 | <b>6</b>               | 2.575226 | 2.614882 | 2.647472 | 2.619576 | 2.651818 | 2.561156 |
|                                 | <b>7</b>               | 2.575228 | 2.614878 | 2.647474 | 2.619576 | 2.651814 | 2.561158 |
|                                 | <b>8</b>               | 2.575224 | 2.614880 | 2.647470 | 2.619576 | 2.651820 | 2.561158 |
|                                 | <b>9</b>               | 2.575232 | 2.614882 | 2.647472 | 2.619574 | 2.651812 | 2.561152 |
|                                 | <b>10</b>              | 2.575230 | 2.614884 | 2.647472 | 2.619574 | 2.651818 | 2.561156 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.584   | 12.622   | 12.631   | 12.616   | 12.618   | 12.616   |
|                                 | <b>2<sub>L</sub></b>   | 12.614   | 12.612   | 12.622   | 12.622   | 12.620   | 12.612   |
|                                 | <b>3<sub>L</sub></b>   | 12.616   | 12.596   | 12.619   | 12.622   | 12.616   | 12.610   |
|                                 | <b>4<sub>W</sub></b>   | 12.630   | 12.627   | 12.613   | 12.602   | 12.632   | 12.599   |
|                                 | <b>5<sub>W</sub></b>   | 12.626   | 12.623   | 12.609   | 12.600   | 12.627   | 12.599   |
| BARE<br>THICKNESS<br>(mm)       | <b>6<sub>W</sub></b>   | 12.620   | 12.608   | 12.602   | 12.611   | 12.623   | 12.597   |
|                                 | <b>1</b>               | 1.989    | 2.018    | 2.018    | 2.012    | 2.033    | 1.994    |
|                                 | <b>2</b>               | 1.982    | 2.008    | 2.016    | 2.006    | 2.027    | 1.979    |
|                                 | <b>3</b>               | 1.927    | 1.959    | 1.988    | 1.966    | 1.985    | 1.921    |
|                                 | <b>4</b>               | 1.970    | 1.998    | 2.007    | 1.992    | 2.013    | 1.973    |
|                                 | <b>5</b>               | 1.969    | 1.996    | 2.005    | 1.994    | 2.014    | 1.953    |

Table 73: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, Haynes 230

| Measured Weight (g) |       |          |          |          |          |          |
|---------------------|-------|----------|----------|----------|----------|----------|
| Meas #              | HAY01 | HAY02    | HAY03    | HAY04    | HAY05    | HAY06    |
| 200 hrs             | 1     | 2.57533  | 2.614976 | 2.647546 | 2.619732 | 2.651898 |
|                     | 2     | 2.575324 | 2.614974 | 2.647544 | 2.619738 | 2.651898 |
|                     | 3     | 2.575324 | 2.614970 | 2.647548 | 2.619732 | 2.651898 |
|                     | 4     | 2.575332 | 2.614970 | 2.647546 | 2.619734 | 2.651894 |
|                     | 5     | 2.575326 | 2.614976 | 2.647544 | 2.619734 | 2.651896 |
|                     | 6     | 2.575322 | 2.614972 | 2.647542 | 2.619734 | 2.651892 |
|                     | 7     | 2.575322 | 2.614976 | 2.647546 | 2.619734 | 2.651898 |
|                     | 8     | 2.575320 | 2.614970 | 2.647546 | 2.619734 | 2.651896 |
|                     | 9     | 2.575328 | 2.614970 | 2.647544 | 2.619734 | 2.651898 |
|                     | 10    | 2.575326 | 2.614970 | 2.647542 | 2.619736 | 2.651898 |
| 400 hrs             | 1     |          |          |          |          |          |
|                     | 2     |          |          |          |          |          |
|                     | 3     |          |          |          |          |          |
|                     | 4     |          |          |          |          |          |
|                     | 5     |          |          |          |          |          |
|                     | 6     |          |          |          |          |          |
|                     | 7     |          |          |          |          |          |
|                     | 8     |          |          |          |          |          |
|                     | 9     |          |          |          |          |          |
|                     | 10    |          |          |          |          |          |
| 600 hrs             | 1     |          |          |          |          |          |
|                     | 2     |          |          |          |          |          |
|                     | 3     |          |          |          |          |          |
|                     | 4     |          |          |          |          |          |
|                     | 5     |          |          |          |          |          |
|                     | 6     |          |          |          |          |          |
|                     | 7     |          |          |          |          |          |
|                     | 8     |          |          |          |          |          |
|                     | 9     |          |          |          |          |          |
|                     | 10    |          |          |          |          |          |
| Measured Weight (g) |       |          |          |          |          |          |
| Meas #              | HAY01 | HAY02    | HAY03    | HAY04    | HAY05    | HAY06    |
| 1                   |       |          |          |          |          |          |
| 2                   |       |          |          |          |          |          |
| 3                   |       |          |          |          |          |          |
| 4                   |       |          |          |          |          |          |
| 5                   |       |          |          |          |          |          |
| 6                   |       |          |          |          |          |          |
| 7                   |       |          |          |          |          |          |
| 8                   |       |          |          |          |          |          |
| 9                   |       |          |          |          |          |          |
| 10                  |       |          |          |          |          |          |
| 800 hrs             |       |          |          |          |          |          |
| 1                   |       |          |          |          |          |          |
| 2                   |       |          |          |          |          |          |
| 3                   |       |          |          |          |          |          |
| 4                   |       |          |          |          |          |          |
| 5                   |       |          |          |          |          |          |
| 6                   |       |          |          |          |          |          |
| 7                   |       |          |          |          |          |          |
| 8                   |       |          |          |          |          |          |
| 9                   |       |          |          |          |          |          |
| 10                  |       |          |          |          |          |          |
| 1000 hrs            |       |          |          |          |          |          |
| 1                   |       |          |          |          |          |          |
| 2                   |       |          |          |          |          |          |
| 3                   |       |          |          |          |          |          |
| 4                   |       |          |          |          |          |          |
| 5                   |       |          |          |          |          |          |
| 6                   |       |          |          |          |          |          |
| 7                   |       |          |          |          |          |          |
| 8                   |       |          |          |          |          |          |
| 9                   |       |          |          |          |          |          |
| 10                  |       |          |          |          |          |          |
| 1200 hrs            |       |          |          |          |          |          |
| 1                   |       |          |          |          |          |          |
| 2                   |       |          |          |          |          |          |
| 3                   |       |          |          |          |          |          |
| 4                   |       |          |          |          |          |          |
| 5                   |       |          |          |          |          |          |
| 6                   |       |          |          |          |          |          |
| 7                   |       |          |          |          |          |          |
| 8                   |       |          |          |          |          |          |
| 9                   |       |          |          |          |          |          |
| 10                  |       |          |          |          |          |          |

Table 74: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, 347SS

|                 |                            |                                   |                                           |
|-----------------|----------------------------|-----------------------------------|-------------------------------------------|
| Project:        |                            | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                            | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                            | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | 7                          | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000182$ cm <sup>2</sup> |
| Phase:          |                            | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Industrial CO <sub>2</sub> | Metal Type:                       |                                           |
| Temp. (°C):     | 650                        | Color Designation:                |                                           |
| Pressure (MPa): | 20                         | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | 347SS                      |                                   |                                           |
| Notes:          |                            |                                   |                                           |

| Meas #         | Sample # / Description |          |          |          |          |          |  |
|----------------|------------------------|----------|----------|----------|----------|----------|--|
|                | S46                    | S47      | S48      | S49      | S50      | S51      |  |
| 1              | 1.897720               | 1.898866 | 1.902238 | 1.855614 | 1.868780 | 1.890170 |  |
| 2              | 1.897714               | 1.898864 | 1.902238 | 1.855620 | 1.868782 | 1.890166 |  |
| 3              | 1.897708               | 1.898870 | 1.902234 | 1.855618 | 1.868782 | 1.890170 |  |
| 4              | 1.897710               | 1.898866 | 1.902236 | 1.855624 | 1.868780 | 1.890170 |  |
| 5              | 1.897714               | 1.898868 | 1.902234 | 1.855620 | 1.868782 | 1.890168 |  |
| 6              | 1.897716               | 1.898866 | 1.902236 | 1.855622 | 1.868788 | 1.890168 |  |
| 7              | 1.897716               | 1.898866 | 1.902234 | 1.855614 | 1.868782 | 1.890168 |  |
| 8              | 1.897716               | 1.898864 | 1.902232 | 1.855616 | 1.868784 | 1.890168 |  |
| 9              | 1.897720               | 1.898866 | 1.902240 | 1.855620 | 1.868782 | 1.890170 |  |
| 10             | 1.897714               | 1.898872 | 1.902232 | 1.855616 | 1.868786 | 1.890170 |  |
| 1 <sub>L</sub> | 13.123                 | 13.145   | 13.095   | 13.133   | 13.043   | 13.067   |  |
| 2 <sub>L</sub> | 13.110                 | 13.150   | 13.091   | 13.137   | 13.052   | 13.072   |  |
| 3 <sub>L</sub> | 13.088                 | 13.145   | 13.086   | 13.139   | 13.047   | 13.063   |  |
| 4 <sub>W</sub> | 12.624                 | 12.617   | 12.569   | 12.616   | 12.566   | 12.598   |  |
| 5 <sub>W</sub> | 12.631                 | 12.616   | 12.617   | 12.617   | 12.568   | 12.611   |  |
| 6 <sub>W</sub> | 12.632                 | 12.615   | 12.631   | 12.623   | 12.566   | 12.612   |  |
| 1              | 1.570                  | 1.568    | 1.577    | 1.542    | 1.563    | 1.569    |  |
| 2              | 1.568                  | 1.567    | 1.577    | 1.539    | 1.566    | 1.571    |  |
| 3              | 1.538                  | 1.540    | 1.555    | 1.496    | 1.539    | 1.551    |  |
| 4              | 1.560                  | 1.559    | 1.571    | 1.515    | 1.556    | 1.564    |  |
| 5              | 1.562                  | 1.560    | 1.570    | 1.531    | 1.556    | 1.561    |  |

Table 75: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, 347SS

| Measured Weight (g) |     |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|
| Meas #              | S46 | S47      | S48      | S49      | S50      | S51      |
| 200 hrs             | 1   | 1.897888 | 1.899040 | 1.902408 | 1.855782 | 1.868978 |
|                     | 2   | 1.897888 | 1.899044 | 1.902406 | 1.855782 | 1.868976 |
|                     | 3   | 1.897886 | 1.899042 | 1.902406 | 1.855784 | 1.868976 |
|                     | 4   | 1.897880 | 1.899038 | 1.902406 | 1.855778 | 1.868974 |
|                     | 5   | 1.897882 | 1.899040 | 1.902408 | 1.855778 | 1.868978 |
|                     | 6   | 1.897880 | 1.899042 | 1.902408 | 1.855782 | 1.868974 |
|                     | 7   | 1.897890 | 1.899036 | 1.902406 | 1.855782 | 1.868978 |
|                     | 8   | 1.897884 | 1.899038 | 1.902404 | 1.855780 | 1.868976 |
|                     | 9   | 1.897884 | 1.899038 | 1.902402 | 1.855782 | 1.868970 |
|                     | 10  | 1.897880 | 1.899040 | 1.902402 | 1.855784 | 1.868978 |
| 400 hrs             | 1   |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |
| 600 hrs             | 1   |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |

Table 76: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, IN800H

|                 |                            |                                   |                                       |
|-----------------|----------------------------|-----------------------------------|---------------------------------------|
| Project:        |                            | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002 \text{ g}$   |
| Contact:        |                            | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001 \text{ mm}$     |
| MDS:            |                            | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001 \text{ mm}$     |
| Expt. #:        | 7                          | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.00019 \text{ cm}^2$ |
| Phase:          | II                         | Supplier/UNS ID:                  |                                       |
| Phase Type:     | Industrial CO <sub>2</sub> | Metal Type:                       |                                       |
| Temp. (°C):     | 650                        | Color Designation:                |                                       |
| Pressure (MPa): | 20                         | Hole Diameter in Sample (mm):     | 3                                     |
| Sample ID:      | IN800H                     |                                   |                                       |
| Notes:          |                            |                                   |                                       |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|
|                                 | I41                    | I42      | I43      | I44      | I45      | I46      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.858060 | 1.901326 | 1.906908 | 1.873268 | 1.861194 | 1.880800 |
|                                 | 2                      | 1.858058 | 1.901336 | 1.906922 | 1.873270 | 1.861192 | 1.880800 |
|                                 | 3                      | 1.858054 | 1.901330 | 1.906920 | 1.873272 | 1.861196 | 1.880796 |
|                                 | 4                      | 1.858054 | 1.901328 | 1.906910 | 1.873270 | 1.861188 | 1.880794 |
|                                 | 5                      | 1.858058 | 1.901338 | 1.906918 | 1.873270 | 1.861192 | 1.880800 |
|                                 | 6                      | 1.858052 | 1.901334 | 1.906924 | 1.873272 | 1.861190 | 1.880792 |
|                                 | 7                      | 1.858054 | 1.901336 | 1.906918 | 1.873270 | 1.861194 | 1.880792 |
|                                 | 8                      | 1.858062 | 1.901324 | 1.906910 | 1.873270 | 1.861190 | 1.880800 |
|                                 | 9                      | 1.858050 | 1.901330 | 1.906916 | 1.873272 | 1.861194 | 1.880796 |
|                                 | 10                     | 1.858062 | 1.901334 | 1.906920 | 1.873270 | 1.861190 | 1.880796 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 13.339   | 13.322   | 13.340   | 13.214   | 13.225   | 13.187   |
|                                 | 2 <sub>L</sub>         | 13.337   | 13.308   | 13.324   | 13.214   | 13.239   | 13.186   |
|                                 | 3 <sub>L</sub>         | 13.339   | 13.262   | 13.292   | 31.216   | 13.245   | 13.181   |
|                                 | 4 <sub>W</sub>         | 12.637   | 12.563   | 12.614   | 12.505   | 12.491   | 12.504   |
|                                 | 5 <sub>W</sub>         | 12.622   | 12.568   | 12.616   | 12.525   | 12.513   | 12.530   |
|                                 | 6 <sub>W</sub>         | 12.596   | 12.571   | 12.619   | 12.530   | 12.516   | 12.552   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.508    | 1.564    | 1.524    | 1.549    | 1.545    | 1.554    |
|                                 | 2                      | 1.509    | 1.564    | 1.550    | 1.549    | 1.547    | 1.557    |
|                                 | 3                      | 1.458    | 1.505    | 1.505    | 1.508    | 1.504    | 1.507    |
|                                 | 4                      | 1.491    | 1.524    | 1.543    | 1.541    | 1.528    | 1.543    |
|                                 | 5                      | 1.504    | 1.552    | 1.536    | 1.525    | 1.533    | 1.538    |

Table 77: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, IN800H

| Meas # | Measured Weight (g) |          |          |          |          |          |
|--------|---------------------|----------|----------|----------|----------|----------|
|        | I41                 | I42      | I43      | I44      | I45      | I46      |
| 1      | 1.85842             | 1.901610 | 1.907200 | 1.873680 | 1.861510 | 1.881160 |
| 2      | 1.858418            | 1.901604 | 1.907206 | 1.873676 | 1.861504 | 1.881152 |
| 3      | 1.858418            | 1.901604 | 1.907206 | 1.873676 | 1.861504 | 1.881156 |
| 4      | 1.858418            | 1.901604 | 1.907206 | 1.873672 | 1.861506 | 1.881154 |
| 5      | 1.858418            | 1.901608 | 1.907206 | 1.873672 | 1.861504 | 1.881154 |
| 6      | 1.858416            | 1.901606 | 1.907208 | 1.873680 | 1.861504 | 1.881154 |
| 7      | 1.858416            | 1.901604 | 1.907210 | 1.873674 | 1.861504 | 1.881154 |
| 8      | 1.858416            | 1.901602 | 1.907206 | 1.873674 | 1.861504 | 1.881154 |
| 9      | 1.858416            | 1.901602 | 1.907206 | 1.873680 | 1.861502 | 1.881152 |
| 10     | 1.858418            | 1.901608 | 1.907210 | 1.873680 | 1.861500 | 1.881156 |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |

| Meas # | Measured Weight (g) |     |     |      |     |     |
|--------|---------------------|-----|-----|------|-----|-----|
|        | I41                 | I42 | I43 | I44  | I45 | I46 |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     |      |     |     |
| 2      |                     |     |     |      |     |     |
| 3      |                     |     |     |      |     |     |
| 4      |                     |     |     |      |     |     |
| 5      |                     |     |     |      |     |     |
| 6      |                     |     |     |      |     |     |
| 7      |                     |     |     |      |     |     |
| 8      |                     |     |     |      |     |     |
| 9      |                     |     |     |      |     |     |
| 10     |                     |     |     |      |     |     |
| 1      |                     |     |     | </td |     |     |

Table 78: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, AFA-OC6

|                 |                            |                                   |                                       |
|-----------------|----------------------------|-----------------------------------|---------------------------------------|
| Project:        |                            | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002 \text{ g}$   |
| Contact:        |                            | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001 \text{ mm}$     |
| MDS:            |                            | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001 \text{ mm}$     |
| Expt. #:        | 7                          | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.00018 \text{ cm}^2$ |
| Phase:          | II                         | Supplier/UNS ID:                  |                                       |
| Phase Type:     | Industrial CO <sub>2</sub> | Metal Type:                       |                                       |
| Temp. (°C):     | 650                        | Color Designation:                |                                       |
| Pressure (MPa): | 20                         | Hole Diameter in Sample (mm):     | 3                                     |
| Sample ID:      | AFA-OC6                    |                                   |                                       |
| Notes:          |                            |                                   |                                       |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|
|                                 | A646                   | A647     | A648     | A649     | A650     | A651     |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.740470 | 1.802432 | 1.801944 | 1.793168 | 1.794340 | 1.789860 |
|                                 | 2                      | 1.740468 | 1.802432 | 1.801940 | 1.793170 | 1.794338 | 1.789862 |
|                                 | 3                      | 1.740466 | 1.802436 | 1.801946 | 1.793168 | 1.794340 | 1.789866 |
|                                 | 4                      | 1.740466 | 1.802434 | 1.801942 | 1.793170 | 1.794338 | 1.789862 |
|                                 | 5                      | 1.740460 | 1.802438 | 1.801944 | 1.793166 | 1.794336 | 1.789862 |
|                                 | 6                      | 1.740458 | 1.802432 | 1.801944 | 1.793166 | 1.794336 | 1.789864 |
|                                 | 7                      | 1.740456 | 1.802434 | 1.801944 | 1.793170 | 1.794338 | 1.789860 |
|                                 | 8                      | 1.740460 | 1.802434 | 1.801946 | 1.793166 | 1.794338 | 1.789866 |
|                                 | 9                      | 1.740460 | 1.802434 | 1.801942 | 1.793164 | 1.794336 | 1.789862 |
|                                 | 10                     | 1.740464 | 1.802432 | 1.801942 | 1.793166 | 1.794338 | 1.789866 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 12.870   | 12.916   | 12.890   | 12.870   | 12.855   | 12.875   |
|                                 | 2 <sub>L</sub>         | 12.869   | 12.920   | 12.884   | 12.887   | 12.857   | 12.876   |
|                                 | 3 <sub>L</sub>         | 12.860   | 12.920   | 12.886   | 12.899   | 12.856   | 12.873   |
|                                 | 4 <sub>W</sub>         | 12.581   | 12.573   | 12.623   | 12.579   | 12.614   | 12.581   |
|                                 | 5 <sub>W</sub>         | 12.599   | 12.575   | 12.622   | 12.557   | 12.618   | 12.579   |
|                                 | 6 <sub>W</sub>         | 12.609   | 12.579   | 12.621   | 12.571   | 12.618   | 12.579   |
| BARE<br>THICKNESS<br>(mm)       | 1                      | 1.554    | 1.574    | 1.570    | 1.574    | 1.576    | 1.571    |
|                                 | 2                      | 1.553    | 1.577    | 1.572    | 1.579    | 1.579    | 1.576    |
|                                 | 3                      | 1.470    | 1.551    | 1.542    | 1.548    | 1.548    | 1.547    |
|                                 | 4                      | 1.536    | 1.565    | 1.546    | 1.566    | 1.565    | 1.560    |
|                                 | 5                      | 1.529    | 1.564    | 1.569    | 1.568    | 1.564    | 1.565    |

Table 79: Raw Data, Expt. #7, IG-CO<sub>2</sub>/650°C/20MPa, AFA-OC6

| Measured Weight (g) |          |          |          |          |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|
| Meas #              | A646     | A647     | A648     | A649     | A650     | A651     |
| 1                   | 1.740546 | 1.802296 | 1.802138 | 1.793118 | 1.794468 | 1.789914 |
| 2                   | 1.740538 | 1.802288 | 1.802138 | 1.793120 | 1.794470 | 1.789918 |
| 3                   | 1.740536 | 1.802292 | 1.802138 | 1.793116 | 1.794470 | 1.789916 |
| 4                   | 1.740530 | 1.802292 | 1.802136 | 1.793116 | 1.794468 | 1.789918 |
| 5                   | 1.740546 | 1.802296 | 1.802138 | 1.793118 | 1.794470 | 1.789916 |
| 6                   | 1.740546 | 1.802290 | 1.802136 | 1.793116 | 1.794468 | 1.789912 |
| 7                   | 1.740544 | 1.802292 | 1.802136 | 1.793118 | 1.794466 | 1.789910 |
| 8                   | 1.740544 | 1.802292 | 1.802136 | 1.793120 | 1.794466 | 1.789916 |
| 9                   | 1.740524 | 1.802292 | 1.802134 | 1.793118 | 1.794456 | 1.789910 |
| 10                  | 1.740530 | 1.802290 | 1.802134 | 1.793118 | 1.794456 | 1.789910 |
| 200 hrs             |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 400 hrs             |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 600 hrs             |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 800 hrs             |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 1000 hrs            |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 1200 hrs            |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |

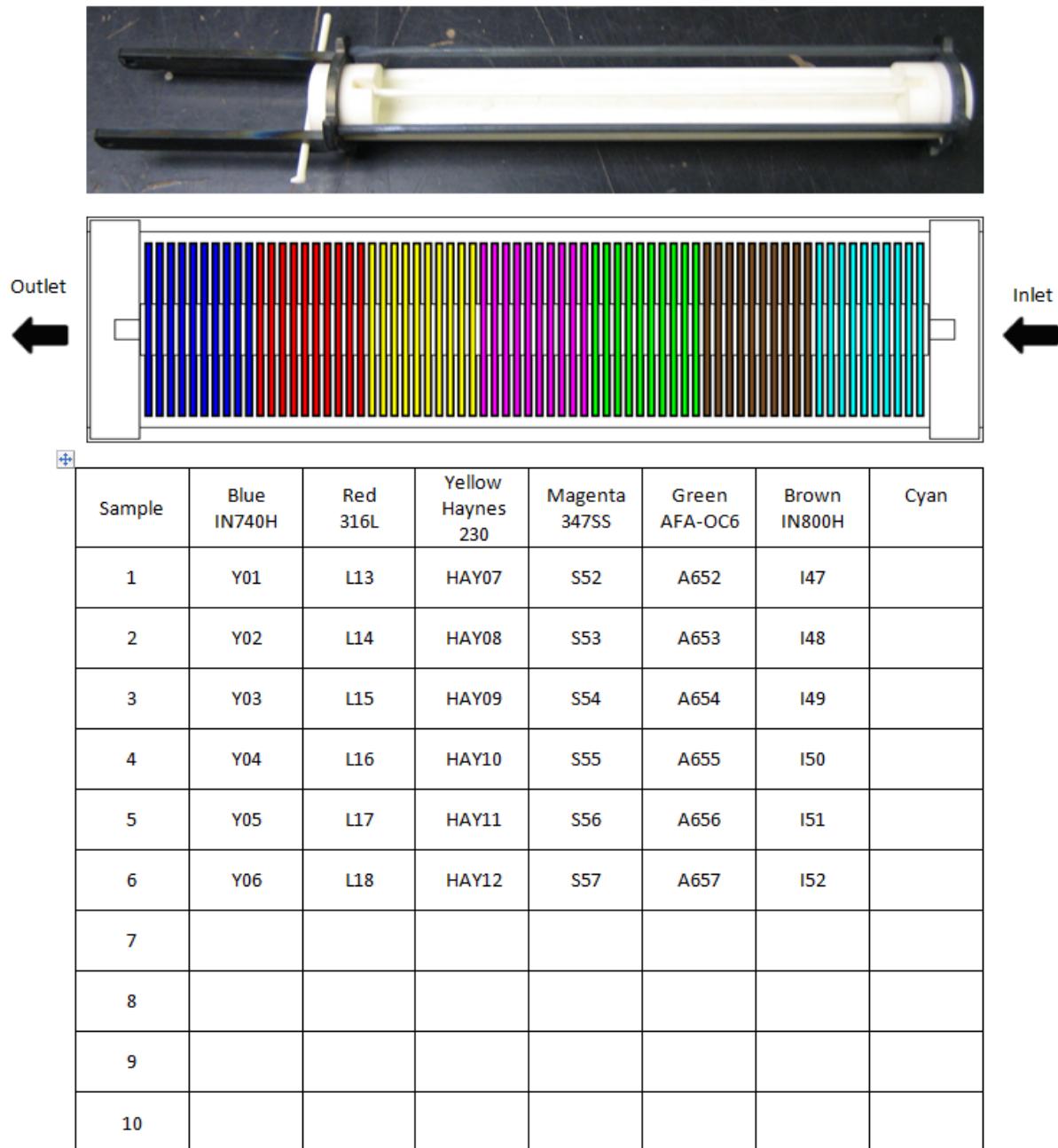

Table 80: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, Coupon Arrangement

Table 81: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, IN740H

|                 |                          |                                   |                                           |
|-----------------|--------------------------|-----------------------------------|-------------------------------------------|
| Project:        |                          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                          | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                          | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | <b>8</b>                 | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000176$ cm <sup>2</sup> |
| Phase:          | II                       | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Bone Dry CO <sub>2</sub> | Metal Type:                       |                                           |
| Temp. (°C):     | 650                      | Color Designation:                |                                           |
| Pressure (MPa): | 20                       | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>IN740</b>             |                                   |                                           |
| Notes:          |                          |                                   |                                           |

| Meas #               | BARE WEIGHT<br>(gm) | Sample # / Description |          |          |          |          |     |
|----------------------|---------------------|------------------------|----------|----------|----------|----------|-----|
|                      |                     | Y01                    | Y02      | Y03      | Y04      | Y05      | Y06 |
| <b>1</b>             | 1.127380            | 1.131032               | 1.158898 | 1.086204 | 1.140158 | 1.156448 |     |
| <b>2</b>             | 1.127380            | 1.131028               | 1.158896 | 1.086198 | 1.140158 | 1.156452 |     |
| <b>3</b>             | 1.127380            | 1.131028               | 1.158894 | 1.086198 | 1.140154 | 1.156448 |     |
| <b>4</b>             | 1.127378            | 1.131026               | 1.158900 | 1.086200 | 1.140154 | 1.156448 |     |
| <b>5</b>             | 1.127378            | 1.131030               | 1.158894 | 1.086204 | 1.140154 | 1.156448 |     |
| <b>6</b>             | 1.127372            | 1.131030               | 1.158894 | 1.086194 | 1.140158 | 1.156446 |     |
| <b>7</b>             | 1.127372            | 1.131026               | 1.158894 | 1.086196 | 1.140158 | 1.156450 |     |
| <b>8</b>             | 1.127380            | 1.131026               | 1.158892 | 1.086198 | 1.140164 | 1.156448 |     |
| <b>9</b>             | 1.127372            | 1.131028               | 1.158894 | 1.086202 | 1.140164 | 1.156448 |     |
| <b>10</b>            | 1.127380            | 1.131026               | 1.158898 | 1.086200 | 1.140156 | 1.156450 |     |
| <b>1<sub>L</sub></b> | 12.494              | 12.565                 | 12.564   | 12.537   | 12.496   | 12.532   |     |
| <b>2<sub>L</sub></b> | 12.540              | 12.509                 | 12.552   | 12.517   | 12.494   | 12.532   |     |
| <b>3<sub>L</sub></b> | 12.553              | 12.472                 | 12.547   | 12.517   | 12.492   | 12.579   |     |
| <b>4<sub>W</sub></b> | 12.246              | 12.300                 | 12.495   | 12.074   | 12.409   | 12.484   |     |
| <b>5<sub>W</sub></b> | 12.244              | 12.217                 | 12.527   | 12.012   | 12.491   | 12.490   |     |
| <b>6<sub>W</sub></b> | 12.240              | 12.150                 | 12.542   | 11.987   | 12.520   | 12.490   |     |
| <b>1</b>             | 0.952               | 0.975                  | 0.950    | 0.962    | 0.948    | 0.976    |     |
| <b>2</b>             | 0.962               | 0.980                  | 0.961    | 0.963    | 0.957    | 0.981    |     |
| <b>3</b>             | 0.940               | 0.955                  | 0.959    | 0.903    | 0.952    | 0.922    |     |
| <b>4</b>             | 0.955               | 0.973                  | 0.958    | 0.938    | 0.958    | 0.957    |     |
| <b>5</b>             | 0.960               | 0.965                  | 0.959    | 0.957    | 0.946    | 0.971    |     |

Table 82: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, IN740H

| Meas # | Measured Weight (g) |          |          |          |          |          |
|--------|---------------------|----------|----------|----------|----------|----------|
|        | Y01                 | Y02      | Y03      | Y04      | Y05      | Y06      |
| 1      | 1.127420            | 1.131092 | 1.158944 | 1.086266 | 1.140214 | 1.156506 |
| 2      | 1.127422            | 1.131090 | 1.158950 | 1.086264 | 1.140218 | 1.156502 |
| 3      | 1.127426            | 1.131090 | 1.158942 | 1.086260 | 1.140210 | 1.156504 |
| 4      | 1.127426            | 1.131086 | 1.158952 | 1.086260 | 1.140218 | 1.156502 |
| 5      | 1.127430            | 1.131092 | 1.158942 | 1.086262 | 1.140216 | 1.156506 |
| 6      | 1.127430            | 1.131092 | 1.158948 | 1.086264 | 1.140214 | 1.156498 |
| 7      | 1.127430            | 1.131088 | 1.158942 | 1.086260 | 1.140214 | 1.156502 |
| 8      | 1.127426            | 1.131088 | 1.158944 | 1.086262 | 1.140218 | 1.156500 |
| 9      | 1.127422            | 1.131092 | 1.158946 | 1.086262 | 1.140212 | 1.156506 |
| 10     | 1.127420            | 1.131094 | 1.158942 | 1.086256 | 1.140208 | 1.156502 |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |

| Meas # | Measured Weight (g) |     |     |     |     |     |
|--------|---------------------|-----|-----|-----|-----|-----|
|        | Y01                 | Y02 | Y03 | Y04 | Y05 | Y06 |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |

Table 83: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, IN800H

|                 |                          |  |                                   |                                           |
|-----------------|--------------------------|--|-----------------------------------|-------------------------------------------|
| Project:        |                          |  | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                          |  | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                          |  | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | <b>8</b>                 |  | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000183$ cm <sup>2</sup> |
| Phase:          | II                       |  | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Bone Dry CO <sub>2</sub> |  | Metal Type:                       |                                           |
| Temp. (°C):     | 650                      |  | Color Designation:                |                                           |
| Pressure (MPa): | 20                       |  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>IN800H</b>            |  |                                   |                                           |
| Notes:          |                          |  |                                   |                                           |

| Meas #               | Sample # / Description |          |          |          |          |          |  |  |
|----------------------|------------------------|----------|----------|----------|----------|----------|--|--|
|                      | I47                    | I48      | I49      | I50      | I51      | I52      |  |  |
| <b>1</b>             | 1.817526               | 1.881522 | 1.892374 | 1.891702 | 1.912794 | 1.911818 |  |  |
| <b>2</b>             | 1.817528               | 1.881520 | 1.892374 | 1.891700 | 1.912792 | 1.911818 |  |  |
| <b>3</b>             | 1.817526               | 1.881522 | 1.892376 | 1.891706 | 1.912790 | 1.911814 |  |  |
| <b>4</b>             | 1.817526               | 1.881524 | 1.892374 | 1.891708 | 1.912790 | 1.911814 |  |  |
| <b>5</b>             | 1.817522               | 1.881522 | 1.892376 | 1.891704 | 1.912786 | 1.911810 |  |  |
| <b>6</b>             | 1.817526               | 1.881518 | 1.892376 | 1.891700 | 1.912788 | 1.911812 |  |  |
| <b>7</b>             | 1.817520               | 1.881520 | 1.892380 | 1.891700 | 1.912796 | 1.911814 |  |  |
| <b>8</b>             | 1.817520               | 1.881522 | 1.892376 | 1.891700 | 1.912786 | 1.911814 |  |  |
| <b>9</b>             | 1.817526               | 1.881526 | 1.892372 | 1.891702 | 1.912784 | 1.911818 |  |  |
| <b>10</b>            | 1.817522               | 1.881522 | 1.892374 | 1.891700 | 1.912788 | 1.911816 |  |  |
| <b>1<sub>L</sub></b> | 13.332                 | 13.318   | 13.315   | 13.267   | 13.333   | 13.324   |  |  |
| <b>2<sub>L</sub></b> | 13.321                 | 13.314   | 13.341   | 13.258   | 13.330   | 13.348   |  |  |
| <b>3<sub>L</sub></b> | 13.279                 | 13.309   | 13.358   | 13.252   | 13.331   | 13.357   |  |  |
| <b>4<sub>W</sub></b> | 12.587                 | 12.580   | 12.543   | 12.583   | 12.600   | 12.560   |  |  |
| <b>5<sub>W</sub></b> | 12.591                 | 12.565   | 12.556   | 12.576   | 12.590   | 12.572   |  |  |
| <b>6<sub>W</sub></b> | 12.594                 | 12.545   | 12.565   | 12.565   | 12.584   | 12.583   |  |  |
| <b>1</b>             | 1.486                  | 1.535    | 1.548    | 1.550    | 1.547    | 1.549    |  |  |
| <b>2</b>             | 1.490                  | 1.539    | 1.549    | 1.553    | 1.552    | 1.549    |  |  |
| <b>3</b>             | 1.416                  | 1.482    | 1.489    | 1.493    | 1.511    | 1.505    |  |  |
| <b>4</b>             | 1.483                  | 1.527    | 1.535    | 1.539    | 1.545    | 1.535    |  |  |
| <b>5</b>             | 1.453                  | 1.520    | 1.524    | 1.533    | 1.519    | 1.535    |  |  |

Table 84: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, IN800H

| Meas # | Measured Weight (g) |          |          |          |          |          |
|--------|---------------------|----------|----------|----------|----------|----------|
|        | I47                 | I48      | I49      | I50      | I51      | I52      |
| 1      | 1.817642            | 1.881900 | 1.892704 | 1.892026 | 1.913180 | 1.912164 |
| 2      | 1.817632            | 1.881906 | 1.892702 | 1.892026 | 1.913176 | 1.912162 |
| 3      | 1.817636            | 1.881906 | 1.892706 | 1.892020 | 1.913176 | 1.912168 |
| 4      | 1.817640            | 1.881906 | 1.892704 | 1.892020 | 1.913178 | 1.912160 |
| 5      | 1.817632            | 1.881902 | 1.892706 | 1.892022 | 1.913182 | 1.912158 |
| 6      | 1.817640            | 1.881910 | 1.892706 | 1.892022 | 1.913174 | 1.912168 |
| 7      | 1.817632            | 1.881908 | 1.892706 | 1.892020 | 1.913176 | 1.912162 |
| 8      | 1.817634            | 1.881900 | 1.892708 | 1.892020 | 1.913178 | 1.912168 |
| 9      | 1.817634            | 1.881908 | 1.892704 | 1.892020 | 1.913182 | 1.912158 |
| 10     | 1.817636            | 1.881902 | 1.892710 | 1.892018 | 1.913174 | 1.912160 |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |

| Meas # | Measured Weight (g) |     |     |     |     |     |
|--------|---------------------|-----|-----|-----|-----|-----|
|        | I47                 | I48 | I49 | I50 | I51 | I52 |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |
| 1      |                     |     |     |     |     |     |
| 2      |                     |     |     |     |     |     |
| 3      |                     |     |     |     |     |     |
| 4      |                     |     |     |     |     |     |
| 5      |                     |     |     |     |     |     |
| 6      |                     |     |     |     |     |     |
| 7      |                     |     |     |     |     |     |
| 8      |                     |     |     |     |     |     |
| 9      |                     |     |     |     |     |     |
| 10     |                     |     |     |     |     |     |

Table 85: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, 316L

|                 |                          |                                   |                                           |
|-----------------|--------------------------|-----------------------------------|-------------------------------------------|
| Project:        |                          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                          | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                          | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | <b>8</b>                 | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000176$ cm <sup>2</sup> |
| Phase:          | II                       | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Bone Dry CO <sub>2</sub> | Metal Type:                       |                                           |
| Temp. (°C):     | 650                      | Color Designation:                |                                           |
| Pressure (MPa): | 20                       | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>316L</b>              |                                   |                                           |
| Notes:          |                          |                                   |                                           |

| Meas #                                  | Sample # / Description |          |          |          |          |          |          |  |
|-----------------------------------------|------------------------|----------|----------|----------|----------|----------|----------|--|
|                                         | L13                    | L14      | L15      | L16      | L17      | L18      |          |  |
| <b>BARE WEIGHT</b><br>(gm)              | <b>1</b>               | 1.232218 | 1.271142 | 1.287848 | 1.321032 | 1.322912 | 1.295306 |  |
|                                         | <b>2</b>               | 1.232216 | 1.271144 | 1.287848 | 1.321032 | 1.322910 | 1.295306 |  |
|                                         | <b>3</b>               | 1.232216 | 1.271140 | 1.287846 | 1.321028 | 1.322910 | 1.295304 |  |
|                                         | <b>4</b>               | 1.232216 | 1.271140 | 1.287842 | 1.321030 | 1.322906 | 1.295304 |  |
|                                         | <b>5</b>               | 1.232216 | 1.271140 | 1.287840 | 1.321026 | 1.322900 | 1.295308 |  |
|                                         | <b>6</b>               | 1.232220 | 1.271140 | 1.287840 | 1.321026 | 1.322908 | 1.295308 |  |
|                                         | <b>7</b>               | 1.232218 | 1.271142 | 1.287840 | 1.321030 | 1.322908 | 1.295306 |  |
|                                         | <b>8</b>               | 1.232216 | 1.271140 | 1.287844 | 1.321028 | 1.322904 | 1.295310 |  |
|                                         | <b>9</b>               | 1.232216 | 1.271140 | 1.287848 | 1.321032 | 1.322906 | 1.295308 |  |
|                                         | <b>10</b>              | 1.232216 | 1.271140 | 1.287848 | 1.321034 | 1.322906 | 1.295306 |  |
| <b>BARE AREA</b><br>(mm <sup>2</sup> )  | <b>1<sub>L</sub></b>   | 12.452   | 12.474   | 12.483   | 12.532   | 12.516   | 12.493   |  |
|                                         | <b>2<sub>L</sub></b>   | 12.456   | 12.479   | 12.445   | 12.540   | 12.546   | 12.470   |  |
|                                         | <b>3<sub>L</sub></b>   | 12.454   | 12.481   | 12.411   | 12.548   | 12.564   | 12.462   |  |
|                                         | <b>4<sub>W</sub></b>   | 12.479   | 12.442   | 12.465   | 12.499   | 12.477   | 12.406   |  |
|                                         | <b>5<sub>W</sub></b>   | 12.481   | 12.445   | 12.462   | 12.495   | 12.453   | 12.402   |  |
|                                         | <b>6<sub>W</sub></b>   | 12.480   | 12.446   | 12.452   | 12.493   | 12.445   | 12.400   |  |
| <b>BARE</b><br><b>THICKNESS</b><br>(mm) | <b>1</b>               | 1.118    | 1.124    | 1.130    | 1.151    | 1.154    | 1.141    |  |
|                                         | <b>2</b>               | 1.103    | 1.124    | 1.134    | 1.153    | 1.159    | 1.146    |  |
|                                         | <b>3</b>               | 1.034    | 1.082    | 1.113    | 1.118    | 1.131    | 1.116    |  |
|                                         | <b>4</b>               | 1.092    | 1.112    | 1.129    | 1.137    | 1.148    | 1.137    |  |
|                                         | <b>5</b>               | 1.073    | 1.108    | 1.122    | 1.142    | 1.148    | 1.134    |  |

Table 86: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, 316L

| Measured Weight (g) |          |          |          |          |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|
| Meas #              | L13      | L14      | L15      | L16      | L17      | L18      |
| 1                   | 1.233598 | 1.272378 | 1.288914 | 1.322004 | 1.324102 | 1.296438 |
| 2                   | 1.233596 | 1.272376 | 1.288914 | 1.322000 | 1.324108 | 1.296436 |
| 3                   | 1.233598 | 1.272386 | 1.288918 | 1.322000 | 1.324108 | 1.296440 |
| 4                   | 1.233598 | 1.272380 | 1.288916 | 1.322000 | 1.324098 | 1.296438 |
| 5                   | 1.233606 | 1.272376 | 1.288918 | 1.321996 | 1.324104 | 1.296436 |
| 6                   | 1.233604 | 1.272384 | 1.288910 | 1.321994 | 1.324108 | 1.296440 |
| 7                   | 1.233602 | 1.272380 | 1.288914 | 1.321998 | 1.324104 | 1.296436 |
| 8                   | 1.233602 | 1.272376 | 1.288916 | 1.322000 | 1.324100 | 1.296434 |
| 9                   | 1.233598 | 1.272380 | 1.288908 | 1.322000 | 1.324102 | 1.296436 |
| 10                  | 1.233606 | 1.272382 | 1.288914 | 1.322000 | 1.324104 | 1.296436 |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |

| Measured Weight (g) |     |     |     |     |     |     |
|---------------------|-----|-----|-----|-----|-----|-----|
| Meas #              | L13 | L14 | L15 | L16 | L17 | L18 |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |

Table 87: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, Haynes 230

|                 |                          |                                   |                                           |
|-----------------|--------------------------|-----------------------------------|-------------------------------------------|
| Project:        |                          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                          | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                          | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | <b>8</b>                 | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:          | II                       | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Bone Dry CO <sub>2</sub> | Metal Type:                       |                                           |
| Temp. (°C):     | 650                      | Color Designation:                |                                           |
| Pressure (MPa): | 20                       | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>Haynes 230</b>        |                                   |                                           |
| Notes:          |                          |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|
|                                 | HAY07                  | HAY08    | HAY09    | HAY10    | HAY11    | HAY12    |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 2.603196 | 2.591636 | 2.607654 | 2.571584 | 2.629992 |
|                                 | <b>2</b>               | 2.603200 | 2.591632 | 2.607658 | 2.571584 | 2.629990 |
|                                 | <b>3</b>               | 2.603196 | 2.591630 | 2.607656 | 2.571582 | 2.629996 |
|                                 | <b>4</b>               | 2.603198 | 2.591634 | 2.607658 | 2.571582 | 2.629990 |
|                                 | <b>5</b>               | 2.603196 | 2.591634 | 2.607662 | 2.571584 | 2.629996 |
|                                 | <b>6</b>               | 2.603198 | 2.591630 | 2.607662 | 2.571580 | 2.629994 |
|                                 | <b>7</b>               | 2.603198 | 2.591628 | 2.607662 | 2.571588 | 2.629996 |
|                                 | <b>8</b>               | 2.603200 | 2.591630 | 2.607660 | 2.571584 | 2.629990 |
|                                 | <b>9</b>               | 2.603196 | 2.591634 | 2.607658 | 2.571586 | 2.630000 |
|                                 | <b>10</b>              | 2.603196 | 2.591636 | 2.607656 | 2.571582 | 2.629994 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.601   | 12.633   | 12.584   | 12.592   | 12.594   |
|                                 | <b>2<sub>L</sub></b>   | 12.602   | 12.635   | 12.603   | 12.591   | 12.592   |
|                                 | <b>3<sub>L</sub></b>   | 12.608   | 12.628   | 12.611   | 12.587   | 12.592   |
|                                 | <b>4<sub>W</sub></b>   | 12.623   | 12.561   | 12.600   | 12.535   | 12.542   |
|                                 | <b>5<sub>W</sub></b>   | 12.626   | 12.560   | 12.612   | 12.516   | 12.544   |
|                                 | <b>6<sub>W</sub></b>   | 12.624   | 12.554   | 12.613   | 12.496   | 12.541   |
| BARE THICKNESS<br>(mm)          | <b>1</b>               | 2.003    | 2.002    | 2.002    | 1.997    | 2.034    |
|                                 | <b>2</b>               | 1.997    | 1.990    | 1.997    | 1.991    | 2.034    |
|                                 | <b>3</b>               | 1.957    | 1.946    | 1.968    | 1.954    | 1.977    |
|                                 | <b>4</b>               | 1.989    | 1.976    | 1.992    | 1.980    | 2.023    |
|                                 | <b>5</b>               | 1.980    | 1.979    | 1.985    | 1.979    | 2.004    |

Table 88: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, Haynes 230

| Meas # | Measured Weight (g) |          |          |          |          |          |
|--------|---------------------|----------|----------|----------|----------|----------|
|        | HAY07               | HAY08    | HAY09    | HAY10    | HAY11    | HAY12    |
| 1      | 2.603290            | 2.591748 | 2.607782 | 2.571684 | 2.630102 | 2.628738 |
| 2      | 2.603286            | 2.591740 | 2.607780 | 2.571684 | 2.630102 | 2.628736 |
| 3      | 2.603284            | 2.591742 | 2.607784 | 2.571682 | 2.630106 | 2.628740 |
| 4      | 2.603286            | 2.591742 | 2.607784 | 2.571678 | 2.630098 | 2.628732 |
| 5      | 2.603282            | 2.591740 | 2.607780 | 2.571686 | 2.630106 | 2.628736 |
| 6      | 2.603280            | 2.591740 | 2.607774 | 2.571680 | 2.630100 | 2.628734 |
| 7      | 2.603280            | 2.591746 | 2.607778 | 2.571676 | 2.630102 | 2.628732 |
| 8      | 2.603282            | 2.591744 | 2.607776 | 2.571676 | 2.630100 | 2.628738 |
| 9      | 2.603286            | 2.591746 | 2.607778 | 2.571680 | 2.630102 | 2.628734 |
| 10     | 2.603282            | 2.591740 | 2.607778 | 2.571680 | 2.630104 | 2.628736 |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |
| 1      |                     |          |          |          |          |          |
| 2      |                     |          |          |          |          |          |
| 3      |                     |          |          |          |          |          |
| 4      |                     |          |          |          |          |          |
| 5      |                     |          |          |          |          |          |
| 6      |                     |          |          |          |          |          |
| 7      |                     |          |          |          |          |          |
| 8      |                     |          |          |          |          |          |
| 9      |                     |          |          |          |          |          |
| 10     |                     |          |          |          |          |          |

| Meas # | Measured Weight (g) |       |       |       |       |       |
|--------|---------------------|-------|-------|-------|-------|-------|
|        | HAY07               | HAY08 | HAY09 | HAY10 | HAY11 | HAY12 |
| 1      |                     |       |       |       |       |       |
| 2      |                     |       |       |       |       |       |
| 3      |                     |       |       |       |       |       |
| 4      |                     |       |       |       |       |       |
| 5      |                     |       |       |       |       |       |
| 6      |                     |       |       |       |       |       |
| 7      |                     |       |       |       |       |       |
| 8      |                     |       |       |       |       |       |
| 9      |                     |       |       |       |       |       |
| 10     |                     |       |       |       |       |       |
| 1      |                     |       |       |       |       |       |
| 2      |                     |       |       |       |       |       |
| 3      |                     |       |       |       |       |       |
| 4      |                     |       |       |       |       |       |
| 5      |                     |       |       |       |       |       |
| 6      |                     |       |       |       |       |       |
| 7      |                     |       |       |       |       |       |
| 8      |                     |       |       |       |       |       |
| 9      |                     |       |       |       |       |       |
| 10     |                     |       |       |       |       |       |
| 1      |                     |       |       |       |       |       |
| 2      |                     |       |       |       |       |       |
| 3      |                     |       |       |       |       |       |
| 4      |                     |       |       |       |       |       |
| 5      |                     |       |       |       |       |       |
| 6      |                     |       |       |       |       |       |
| 7      |                     |       |       |       |       |       |
| 8      |                     |       |       |       |       |       |
| 9      |                     |       |       |       |       |       |
| 10     |                     |       |       |       |       |       |
| 1      |                     |       |       |       |       |       |
| 2      |                     |       |       |       |       |       |
| 3      |                     |       |       |       |       |       |
| 4      |                     |       |       |       |       |       |
| 5      |                     |       |       |       |       |       |
| 6      |                     |       |       |       |       |       |
| 7      |                     |       |       |       |       |       |
| 8      |                     |       |       |       |       |       |
| 9      |                     |       |       |       |       |       |
| 10     |                     |       |       |       |       |       |
| 1      |                     |       |       |       |       |       |
| 2      |                     |       |       |       |       |       |
| 3      |                     |       |       |       |       |       |
| 4      |                     |       |       |       |       |       |
| 5      |                     |       |       |       |       |       |
| 6      |                     |       |       |       |       |       |
| 7      |                     |       |       |       |       |       |
| 8      |                     |       |       |       |       |       |
| 9      |                     |       |       |       |       |       |
| 10     |                     |       |       |       |       |       |

Table 89: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, AFA-OC6

|                 |                          |                                   |                                          |
|-----------------|--------------------------|-----------------------------------|------------------------------------------|
| Project:        |                          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g              |
| Contact:        |                          | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                |
| MDS:            |                          | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                |
| Expt. #:        | <b>8</b>                 | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.00018$ cm <sup>2</sup> |
| Phase:          | II                       | Supplier/UNS ID:                  |                                          |
| Phase Type:     | Bone Dry CO <sub>2</sub> | Metal Type:                       |                                          |
| Temp. (°C):     | 650                      | Color Designation:                |                                          |
| Pressure (MPa): | 20                       | Hole Diameter in Sample (mm):     | 3                                        |
| Sample ID:      | <b>AFA-OC6</b>           |                                   |                                          |
| Notes:          |                          |                                   |                                          |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|
|                                 | A652                   | A653     | A654     | A655     | A656     | A657     |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.737622 | 1.772050 | 1.789914 | 1.785938 | 1.797540 | 1.791600 |
|                                 | <b>2</b>               | 1.737620 | 1.772058 | 1.789912 | 1.785938 | 1.797534 | 1.791588 |
|                                 | <b>3</b>               | 1.737624 | 1.772052 | 1.789914 | 1.785944 | 1.797534 | 1.791594 |
|                                 | <b>4</b>               | 1.737620 | 1.772050 | 1.789906 | 1.785944 | 1.797532 | 1.791594 |
|                                 | <b>5</b>               | 1.737622 | 1.772050 | 1.789912 | 1.785940 | 1.797536 | 1.791594 |
|                                 | <b>6</b>               | 1.737624 | 1.772054 | 1.789908 | 1.785938 | 1.797540 | 1.791596 |
|                                 | <b>7</b>               | 1.737624 | 1.772050 | 1.789910 | 1.785942 | 1.797532 | 1.791596 |
|                                 | <b>8</b>               | 1.737626 | 1.772056 | 1.789906 | 1.785942 | 1.797532 | 1.791594 |
|                                 | <b>9</b>               | 1.737626 | 1.772050 | 1.789906 | 1.785938 | 1.797532 | 1.791590 |
|                                 | <b>10</b>              | 1.737620 | 1.772050 | 1.789906 | 1.785940 | 1.797536 | 1.791596 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.894   | 12.901   | 12.883   | 12.891   | 12.906   | 12.878   |
|                                 | <b>2<sub>L</sub></b>   | 12.893   | 12.913   | 12.854   | 12.888   | 12.906   | 12.877   |
|                                 | <b>3<sub>L</sub></b>   | 12.892   | 12.919   | 12.838   | 12.887   | 12.904   | 12.875   |
|                                 | <b>4<sub>W</sub></b>   | 12.559   | 12.571   | 12.597   | 12.538   | 12.556   | 12.532   |
|                                 | <b>5<sub>W</sub></b>   | 12.558   | 12.571   | 12.599   | 12.560   | 12.574   | 12.543   |
|                                 | <b>6<sub>W</sub></b>   | 12.561   | 12.570   | 12.595   | 12.591   | 12.588   | 12.544   |
| BARE<br>THICKNESS<br>(mm)       | <b>1</b>               | 1.543    | 1.560    | 1.566    | 1.565    | 1.568    | 1.570    |
|                                 | <b>2</b>               | 1.541    | 1.561    | 1.568    | 1.568    | 1.573    | 1.577    |
|                                 | <b>3</b>               | 1.469    | 1.517    | 1.543    | 1.539    | 1.544    | 1.543    |
|                                 | <b>4</b>               | 1.529    | 1.549    | 1.558    | 1.557    | 1.563    | 1.564    |
|                                 | <b>5</b>               | 1.512    | 1.546    | 1.558    | 1.557    | 1.558    | 1.564    |

Table 90: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, AFA-OC6

Table 91: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, 347SS

|                 |                          |                                   |                                           |
|-----------------|--------------------------|-----------------------------------|-------------------------------------------|
| Project:        |                          | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        |                          | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            |                          | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | <b>8</b>                 | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000182$ cm <sup>2</sup> |
| Phase:          | II                       | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Bone Dry CO <sub>2</sub> | Metal Type:                       |                                           |
| Temp. (°C):     | 650                      | Color Designation:                |                                           |
| Pressure (MPa): | 20                       | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>347SS</b>             |                                   |                                           |
| Notes:          |                          |                                   |                                           |

| Meas #               | Sample # / Description |          |          |          |          |          |  |
|----------------------|------------------------|----------|----------|----------|----------|----------|--|
|                      | S52                    | S53      | S54      | S55      | S56      | S57      |  |
| <b>1</b>             | 1.802552               | 1.856070 | 1.844400 | 1.874468 | 1.879122 | 1.879420 |  |
| <b>2</b>             | 1.802556               | 1.856070 | 1.844404 | 1.874466 | 1.879114 | 1.879416 |  |
| <b>3</b>             | 1.802556               | 1.856072 | 1.844404 | 1.874466 | 1.879120 | 1.879416 |  |
| <b>4</b>             | 1.802560               | 1.856072 | 1.844400 | 1.874466 | 1.879116 | 1.879420 |  |
| <b>5</b>             | 1.802558               | 1.856074 | 1.844402 | 1.874464 | 1.879122 | 1.879416 |  |
| <b>6</b>             | 1.802556               | 1.856072 | 1.844396 | 1.874464 | 1.879116 | 1.879420 |  |
| <b>7</b>             | 1.802554               | 1.856074 | 1.844402 | 1.874460 | 1.879118 | 1.879418 |  |
| <b>8</b>             | 1.802556               | 1.856072 | 1.844404 | 1.874460 | 1.879116 | 1.879418 |  |
| <b>9</b>             | 1.802560               | 1.856068 | 1.844402 | 1.874468 | 1.879114 | 1.879416 |  |
| <b>10</b>            | 1.802558               | 1.856074 | 1.844402 | 1.874464 | 1.879118 | 1.879416 |  |
| <b>1<sub>L</sub></b> | 13.053                 | 13.091   | 13.155   | 13.090   | 13.091   | 13.060   |  |
| <b>2<sub>L</sub></b> | 13.065                 | 13.104   | 13.130   | 13.118   | 13.103   | 13.060   |  |
| <b>3<sub>L</sub></b> | 13.076                 | 13.111   | 13.115   | 13.129   | 13.101   | 13.059   |  |
| <b>4<sub>W</sub></b> | 12.598                 | 12.570   | 12.582   | 12.579   | 12.591   | 12.581   |  |
| <b>5<sub>W</sub></b> | 12.596                 | 12.599   | 12.577   | 12.593   | 12.591   | 12.602   |  |
| <b>6<sub>W</sub></b> | 12.595                 | 12.605   | 12.573   | 12.585   | 12.590   | 12.615   |  |
| <b>1</b>             | 1.510                  | 1.546    | 1.540    | 1.556    | 1.559    | 1.560    |  |
| <b>2</b>             | 1.512                  | 1.550    | 1.544    | 1.562    | 1.566    | 1.568    |  |
| <b>3</b>             | 1.449                  | 1.506    | 1.484    | 1.525    | 1.530    | 1.539    |  |
| <b>4</b>             | 1.495                  | 1.538    | 1.535    | 1.545    | 1.552    | 1.558    |  |
| <b>5</b>             | 1.484                  | 1.529    | 1.509    | 1.549    | 1.548    | 1.555    |  |

Table 92: Raw Data, Expt. #8, BDG-CO<sub>2</sub>/650°C/20MPa, 347SS

| Measured Weight (g) |          |          |          |          |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|
| Meas #              | S52      | S53      | S54      | S55      | S56      | S57      |
| 1                   | 1.802856 | 1.856368 | 1.844694 | 1.874798 | 1.879374 | 1.879730 |
| 2                   | 1.802854 | 1.856366 | 1.844688 | 1.874792 | 1.879376 | 1.879722 |
| 3                   | 1.802856 | 1.856370 | 1.844692 | 1.874796 | 1.879384 | 1.879728 |
| 4                   | 1.802852 | 1.856374 | 1.844686 | 1.874796 | 1.879380 | 1.879722 |
| 5                   | 1.802856 | 1.856368 | 1.844694 | 1.874794 | 1.879382 | 1.879732 |
| 6                   | 1.802858 | 1.856370 | 1.844686 | 1.874794 | 1.879382 | 1.879732 |
| 7                   | 1.802852 | 1.856368 | 1.844688 | 1.874796 | 1.879382 | 1.879724 |
| 8                   | 1.802852 | 1.856370 | 1.844688 | 1.874796 | 1.879382 | 1.879732 |
| 9                   | 1.802856 | 1.856370 | 1.844688 | 1.874790 | 1.879380 | 1.879730 |
| 10                  | 1.802852 | 1.856368 | 1.844692 | 1.874798 | 1.879380 | 1.879722 |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |
| 1                   |          |          |          |          |          |          |
| 2                   |          |          |          |          |          |          |
| 3                   |          |          |          |          |          |          |
| 4                   |          |          |          |          |          |          |
| 5                   |          |          |          |          |          |          |
| 6                   |          |          |          |          |          |          |
| 7                   |          |          |          |          |          |          |
| 8                   |          |          |          |          |          |          |
| 9                   |          |          |          |          |          |          |
| 10                  |          |          |          |          |          |          |

| Measured Weight (g) |     |     |     |     |     |     |
|---------------------|-----|-----|-----|-----|-----|-----|
| Meas #              | S52 | S53 | S54 | S55 | S56 | S57 |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |
| 1                   |     |     |     |     |     |     |
| 2                   |     |     |     |     |     |     |
| 3                   |     |     |     |     |     |     |
| 4                   |     |     |     |     |     |     |
| 5                   |     |     |     |     |     |     |
| 6                   |     |     |     |     |     |     |
| 7                   |     |     |     |     |     |     |
| 8                   |     |     |     |     |     |     |
| 9                   |     |     |     |     |     |     |
| 10                  |     |     |     |     |     |     |

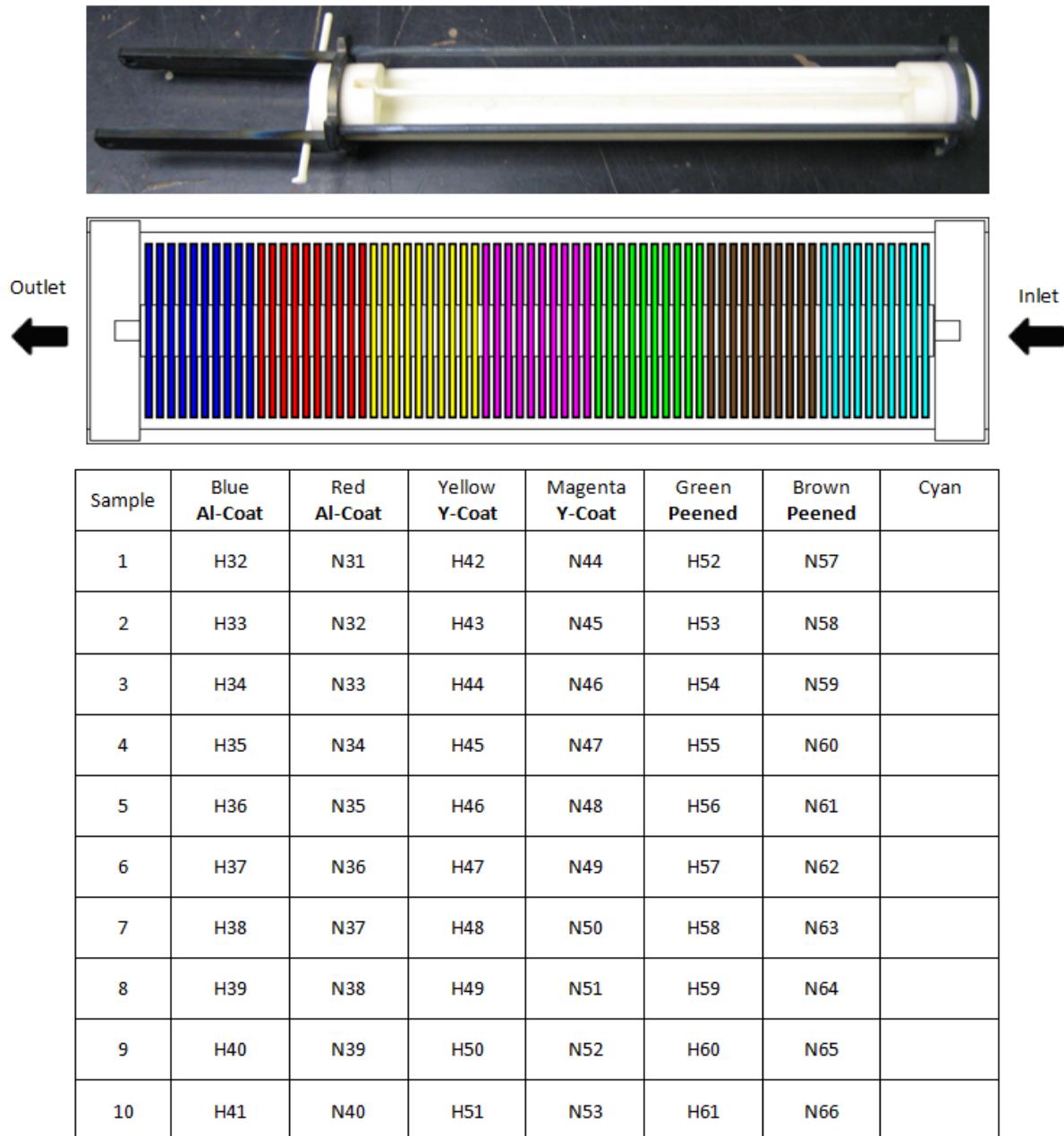

Table 93: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, Coupon Arrangement

Table 94: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, HCM12A Al-Coated

|                 |                                                     |                                   |                                           |
|-----------------|-----------------------------------------------------|-----------------------------------|-------------------------------------------|
| Project:        | <b>SCCO2</b>                                        | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        | PRJ39TC                                             | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            | 24386                                               | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | <b>7</b>                                            | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000179$ cm <sup>2</sup> |
| Phase:          | <b>Aluminum Coated</b>                              | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Research CO2                                        | Metal Type:                       |                                           |
| Temp. (°C):     | 550                                                 | Color Designation:                |                                           |
| Pressure (MPa): | 20                                                  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>HCM12A</b>                                       |                                   |                                           |
| Notes:          | Bare weight is meas weight of samples after coating |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | H32                    | H33      | H34      | H35      | H36      | H37      | H38      | H39      | H40      | H41      |          |
| COATED WEIGHT<br>(gm)           | <b>1</b>               | 1.825242 | 1.845860 | 1.791540 | 1.793060 | 1.811400 | 1.819174 | 1.800782 | 1.824968 | 1.835884 | 1.845392 |
|                                 | <b>2</b>               | 1.825240 | 1.845860 | 1.791542 | 1.793062 | 1.811398 | 1.819172 | 1.800778 | 1.824962 | 1.835882 | 1.845394 |
|                                 | <b>3</b>               | 1.825242 | 1.845864 | 1.791546 | 1.793062 | 1.811402 | 1.819182 | 1.800776 | 1.824960 | 1.835882 | 1.845400 |
|                                 | <b>4</b>               | 1.825244 | 1.845854 | 1.791540 | 1.793054 | 1.811398 | 1.819180 | 1.800776 | 1.824970 | 1.835884 | 1.845400 |
|                                 | <b>5</b>               | 1.825242 | 1.845862 | 1.791542 | 1.793060 | 1.811396 | 1.819180 | 1.800780 | 1.824972 | 1.835880 | 1.845400 |
|                                 | <b>6</b>               | 1.825238 | 1.845866 | 1.791542 | 1.793060 | 1.811400 | 1.819176 | 1.800774 | 1.824962 | 1.835878 | 1.845390 |
|                                 | <b>7</b>               | 1.825232 | 1.845864 | 1.791550 | 1.793062 | 1.811398 | 1.819176 | 1.800782 | 1.824966 | 1.835882 | 1.845398 |
|                                 | <b>8</b>               | 1.825240 | 1.845866 | 1.791544 | 1.793066 | 1.811396 | 1.819174 | 1.800780 | 1.824970 | 1.835886 | 1.845394 |
|                                 | <b>9</b>               | 1.825240 | 1.845864 | 1.791548 | 1.793062 | 1.811402 | 1.819186 | 1.800776 | 1.824964 | 1.835882 | 1.845390 |
|                                 | <b>10</b>              | 1.825234 | 1.845864 | 1.791542 | 1.793056 | 1.811398 | 1.819178 | 1.800776 | 1.824972 | 1.835876 | 1.845394 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.671   | 12.686   | 12.626   | 12.699   | 12.710   | 12.687   | 12.701   | 12.682   | 12.689   | 12.721   |
|                                 | <b>2<sub>L</sub></b>   | 12.691   | 12.691   | 12.679   | 12.717   | 12.712   | 12.685   | 12.713   | 12.683   | 12.688   | 12.713   |
|                                 | <b>3<sub>L</sub></b>   | 12.694   | 12.685   | 12.699   | 12.719   | 12.710   | 12.678   | 12.713   | 12.681   | 12.686   | 12.708   |
|                                 | <b>4<sub>W</sub></b>   | 12.582   | 12.652   | 12.598   | 12.644   | 12.641   | 12.666   | 12.659   | 12.643   | 12.694   | 12.652   |
|                                 | <b>5<sub>W</sub></b>   | 12.590   | 12.678   | 12.609   | 12.647   | 12.644   | 12.677   | 12.654   | 12.644   | 12.687   | 12.654   |
|                                 | <b>6<sub>W</sub></b>   | 12.593   | 12.689   | 12.610   | 12.622   | 12.641   | 12.679   | 12.646   | 12.646   | 12.677   | 12.656   |
| BARE THICKNESS<br>(mm)          | <b>1</b>               | 1.528    | 1.549    | 1.504    | 1.509    | 1.531    | 1.563    | 1.542    | 1.566    | 1.572    | 1.575    |
|                                 | <b>2</b>               | 1.540    | 1.556    | 1.524    | 1.510    | 1.534    | 1.566    | 1.546    | 1.571    | 1.577    | 1.579    |
|                                 | <b>3</b>               | 1.536    | 1.547    | 1.524    | 1.495    | 1.513    | 1.498    | 1.502    | 1.526    | 1.532    | 1.547    |
|                                 | <b>4</b>               | 1.533    | 1.550    | 1.531    | 1.505    | 1.529    | 1.556    | 1.540    | 1.556    | 1.566    | 1.571    |
|                                 | <b>5</b>               | 1.531    | 1.548    | 1.503    | 1.503    | 1.513    | 1.550    | 1.526    | 1.557    | 1.556    | 1.564    |

Table 95: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, HCM12A Al-Coated

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | H32 | H33      | H34      | H35      | H36      | H37      | H38      | H39      | H40      | H41      |          |          |
| 200 hrs             | 1   | 1.825944 | 1.846460 | 1.792176 | 1.793936 | 1.812288 | 1.819712 | 1.801460 | 1.825604 | 1.836486 | 1.846034 |          |
|                     | 2   | 1.825946 | 1.846456 | 1.792178 | 1.793936 | 1.812284 | 1.819722 | 1.801458 | 1.825596 | 1.836488 | 1.846024 |          |
|                     | 3   | 1.82594  | 1.846464 | 1.792170 | 1.793932 | 1.812284 | 1.819714 | 1.801452 | 1.825600 | 1.836494 | 1.846032 |          |
|                     | 4   | 1.825942 | 1.846462 | 1.792182 | 1.793936 | 1.812286 | 1.819716 | 1.801456 | 1.825602 | 1.836490 | 1.846034 |          |
|                     | 5   | 1.825942 | 1.846456 | 1.792178 | 1.793934 | 1.812282 | 1.819716 | 1.801460 | 1.825596 | 1.836494 | 1.846032 |          |
|                     | 6   | 1.825936 | 1.846466 | 1.792180 | 1.793932 | 1.812284 | 1.819714 | 1.801456 | 1.825598 | 1.836486 | 1.846034 |          |
|                     | 7   | 1.825942 | 1.846462 | 1.792178 | 1.793936 | 1.812288 | 1.819722 | 1.801454 | 1.825606 | 1.836484 | 1.846028 |          |
|                     | 8   | 1.825938 | 1.846464 | 1.792178 | 1.793938 | 1.812286 | 1.819720 | 1.801458 | 1.825600 | 1.836486 | 1.846032 |          |
|                     | 9   | 1.825940 | 1.846456 | 1.792178 | 1.793934 | 1.812280 | 1.819714 | 1.801460 | 1.825600 | 1.836488 | 1.846032 |          |
|                     | 10  | 1.825938 | 1.846460 | 1.792180 | 1.793936 | 1.812282 | 1.819718 | 1.801456 | 1.825600 | 1.836488 | 1.846034 |          |
| 400 hrs             | 1   |          | 1.792452 | 1.794212 | 1.812606 | 1.819948 | 1.801704 | 1.825850 | 1.836712 | 1.846302 |          |          |
|                     | 2   |          | 1.792454 | 1.794218 | 1.812604 | 1.819952 | 1.801706 | 1.825860 | 1.836714 | 1.846294 |          |          |
|                     | 3   |          | 1.792454 | 1.794216 | 1.812604 | 1.819950 | 1.801710 | 1.825860 | 1.836720 | 1.846292 |          |          |
|                     | 4   |          | 1.792456 | 1.794214 | 1.812602 | 1.819946 | 1.801714 | 1.825858 | 1.836712 | 1.846292 |          |          |
|                     | 5   |          | 1.792454 | 1.794216 | 1.812602 | 1.819956 | 1.801706 | 1.825860 | 1.836722 | 1.846298 |          |          |
|                     | 6   |          | 1.792450 | 1.794216 | 1.812602 | 1.819956 | 1.801704 | 1.825852 | 1.836712 | 1.846300 |          |          |
|                     | 7   |          | 1.792446 | 1.794218 | 1.812602 | 1.819956 | 1.801714 | 1.825854 | 1.836712 | 1.846298 |          |          |
|                     | 8   |          | 1.792456 | 1.794216 | 1.812610 | 1.819950 | 1.801708 | 1.825858 | 1.836714 | 1.846302 |          |          |
|                     | 9   |          | 1.792456 | 1.794220 | 1.812604 | 1.819948 | 1.801710 | 1.825860 | 1.836716 | 1.846298 |          |          |
|                     | 10  |          | 1.792454 | 1.794218 | 1.812602 | 1.819952 | 1.801714 | 1.825856 | 1.836712 | 1.846300 |          |          |
| 600 hrs             | 1   |          |          |          |          | 1.801944 | 1.826094 | 1.836922 | 1.846526 |          |          |          |
|                     | 2   |          |          |          |          | 1.801936 | 1.826098 | 1.836924 | 1.846530 |          |          |          |
|                     | 3   |          |          |          |          | 1.801942 | 1.826096 | 1.836922 | 1.846530 |          |          |          |
|                     | 4   |          |          |          |          | 1.801938 | 1.826100 | 1.836930 | 1.846526 |          |          |          |
|                     | 5   |          |          |          |          | 1.801944 | 1.826096 | 1.836928 | 1.846532 |          |          |          |
|                     | 6   |          |          |          |          | 1.801938 | 1.826096 | 1.836930 | 1.846524 |          |          |          |
|                     | 7   |          |          |          |          | 1.801936 | 1.826098 | 1.836932 | 1.846534 |          |          |          |
|                     | 8   |          |          |          |          | 1.801940 | 1.826100 | 1.836932 | 1.846532 |          |          |          |
|                     | 9   |          |          |          |          | 1.801938 | 1.826104 | 1.836926 | 1.846530 |          |          |          |
|                     | 10  |          |          |          |          | 1.801934 | 1.826098 | 1.836930 | 1.846526 |          |          |          |
| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |          |
| Meas #              | H32 | H33      | H34      | H35      | H36      | H37      | H38      | H39      | H40      | H41      |          |          |
| 800 hrs             | 1   |          |          |          |          |          |          |          | 1.802164 | 1.826340 | 1.837138 | 1.846766 |
|                     | 2   |          |          |          |          |          |          |          | 1.802174 | 1.826340 | 1.837130 | 1.846766 |
|                     | 3   |          |          |          |          |          |          |          | 1.802172 | 1.826338 | 1.837132 | 1.846768 |
|                     | 4   |          |          |          |          |          |          |          | 1.802174 | 1.826342 | 1.837134 | 1.846762 |
|                     | 5   |          |          |          |          |          |          |          | 1.802174 | 1.826342 | 1.837136 | 1.846766 |
|                     | 6   |          |          |          |          |          |          |          | 1.802166 | 1.826338 | 1.837136 | 1.846768 |
|                     | 7   |          |          |          |          |          |          |          | 1.802164 | 1.826338 | 1.837134 | 1.846768 |
|                     | 8   |          |          |          |          |          |          |          | 1.802164 | 1.826336 | 1.837132 | 1.846766 |
|                     | 9   |          |          |          |          |          |          |          | 1.802166 | 1.826336 | 1.837134 | 1.846768 |
|                     | 10  |          |          |          |          |          |          |          | 1.802172 | 1.826340 | 1.837134 | 1.846766 |
| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |          |
| Meas #              | H32 | H33      | H34      | H35      | H36      | H37      | H38      | H39      | H40      | H41      |          |          |
| 1000 hrs            | 1   |          |          |          |          |          |          |          | 1.802342 | 1.826538 | 1.837306 | 1.846964 |
|                     | 2   |          |          |          |          |          |          |          | 1.802352 | 1.826540 | 1.837308 | 1.846960 |
|                     | 3   |          |          |          |          |          |          |          | 1.802350 | 1.826538 | 1.837300 | 1.846960 |
|                     | 4   |          |          |          |          |          |          |          | 1.802352 | 1.826538 | 1.837302 | 1.846962 |
|                     | 5   |          |          |          |          |          |          |          | 1.802348 | 1.826532 | 1.837302 | 1.846968 |
|                     | 6   |          |          |          |          |          |          |          | 1.802350 | 1.826538 | 1.837302 | 1.846966 |
|                     | 7   |          |          |          |          |          |          |          | 1.802344 | 1.826540 | 1.837304 | 1.846964 |
|                     | 8   |          |          |          |          |          |          |          | 1.802352 | 1.826534 | 1.837302 | 1.846962 |
|                     | 9   |          |          |          |          |          |          |          | 1.802342 | 1.826532 | 1.837300 | 1.846964 |
|                     | 10  |          |          |          |          |          |          |          | 1.802344 | 1.826542 | 1.837302 | 1.846960 |
| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |          |
| Meas #              | H32 | H33      | H34      | H35      | H36      | H37      | H38      | H39      | H40      | H41      |          |          |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |          |

Table 96: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, NF616 Al-Coated

|                 |                                                     |                                   |                                           |
|-----------------|-----------------------------------------------------|-----------------------------------|-------------------------------------------|
| Project:        | SCCO2                                               | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        | PRJ39TC                                             | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            | 24386                                               | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | 7                                                   | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:          | Al-Coated                                           | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Research CO2                                        | Metal Type:                       |                                           |
| Temp. (°C):     | 550                                                 | Color Designation:                |                                           |
| Pressure (MPa): | 20                                                  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | NF616                                               |                                   |                                           |
| Notes:          | Bare weight is meas weight of samples after coating |                                   |                                           |

| Meas #                    | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                           | N31                    | N32      | N33      | N34      | N35      | N36      | N37      | N38      | N39      | N40      |          |
| COATED WEIGHT<br>(gm)     | <b>1</b>               | 1.721224 | 1.770414 | 1.764326 | 1.743092 | 1.775974 | 1.798992 | 1.822726 | 1.818224 | 1.820570 | 1.836138 |
|                           | <b>2</b>               | 1.721226 | 1.770410 | 1.764326 | 1.743090 | 1.775986 | 1.798990 | 1.822724 | 1.818226 | 1.820568 | 1.836136 |
|                           | <b>3</b>               | 1.721222 | 1.770406 | 1.764324 | 1.743092 | 1.775982 | 1.798988 | 1.822724 | 1.818226 | 1.820570 | 1.836138 |
|                           | <b>4</b>               | 1.721220 | 1.770408 | 1.764324 | 1.743092 | 1.775982 | 1.798984 | 1.822726 | 1.818224 | 1.820574 | 1.836142 |
|                           | <b>5</b>               | 1.721220 | 1.770410 | 1.764326 | 1.743088 | 1.775984 | 1.798986 | 1.822728 | 1.818220 | 1.820572 | 1.836140 |
|                           | <b>6</b>               | 1.721226 | 1.770414 | 1.764328 | 1.743082 | 1.775986 | 1.798992 | 1.822720 | 1.818218 | 1.820576 | 1.836146 |
|                           | <b>7</b>               | 1.721218 | 1.770408 | 1.764328 | 1.743084 | 1.775984 | 1.798992 | 1.822720 | 1.818224 | 1.820574 | 1.836146 |
|                           | <b>8</b>               | 1.721220 | 1.770410 | 1.764330 | 1.743090 | 1.775986 | 1.798994 | 1.822718 | 1.818224 | 1.820572 | 1.836146 |
|                           | <b>9</b>               | 1.721218 | 1.770406 | 1.764332 | 1.743088 | 1.775986 | 1.798996 | 1.822728 | 1.818222 | 1.820568 | 1.836144 |
|                           | <b>10</b>              | 1.721218 | 1.770408 | 1.764328 | 1.743090 | 1.775984 | 1.798984 | 1.822728 | 1.818222 | 1.820570 | 1.836142 |
| BARE<br>THICKNESS<br>(mm) | <b>1<sub>L</sub></b>   | 12.501   | 12.592   | 12.479   | 12.570   | 12.574   | 12.652   | 12.648   | 12.652   | 12.651   | 12.653   |
|                           | <b>2<sub>L</sub></b>   | 12.464   | 12.585   | 12.493   | 12.546   | 12.561   | 12.646   | 12.644   | 12.644   | 12.651   | 12.651   |
|                           | <b>3<sub>L</sub></b>   | 12.420   | 12.544   | 12.495   | 12.539   | 12.541   | 12.629   | 12.637   | 12.620   | 12.648   | 12.645   |
|                           | <b>4<sub>W</sub></b>   | 12.514   | 12.455   | 12.528   | 12.309   | 12.488   | 12.636   | 12.654   | 12.613   | 12.629   | 12.634   |
|                           | <b>5<sub>W</sub></b>   | 12.505   | 12.461   | 12.515   | 12.327   | 12.517   | 12.637   | 12.662   | 12.629   | 12.627   | 12.627   |
|                           | <b>6<sub>W</sub></b>   | 12.484   | 12.451   | 12.497   | 12.337   | 12.524   | 12.634   | 12.660   | 12.632   | 12.614   | 12.618   |
|                           | <b>1</b>               | 1.556    | 1.577    | 1.565    | 1.578    | 1.578    | 1.561    | 1.569    | 1.574    | 1.577    | 1.584    |
|                           | <b>2</b>               | 1.551    | 1.578    | 1.565    | 1.578    | 1.576    | 1.560    | 1.573    | 1.577    | 1.576    | 1.587    |
|                           | <b>3</b>               | 1.510    | 1.550    | 1.556    | 1.558    | 1.561    | 1.512    | 1.540    | 1.549    | 1.530    | 1.556    |
|                           | <b>4</b>               | 1.535    | 1.569    | 1.561    | 1.573    | 1.571    | 1.548    | 1.558    | 1.574    | 1.551    | 1.571    |
|                           | <b>5</b>               | 1.550    | 1.575    | 1.562    | 1.575    | 1.576    | 1.547    | 1.565    | 1.547    | 1.574    | 1.581    |

Table 97: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, NF616 Al-Coated

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | N31 | N32      | N33      | N34      | N35      | N36      | N37      | N38      | N39      | N40      |          |          |
| 200 hrs             | 1   | 1.724476 | 1.772772 | 1.766742 | 1.745710 | 1.778130 | 1.801918 | 1.825904 | 1.821476 | 1.824036 | 1.839876 |          |
|                     | 2   | 1.724486 | 1.772772 | 1.766748 | 1.745716 | 1.778138 | 1.801922 | 1.825902 | 1.821474 | 1.824036 | 1.839876 |          |
|                     | 3   | 1.724482 | 1.772762 | 1.766748 | 1.745706 | 1.778140 | 1.801922 | 1.825902 | 1.821472 | 1.824038 | 1.839878 |          |
|                     | 4   | 1.724486 | 1.772768 | 1.766746 | 1.745716 | 1.778140 | 1.801922 | 1.825904 | 1.821476 | 1.824038 | 1.839876 |          |
|                     | 5   | 1.724478 | 1.772764 | 1.766746 | 1.745706 | 1.778134 | 1.801926 | 1.825896 | 1.821478 | 1.824034 | 1.839878 |          |
|                     | 6   | 1.724476 | 1.772766 | 1.766740 | 1.745706 | 1.778132 | 1.801928 | 1.825896 | 1.821474 | 1.824040 | 1.839878 |          |
|                     | 7   | 1.724476 | 1.772762 | 1.766738 | 1.745710 | 1.778130 | 1.801928 | 1.825902 | 1.821474 | 1.824040 | 1.839886 |          |
|                     | 8   | 1.724484 | 1.772764 | 1.766738 | 1.745714 | 1.778134 | 1.801926 | 1.825894 | 1.821470 | 1.824036 | 1.839882 |          |
|                     | 9   | 1.724486 | 1.772762 | 1.766738 | 1.745708 | 1.778132 | 1.801928 | 1.825904 | 1.821472 | 1.824030 | 1.839878 |          |
|                     | 10  | 1.724484 | 1.772764 | 1.766748 | 1.745706 | 1.778132 | 1.801928 | 1.825902 | 1.821476 | 1.824036 | 1.839880 |          |
| 400 hrs             | 1   |          |          |          | 1.768092 | 1.747258 | 1.779408 | 1.803534 | 1.827638 | 1.823270 | 1.825968 | 1.841926 |
|                     | 2   |          |          |          | 1.768102 | 1.747266 | 1.779398 | 1.803528 | 1.827640 | 1.823270 | 1.825968 | 1.841930 |
|                     | 3   |          |          |          | 1.768092 | 1.747260 | 1.779406 | 1.803526 | 1.827648 | 1.823272 | 1.825966 | 1.841934 |
|                     | 4   |          |          |          | 1.768102 | 1.747266 | 1.779404 | 1.803526 | 1.827640 | 1.823276 | 1.825966 | 1.841924 |
|                     | 5   |          |          |          | 1.768094 | 1.747268 | 1.779398 | 1.803524 | 1.827646 | 1.823278 | 1.825972 | 1.841926 |
|                     | 6   |          |          |          | 1.768098 | 1.747260 | 1.779400 | 1.803524 | 1.827638 | 1.823268 | 1.825970 | 1.841924 |
|                     | 7   |          |          |          | 1.768100 | 1.747258 | 1.779408 | 1.803534 | 1.827640 | 1.823278 | 1.825968 | 1.841924 |
|                     | 8   |          |          |          | 1.768096 | 1.747268 | 1.779398 | 1.803526 | 1.827638 | 1.823268 | 1.825964 | 1.841928 |
|                     | 9   |          |          |          | 1.768098 | 1.747258 | 1.779406 | 1.803524 | 1.827642 | 1.823268 | 1.825964 | 1.841930 |
|                     | 10  |          |          |          | 1.768094 | 1.747260 | 1.779408 | 1.803526 | 1.827640 | 1.823270 | 1.825966 | 1.841928 |
| 600 hrs             | 1   |          |          |          |          |          |          | 1.829488 | 1.825130 | 1.827936 | 1.844068 |          |
|                     | 2   |          |          |          |          |          |          | 1.829494 | 1.825132 | 1.827930 | 1.844070 |          |
|                     | 3   |          |          |          |          |          |          | 1.829494 | 1.825128 | 1.827936 | 1.844068 |          |
|                     | 4   |          |          |          |          |          |          | 1.829492 | 1.825134 | 1.827932 | 1.844068 |          |
|                     | 5   |          |          |          |          |          |          | 1.829492 | 1.825126 | 1.827930 | 1.844072 |          |
|                     | 6   |          |          |          |          |          |          | 1.829490 | 1.825128 | 1.827930 | 1.844072 |          |
|                     | 7   |          |          |          |          |          |          | 1.829488 | 1.825130 | 1.827932 | 1.844066 |          |
|                     | 8   |          |          |          |          |          |          | 1.829490 | 1.825132 | 1.827934 | 1.844064 |          |
|                     | 9   |          |          |          |          |          |          | 1.829488 | 1.825132 | 1.827936 | 1.844074 |          |
|                     | 10  |          |          |          |          |          |          | 1.829488 | 1.825128 | 1.827932 | 1.844074 |          |
| 800 hrs             |     |          |          |          |          |          |          |          |          |          |          |          |
| Meas #              | N31 | N32      | N33      | N34      | N35      | N36      | N37      | N38      | N39      | N40      |          |          |
| 1                   |     |          |          |          |          |          |          |          | 1.831372 | 1.826980 | 1.829938 | 1.846258 |
| 2                   |     |          |          |          |          |          |          |          | 1.831378 | 1.826984 | 1.829936 | 1.846254 |
| 3                   |     |          |          |          |          |          |          |          | 1.831378 | 1.826984 | 1.829932 | 1.846258 |
| 4                   |     |          |          |          |          |          |          |          | 1.831376 | 1.826982 | 1.829942 | 1.846254 |
| 5                   |     |          |          |          |          |          |          |          | 1.831376 | 1.826980 | 1.829940 | 1.846252 |
| 6                   |     |          |          |          |          |          |          |          | 1.831372 | 1.826988 | 1.829936 | 1.846256 |
| 7                   |     |          |          |          |          |          |          |          | 1.831372 | 1.826982 | 1.829938 | 1.846258 |
| 8                   |     |          |          |          |          |          |          |          | 1.831374 | 1.826980 | 1.829940 | 1.846258 |
| 9                   |     |          |          |          |          |          |          |          | 1.831374 | 1.826984 | 1.829936 | 1.846252 |
| 10                  |     |          |          |          |          |          |          |          | 1.831372 | 1.826980 | 1.829938 | 1.846254 |
| 1000 hrs            |     |          |          |          |          |          |          |          |          |          |          |          |
| Meas #              | N31 | N32      | N33      | N34      | N35      | N36      | N37      | N38      | N39      | N40      |          |          |
| 1                   |     |          |          |          |          |          |          |          | 1.833318 | 1.828784 | 1.831922 | 1.848512 |
| 2                   |     |          |          |          |          |          |          |          | 1.833314 | 1.828782 | 1.831928 | 1.848512 |
| 3                   |     |          |          |          |          |          |          |          | 1.833318 | 1.828774 | 1.831924 | 1.848514 |
| 4                   |     |          |          |          |          |          |          |          | 1.833314 | 1.828778 | 1.831920 | 1.848518 |
| 5                   |     |          |          |          |          |          |          |          | 1.833314 | 1.828774 | 1.831926 | 1.848516 |
| 6                   |     |          |          |          |          |          |          |          | 1.833314 | 1.828774 | 1.831922 | 1.848512 |
| 7                   |     |          |          |          |          |          |          |          | 1.833316 | 1.828778 | 1.831922 | 1.848514 |
| 8                   |     |          |          |          |          |          |          |          | 1.833314 | 1.828780 | 1.831920 | 1.848516 |
| 9                   |     |          |          |          |          |          |          |          | 1.833320 | 1.828774 | 1.831922 | 1.848512 |
| 10                  |     |          |          |          |          |          |          |          | 1.833318 | 1.828774 | 1.831924 | 1.848514 |
| 1200 hrs            |     |          |          |          |          |          |          |          |          |          |          |          |
| Meas #              | N31 | N32      | N33      | N34      | N35      | N36      | N37      | N38      | N39      | N40      |          |          |
| 1                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 2                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 3                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 4                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 5                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 6                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 7                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 8                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 9                   |     |          |          |          |          |          |          |          |          |          |          |          |
| 10                  |     |          |          |          |          |          |          |          |          |          |          |          |

Table 98: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, HCM12A Y-Coated

|                 |                                                     |                                   |                                           |
|-----------------|-----------------------------------------------------|-----------------------------------|-------------------------------------------|
| Project:        | SCCO2                                               | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        | PRJ39TC                                             | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            | 24386                                               | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | 7                                                   | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:          | Y-Coated                                            | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Research CO2                                        | Metal Type:                       |                                           |
| Temp. (°C):     | 550                                                 | Color Designation:                |                                           |
| Pressure (MPa): | 20                                                  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | HCM12A                                              |                                   |                                           |
| Notes:          | Bare weight is meas weight of samples after coating |                                   |                                           |

| Meas #                             | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|------------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                    | H42                    | H43      | H44      | H45      | H46      | H47      | H48      | H49      | H50      | H51      |          |
| COATED WEIGHT<br>(gm)              | <b>1</b>               | 1.666864 | 1.761748 | 1.759558 | 1.788938 | 1.781780 | 1.782118 | 1.788328 | 1.794786 | 1.797204 | 1.801020 |
|                                    | <b>2</b>               | 1.666862 | 1.761748 | 1.759556 | 1.788946 | 1.781782 | 1.782122 | 1.788334 | 1.794778 | 1.797212 | 1.801026 |
|                                    | <b>3</b>               | 1.666862 | 1.761742 | 1.759556 | 1.788938 | 1.781774 | 1.782118 | 1.788328 | 1.794782 | 1.797216 | 1.801016 |
|                                    | <b>4</b>               | 1.666858 | 1.761752 | 1.759560 | 1.788940 | 1.781780 | 1.782126 | 1.788330 | 1.794786 | 1.797212 | 1.801016 |
|                                    | <b>5</b>               | 1.666862 | 1.761738 | 1.759570 | 1.788948 | 1.781774 | 1.782122 | 1.788324 | 1.794782 | 1.797216 | 1.801012 |
|                                    | <b>6</b>               | 1.666864 | 1.761750 | 1.759560 | 1.788938 | 1.781776 | 1.782118 | 1.788326 | 1.794788 | 1.797212 | 1.801014 |
|                                    | <b>7</b>               | 1.666860 | 1.761742 | 1.759568 | 1.788938 | 1.781778 | 1.782126 | 1.788332 | 1.794784 | 1.797214 | 1.801016 |
|                                    | <b>8</b>               | 1.666860 | 1.761750 | 1.759562 | 1.788944 | 1.781780 | 1.782120 | 1.788324 | 1.794776 | 1.797210 | 1.801016 |
|                                    | <b>9</b>               | 1.666860 | 1.761740 | 1.759558 | 1.788944 | 1.781780 | 1.782126 | 1.788328 | 1.794778 | 1.797216 | 1.801022 |
|                                    | <b>10</b>              | 1.666862 | 1.761746 | 1.759558 | 1.788948 | 1.781776 | 1.782126 | 1.788328 | 1.794786 | 1.797206 | 1.801014 |
| BARE<br>AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.544   | 12.588   | 12.598   | 12.624   | 12.598   | 12.570   | 12.653   | 12.646   | 12.656   | 12.599   |
|                                    | <b>2<sub>L</sub></b>   | 12.528   | 12.585   | 12.605   | 12.612   | 12.597   | 12.570   | 12.650   | 12.642   | 12.652   | 12.594   |
|                                    | <b>3<sub>L</sub></b>   | 12.510   | 12.584   | 12.622   | 12.607   | 12.590   | 12.562   | 12.650   | 12.640   | 12.648   | 12.591   |
|                                    | <b>4<sub>W</sub></b>   | 12.476   | 12.531   | 12.574   | 12.585   | 12.641   | 12.610   | 12.591   | 12.590   | 12.565   | 12.606   |
|                                    | <b>5<sub>W</sub></b>   | 12.483   | 12.525   | 12.563   | 12.575   | 12.632   | 12.628   | 12.576   | 12.585   | 12.565   | 12.600   |
|                                    | <b>6<sub>W</sub></b>   | 12.487   | 12.519   | 12.557   | 12.565   | 12.632   | 12.636   | 12.568   | 12.570   | 12.563   | 12.594   |
| BARE<br>THICKNESS<br>(mm)          | <b>1</b>               | 1.510    | 1.550    | 1.541    | 1.558    | 1.546    | 1.552    | 1.555    | 1.560    | 1.556    | 1.563    |
|                                    | <b>2</b>               | 1.504    | 1.550    | 1.542    | 1.560    | 1.550    | 1.554    | 1.558    | 1.563    | 1.560    | 1.567    |
|                                    | <b>3</b>               | 1.408    | 1.500    | 1.495    | 1.521    | 1.504    | 1.514    | 1.525    | 1.531    | 1.541    | 1.544    |
|                                    | <b>4</b>               | 1.485    | 1.530    | 1.530    | 1.550    | 1.543    | 1.549    | 1.548    | 1.552    | 1.551    | 1.561    |
|                                    | <b>5</b>               | 1.468    | 1.530    | 1.523    | 1.545    | 1.529    | 1.534    | 1.541    | 1.548    | 1.555    | 1.559    |

Table 99: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, HCM12A Y-Coated

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | H42 | H43      | H44      | H45      | H46      | H47      | H48      | H49      | H50      | H51      |          |
| 200 hrs             | 1   | 1.667266 | 1.762128 | 1.759962 | 1.789372 | 1.782180 | 1.782524 | 1.788778 | 1.795182 | 1.797570 | 1.801472 |
|                     | 2   | 1.667264 | 1.762122 | 1.759962 | 1.789368 | 1.782172 | 1.782524 | 1.788778 | 1.795176 | 1.797568 | 1.801472 |
|                     | 3   | 1.667258 | 1.762122 | 1.759960 | 1.789362 | 1.782176 | 1.782516 | 1.788782 | 1.795182 | 1.797566 | 1.801468 |
|                     | 4   | 1.667266 | 1.762118 | 1.759966 | 1.789364 | 1.782178 | 1.782518 | 1.788776 | 1.795182 | 1.797576 | 1.801470 |
|                     | 5   | 1.667264 | 1.762126 | 1.759962 | 1.789366 | 1.782178 | 1.782516 | 1.788784 | 1.795172 | 1.797576 | 1.801470 |
|                     | 6   | 1.667268 | 1.762120 | 1.759958 | 1.789366 | 1.782178 | 1.782516 | 1.788776 | 1.795182 | 1.797574 | 1.801472 |
|                     | 7   | 1.667262 | 1.762118 | 1.759966 | 1.789368 | 1.782180 | 1.782522 | 1.788784 | 1.795174 | 1.797574 | 1.801470 |
|                     | 8   | 1.667264 | 1.762124 | 1.759956 | 1.789368 | 1.782182 | 1.782520 | 1.788774 | 1.795182 | 1.797566 | 1.801462 |
|                     | 9   | 1.667266 | 1.762120 | 1.759956 | 1.789362 | 1.782182 | 1.782516 | 1.788774 | 1.795174 | 1.797564 | 1.801468 |
|                     | 10  | 1.667262 | 1.762122 | 1.759964 | 1.789364 | 1.782174 | 1.782522 | 1.788778 | 1.795178 | 1.797566 | 1.801470 |
| 400 hrs             | 1   |          |          |          | 1.782336 | 1.782680 | 1.788920 | 1.795338 |          |          |          |
|                     | 2   |          |          |          | 1.782342 | 1.782676 | 1.788918 | 1.795336 |          |          |          |
|                     | 3   |          |          |          | 1.782338 | 1.782676 | 1.788918 | 1.795342 |          |          |          |
|                     | 4   |          |          |          | 1.782342 | 1.782682 | 1.788924 | 1.795338 |          |          |          |
|                     | 5   |          |          |          | 1.782332 | 1.782676 | 1.788922 | 1.795340 |          |          |          |
|                     | 6   |          |          |          | 1.782334 | 1.782672 | 1.788926 | 1.795336 |          |          |          |
|                     | 7   |          |          |          | 1.782336 | 1.782672 | 1.788916 | 1.795338 |          |          |          |
|                     | 8   |          |          |          | 1.782332 | 1.782672 | 1.788916 | 1.795336 |          |          |          |
|                     | 9   |          |          |          | 1.782336 | 1.782676 | 1.788920 | 1.795334 |          |          |          |
|                     | 10  |          |          |          | 1.782338 | 1.782674 | 1.788918 | 1.795332 |          |          |          |
| 600 hrs             | 1   |          |          |          | 1.782482 | 1.782818 | 1.789082 |          |          |          |          |
|                     | 2   |          |          |          | 1.782482 | 1.782818 | 1.789078 |          |          |          |          |
|                     | 3   |          |          |          | 1.782480 | 1.782818 | 1.789076 |          |          |          |          |
|                     | 4   |          |          |          | 1.782482 | 1.782816 | 1.789080 |          |          |          |          |
|                     | 5   |          |          |          | 1.782480 | 1.782818 | 1.789078 |          |          |          |          |
|                     | 6   |          |          |          | 1.782480 | 1.782822 | 1.789078 |          |          |          |          |
|                     | 7   |          |          |          | 1.782480 | 1.782818 | 1.789082 |          |          |          |          |
|                     | 8   |          |          |          | 1.782480 | 1.782818 | 1.789076 |          |          |          |          |
|                     | 9   |          |          |          | 1.782476 | 1.782822 | 1.789076 |          |          |          |          |
|                     | 10  |          |          |          | 1.782478 | 1.782822 | 1.789078 |          |          |          |          |
| 800 hrs             | 1   |          |          |          | 1.782644 | 1.782974 | 1.789254 | 1.795526 |          |          |          |
|                     | 2   |          |          |          | 1.782644 | 1.782972 | 1.789258 | 1.795520 |          |          |          |
|                     | 3   |          |          |          | 1.782642 | 1.782972 | 1.789250 | 1.795522 |          |          |          |
|                     | 4   |          |          |          | 1.782644 | 1.782968 | 1.789252 | 1.795526 |          |          |          |
|                     | 5   |          |          |          | 1.782646 | 1.782970 | 1.789252 | 1.795526 |          |          |          |
|                     | 6   |          |          |          | 1.782642 | 1.782972 | 1.789250 | 1.795524 |          |          |          |
|                     | 7   |          |          |          | 1.782644 | 1.782968 | 1.789250 | 1.795524 |          |          |          |
|                     | 8   |          |          |          | 1.782642 | 1.782970 | 1.789256 | 1.795518 |          |          |          |
|                     | 9   |          |          |          | 1.782642 | 1.782972 | 1.789250 | 1.795520 |          |          |          |
|                     | 10  |          |          |          | 1.782644 | 1.782976 | 1.789252 | 1.795524 |          |          |          |
| 1000 hrs            | 1   |          |          |          | 1.782818 | 1.783118 | 1.789430 | 1.795712 |          |          |          |
|                     | 2   |          |          |          | 1.782826 | 1.783120 | 1.789432 | 1.795710 |          |          |          |
|                     | 3   |          |          |          | 1.782826 | 1.783116 | 1.789430 | 1.795704 |          |          |          |
|                     | 4   |          |          |          | 1.782828 | 1.783114 | 1.789430 | 1.795712 |          |          |          |
|                     | 5   |          |          |          | 1.782818 | 1.783120 | 1.789432 | 1.795706 |          |          |          |
|                     | 6   |          |          |          | 1.782826 | 1.783118 | 1.789430 | 1.795708 |          |          |          |
|                     | 7   |          |          |          | 1.782822 | 1.783116 | 1.789436 | 1.795708 |          |          |          |
|                     | 8   |          |          |          | 1.782824 | 1.783116 | 1.789434 | 1.795710 |          |          |          |
|                     | 9   |          |          |          | 1.782826 | 1.783120 | 1.789430 | 1.795704 |          |          |          |
|                     | 10  |          |          |          | 1.782828 | 1.783118 | 1.789432 | 1.795708 |          |          |          |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |

Table 100: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, NF616 Y-Coated

|                 |                                                     |                                   |                                           |
|-----------------|-----------------------------------------------------|-----------------------------------|-------------------------------------------|
| Project:        | SCCO2                                               | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        | PRJ39TC                                             | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            | 24386                                               | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | 7                                                   | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000179$ cm <sup>2</sup> |
| Phase:          | <b>Y-Coated</b>                                     | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Research CO2                                        | Metal Type:                       |                                           |
| Temp. (°C):     | 550                                                 | Color Designation:                |                                           |
| Pressure (MPa): | 20                                                  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>NF616</b>                                        |                                   |                                           |
| Notes:          | Bare weight is meas weight of samples after coating |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | N44                    | N45      | N46      | N47      | N48      | N49      | N50      | N51      | N52      | N53      |          |
| BARE WEIGHT<br>(gm)             | 1                      | 1.789584 | 1.811770 | 1.793678 | 1.806584 | 1.766808 | 1.791582 | 1.822936 | 1.772092 | 1.821846 | 1.808552 |
|                                 | 2                      | 1.789588 | 1.811768 | 1.793672 | 1.806586 | 1.766804 | 1.791582 | 1.822934 | 1.772096 | 1.821848 | 1.808554 |
|                                 | 3                      | 1.789586 | 1.811766 | 1.793682 | 1.806584 | 1.766812 | 1.791574 | 1.822932 | 1.772098 | 1.821842 | 1.808548 |
|                                 | 4                      | 1.789582 | 1.811768 | 1.793674 | 1.806590 | 1.766810 | 1.791578 | 1.822934 | 1.772090 | 1.821852 | 1.808548 |
|                                 | 5                      | 1.789586 | 1.811766 | 1.793676 | 1.806580 | 1.766806 | 1.791574 | 1.822932 | 1.772092 | 1.821842 | 1.808550 |
|                                 | 6                      | 1.789582 | 1.811766 | 1.793682 | 1.806586 | 1.766802 | 1.791572 | 1.822928 | 1.772090 | 1.821846 | 1.808556 |
|                                 | 7                      | 1.789586 | 1.811760 | 1.793672 | 1.806586 | 1.766802 | 1.791576 | 1.822930 | 1.772100 | 1.821844 | 1.808550 |
|                                 | 8                      | 1.789582 | 1.811764 | 1.793680 | 1.806588 | 1.766812 | 1.791576 | 1.822932 | 1.772098 | 1.821844 | 1.808556 |
|                                 | 9                      | 1.789582 | 1.811770 | 1.793676 | 1.806586 | 1.766806 | 1.791576 | 1.822926 | 1.772100 | 1.821852 | 1.808554 |
|                                 | 10                     | 1.789580 | 1.811766 | 1.793676 | 1.806580 | 1.766804 | 1.791574 | 1.822930 | 1.772098 | 1.821850 | 1.808552 |
| BARE AREA<br>(mm <sup>2</sup> ) | 1 <sub>L</sub>         | 12.655   | 12.658   | 12.646   | 12.637   | 12.644   | 12.661   | 12.668   | 12.621   | 12.629   | 12.632   |
|                                 | 2 <sub>L</sub>         | 12.676   | 12.657   | 12.657   | 12.637   | 12.648   | 12.659   | 12.674   | 12.624   | 12.627   | 12.613   |
|                                 | 3 <sub>L</sub>         | 12.676   | 12.642   | 12.658   | 12.638   | 12.650   | 12.650   | 12.674   | 12.622   | 12.621   | 12.624   |
|                                 | 4 <sub>W</sub>         | 12.633   | 12.627   | 12.655   | 12.614   | 12.639   | 12.639   | 12.618   | 12.639   | 12.646   | 12.673   |
|                                 | 5 <sub>W</sub>         | 12.634   | 12.620   | 12.650   | 12.608   | 12.630   | 12.634   | 12.620   | 12.634   | 12.648   | 12.673   |
|                                 | 6 <sub>W</sub>         | 12.630   | 12.615   | 12.640   | 12.591   | 12.615   | 12.622   | 12.614   | 12.616   | 12.649   | 12.669   |
| BARE THICKNESS<br>(mm)          | 1                      | 1.561    | 1.566    | 1.558    | 1.567    | 1.538    | 1.559    | 1.580    | 1.548    | 1.574    | 1.567    |
|                                 | 2                      | 1.563    | 1.572    | 1.560    | 1.569    | 1.541    | 1.559    | 1.578    | 1.533    | 1.575    | 1.552    |
|                                 | 3                      | 1.509    | 1.544    | 1.511    | 1.533    | 1.506    | 1.496    | 1.535    | 1.522    | 1.560    | 1.559    |
|                                 | 4                      | 1.559    | 1.537    | 1.547    | 1.563    | 1.540    | 1.543    | 1.569    | 1.539    | 1.564    | 1.566    |
|                                 | 5                      | 1.529    | 1.569    | 1.529    | 1.549    | 1.501    | 1.547    | 1.562    | 1.544    | 1.573    | 1.562    |

Table 101: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, NF616 Y-Coated

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | N44 | N45      | N46      | N47      | N48      | N49      | N50      | N51      | N52      | N53      |          |
| 200 hrs             | 1   | 1.790086 | 1.812286 | 1.794164 | 1.807072 | 1.767338 | 1.792064 | 1.823410 | 1.772614 | 1.822376 | 1.809074 |
|                     | 2   | 1.790084 | 1.812294 | 1.794158 | 1.807072 | 1.767336 | 1.792060 | 1.823408 | 1.772614 | 1.822372 | 1.809074 |
|                     | 3   | 1.790090 | 1.812284 | 1.794164 | 1.807068 | 1.767336 | 1.792064 | 1.823404 | 1.772624 | 1.822376 | 1.809072 |
|                     | 4   | 1.790090 | 1.812288 | 1.794158 | 1.807068 | 1.767336 | 1.792058 | 1.823406 | 1.772614 | 1.822382 | 1.809066 |
|                     | 5   | 1.790082 | 1.812290 | 1.794166 | 1.807072 | 1.767344 | 1.792054 | 1.823412 | 1.772616 | 1.822372 | 1.809064 |
|                     | 6   | 1.790086 | 1.812286 | 1.794158 | 1.807078 | 1.767336 | 1.792062 | 1.823402 | 1.772614 | 1.822380 | 1.809068 |
|                     | 7   | 1.790090 | 1.812284 | 1.794168 | 1.807076 | 1.767336 | 1.792062 | 1.823408 | 1.772614 | 1.822382 | 1.809066 |
|                     | 8   | 1.790090 | 1.812286 | 1.794166 | 1.807074 | 1.767334 | 1.792064 | 1.823402 | 1.772614 | 1.822372 | 1.809072 |
|                     | 9   | 1.790092 | 1.812288 | 1.794158 | 1.807072 | 1.767340 | 1.792062 | 1.823412 | 1.772616 | 1.822372 | 1.809068 |
|                     | 10  | 1.790090 | 1.812286 | 1.794160 | 1.807076 | 1.767336 | 1.792064 | 1.823408 | 1.772614 | 1.822374 | 1.809070 |
| 400 hrs             | 1   |          | 1.794372 | 1.807304 | 1.767572 | 1.792262 | 1.823604 | 1.772872 | 1.822646 | 1.809300 |          |
|                     | 2   |          | 1.794372 | 1.807300 | 1.767562 | 1.792256 | 1.823600 | 1.772870 | 1.822656 | 1.809302 |          |
|                     | 3   |          | 1.794374 | 1.807294 | 1.767564 | 1.792264 | 1.823604 | 1.772872 | 1.822648 | 1.809304 |          |
|                     | 4   |          | 1.794378 | 1.807302 | 1.767566 | 1.792256 | 1.823600 | 1.772866 | 1.822656 | 1.809294 |          |
|                     | 5   |          | 1.794368 | 1.807298 | 1.767562 | 1.792258 | 1.823598 | 1.772872 | 1.822646 | 1.809296 |          |
|                     | 6   |          | 1.794378 | 1.807302 | 1.767570 | 1.792256 | 1.823602 | 1.772868 | 1.822646 | 1.809298 |          |
|                     | 7   |          | 1.794372 | 1.807304 | 1.767572 | 1.792262 | 1.823608 | 1.772862 | 1.822646 | 1.809304 |          |
|                     | 8   |          | 1.794374 | 1.807294 | 1.767562 | 1.792262 | 1.823600 | 1.772866 | 1.822656 | 1.809296 |          |
|                     | 9   |          | 1.794368 | 1.807300 | 1.767564 | 1.792260 | 1.823600 | 1.772868 | 1.822648 | 1.809304 |          |
|                     | 10  |          | 1.794376 | 1.807298 | 1.767568 | 1.792262 | 1.823602 | 1.772872 | 1.822648 | 1.809300 |          |
| 600 hrs             | 1   |          |          |          | 1.767820 | 1.792486 | 1.823840 | 1.773172 |          |          |          |
|                     | 2   |          |          |          | 1.767820 | 1.792482 | 1.823840 | 1.773174 |          |          |          |
|                     | 3   |          |          |          | 1.767816 | 1.792484 | 1.823838 | 1.773166 |          |          |          |
|                     | 4   |          |          |          | 1.767816 | 1.792484 | 1.823842 | 1.773176 |          |          |          |
|                     | 5   |          |          |          | 1.767818 | 1.792486 | 1.823836 | 1.773168 |          |          |          |
|                     | 6   |          |          |          | 1.767818 | 1.792490 | 1.823834 | 1.773168 |          |          |          |
|                     | 7   |          |          |          | 1.767820 | 1.792486 | 1.823834 | 1.773166 |          |          |          |
|                     | 8   |          |          |          | 1.767818 | 1.792488 | 1.823836 | 1.773168 |          |          |          |
|                     | 9   |          |          |          | 1.767820 | 1.792484 | 1.823834 | 1.773166 |          |          |          |
|                     | 10  |          |          |          | 1.767818 | 1.792482 | 1.823842 | 1.773170 |          |          |          |
| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
| Meas #              | N44 | N45      | N46      | N47      | N48      | N49      | N50      | N51      | N52      | N53      |          |
| 800 hrs             | 1   |          |          |          |          | 1.768244 | 1.792846 | 1.824190 | 1.773632 |          |          |
|                     | 2   |          |          |          |          | 1.768248 | 1.792846 | 1.824186 | 1.773632 |          |          |
|                     | 3   |          |          |          |          | 1.768246 | 1.792848 | 1.824188 | 1.773638 |          |          |
|                     | 4   |          |          |          |          | 1.768244 | 1.792846 | 1.824184 | 1.773634 |          |          |
|                     | 5   |          |          |          |          | 1.768248 | 1.792844 | 1.824186 | 1.773634 |          |          |
|                     | 6   |          |          |          |          | 1.768246 | 1.792844 | 1.824182 | 1.773632 |          |          |
|                     | 7   |          |          |          |          | 1.768250 | 1.792846 | 1.824184 | 1.773632 |          |          |
|                     | 8   |          |          |          |          | 1.768250 | 1.792846 | 1.824182 | 1.773634 |          |          |
|                     | 9   |          |          |          |          | 1.768244 | 1.792842 | 1.824184 | 1.773636 |          |          |
|                     | 10  |          |          |          |          | 1.768246 | 1.792844 | 1.824186 | 1.773634 |          |          |
| 800 hrs             |     |          |          |          |          |          |          |          |          |          |          |
| Meas #              | N44 | N45      | N46      | N47      | N48      | N49      | N50      | N51      | N52      | N53      |          |
| 1000 hrs            | 1   |          |          |          |          |          | 1.768744 | 1.793272 | 1.824580 | 1.774160 |          |
|                     | 2   |          |          |          |          |          | 1.768746 | 1.793274 | 1.824578 | 1.774160 |          |
|                     | 3   |          |          |          |          |          | 1.768748 | 1.793270 | 1.824572 | 1.774158 |          |
|                     | 4   |          |          |          |          |          | 1.768754 | 1.793274 | 1.824574 | 1.774158 |          |
|                     | 5   |          |          |          |          |          | 1.768748 | 1.793272 | 1.824576 | 1.774154 |          |
|                     | 6   |          |          |          |          |          | 1.768752 | 1.793272 | 1.824578 | 1.774156 |          |
|                     | 7   |          |          |          |          |          | 1.768750 | 1.793272 | 1.824572 | 1.774158 |          |
|                     | 8   |          |          |          |          |          | 1.768754 | 1.793274 | 1.824574 | 1.774160 |          |
|                     | 9   |          |          |          |          |          | 1.768754 | 1.793272 | 1.824580 | 1.774158 |          |
|                     | 10  |          |          |          |          |          | 1.768748 | 1.793270 | 1.824576 | 1.774156 |          |
| 1000 hrs            |     |          |          |          |          |          |          |          |          |          |          |
| Meas #              | N44 | N45      | N46      | N47      | N48      | N49      | N50      | N51      | N52      | N53      |          |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |
| 1200 hrs            |     |          |          |          |          |          |          |          |          |          |          |
| Meas #              | N44 | N45      | N46      | N47      | N48      | N49      | N50      | N51      | N52      | N53      |          |

Table 102: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, HCM12A Shot Peened

|                 |                                                                                   |                                   |                                           |
|-----------------|-----------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| Project:        | SCCO2                                                                             | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        | PRJ39TC                                                                           | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            | 24386                                                                             | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | 7                                                                                 | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:          | <b>Shot Peened</b>                                                                | Pressure:                         | 60 psi                                    |
| Phase Type:     | Research CO2                                                                      | Time:                             | 6 secs                                    |
| Temp. (°C):     | 550                                                                               | Both Sides?                       | Yes                                       |
| Pressure (MPa): | 20                                                                                | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>HCM12A</b>                                                                     |                                   |                                           |
| Notes:          | Bare weight is meas weight of samples after peening; Ervin AMACAST ES-300 SS Shot |                                   |                                           |

| Meas #                          | Sample # / Description |          |          |          |          |          |          |          |          |          |          |
|---------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                 | H52                    | H53      | H54      | H55      | H56      | H57      | H58      | H59      | H60      | H61      |          |
| BARE WEIGHT<br>(gm)             | <b>1</b>               | 1.754422 | 1.748470 | 1.757928 | 1.792338 | 1.800320 | 1.825638 | 1.835708 | 1.828378 | 1.814376 | 1.834442 |
|                                 | <b>2</b>               | 1.754422 | 1.748464 | 1.757932 | 1.792336 | 1.800330 | 1.825648 | 1.835710 | 1.828368 | 1.814380 | 1.834446 |
|                                 | <b>3</b>               | 1.754422 | 1.748470 | 1.757932 | 1.792338 | 1.800326 | 1.825638 | 1.835716 | 1.828370 | 1.814380 | 1.834448 |
|                                 | <b>4</b>               | 1.754426 | 1.748468 | 1.757934 | 1.792340 | 1.800332 | 1.825644 | 1.835706 | 1.828368 | 1.814374 | 1.834450 |
|                                 | <b>5</b>               | 1.754430 | 1.748464 | 1.757932 | 1.792346 | 1.800328 | 1.825638 | 1.835710 | 1.828374 | 1.814376 | 1.834444 |
|                                 | <b>6</b>               | 1.754422 | 1.748468 | 1.757928 | 1.792340 | 1.800324 | 1.825648 | 1.835716 | 1.828374 | 1.814372 | 1.834444 |
|                                 | <b>7</b>               | 1.754422 | 1.748474 | 1.757930 | 1.792340 | 1.800320 | 1.825648 | 1.835706 | 1.828376 | 1.814382 | 1.834440 |
|                                 | <b>8</b>               | 1.754432 | 1.748464 | 1.757924 | 1.792336 | 1.800330 | 1.825648 | 1.835714 | 1.828376 | 1.814376 | 1.834440 |
|                                 | <b>9</b>               | 1.754432 | 1.748468 | 1.757930 | 1.792342 | 1.800330 | 1.825640 | 1.835710 | 1.828370 | 1.814374 | 1.834446 |
|                                 | <b>10</b>              | 1.754422 | 1.748472 | 1.757928 | 1.792346 | 1.800328 | 1.825648 | 1.835706 | 1.828370 | 1.814380 | 1.834444 |
| BARE AREA<br>(mm <sup>2</sup> ) | <b>1<sub>L</sub></b>   | 12.584   | 12.557   | 12.546   | 12.614   | 12.530   | 12.646   | 12.711   | 12.654   | 12.672   | 12.608   |
|                                 | <b>2<sub>L</sub></b>   | 12.587   | 12.571   | 12.548   | 12.619   | 12.545   | 12.634   | 12.725   | 12.666   | 12.683   | 12.602   |
|                                 | <b>3<sub>L</sub></b>   | 12.601   | 12.581   | 12.545   | 12.622   | 12.545   | 12.647   | 12.711   | 12.549   | 12.683   | 12.579   |
|                                 | <b>4<sub>W</sub></b>   | 12.614   | 12.505   | 12.563   | 12.662   | 12.646   | 12.692   | 12.632   | 12.673   | 12.564   | 12.702   |
|                                 | <b>5<sub>W</sub></b>   | 12.625   | 12.510   | 12.593   | 12.672   | 12.611   | 12.694   | 12.631   | 12.703   | 12.567   | 12.688   |
| BARE THICKNESS<br>(mm)          | <b>6<sub>W</sub></b>   | 12.609   | 12.530   | 12.570   | 12.675   | 12.628   | 12.720   | 12.635   | 12.713   | 12.538   | 12.698   |
|                                 | <b>1</b>               | 1.561    | 1.569    | 1.561    | 1.576    | 1.580    | 1.574    | 1.565    | 1.560    | 1.562    | 1.572    |
|                                 | <b>2</b>               | 1.565    | 1.564    | 1.561    | 1.580    | 1.584    | 1.575    | 1.568    | 1.553    | 1.558    | 1.571    |
|                                 | <b>3</b>               | 1.554    | 1.537    | 1.555    | 1.565    | 1.584    | 1.569    | 1.563    | 1.540    | 1.561    | 1.566    |
|                                 | <b>4</b>               | 1.553    | 1.553    | 1.558    | 1.575    | 1.582    | 1.567    | 1.560    | 1.549    | 1.561    | 1.569    |
|                                 | <b>5</b>               | 1.562    | 1.556    | 1.556    | 1.581    | 1.578    | 1.569    | 1.568    | 1.549    | 1.557    | 1.558    |

Table 103: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, HCM12A Shot Peened

| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Meas #              | H52 | H53      | H54      | H55      | H56      | H57      | H58      | H59      | H60      | H61      |          |
| 200 hrs             | 1   | 1.754948 | 1.749028 | 1.758534 | 1.792920 | 1.800990 | 1.826226 | 1.836402 | 1.829064 | 1.814956 | 1.835070 |
|                     | 2   | 1.754946 | 1.749026 | 1.758536 | 1.792922 | 1.800982 | 1.826216 | 1.836404 | 1.829070 | 1.814952 | 1.835062 |
|                     | 3   | 1.754946 | 1.749026 | 1.758530 | 1.792920 | 1.800980 | 1.826222 | 1.836406 | 1.829074 | 1.814958 | 1.835064 |
|                     | 4   | 1.754946 | 1.749028 | 1.758536 | 1.792916 | 1.800980 | 1.826220 | 1.836406 | 1.829064 | 1.814960 | 1.835068 |
|                     | 5   | 1.754944 | 1.749028 | 1.758530 | 1.792924 | 1.800984 | 1.826216 | 1.836402 | 1.829068 | 1.814960 | 1.835068 |
|                     | 6   | 1.754944 | 1.749034 | 1.758530 | 1.792922 | 1.800990 | 1.826224 | 1.836410 | 1.829070 | 1.814956 | 1.835060 |
|                     | 7   | 1.754940 | 1.749028 | 1.758534 | 1.792920 | 1.800980 | 1.826216 | 1.836410 | 1.829064 | 1.814962 | 1.835068 |
|                     | 8   | 1.754940 | 1.749032 | 1.758536 | 1.792920 | 1.800982 | 1.826216 | 1.836406 | 1.829068 | 1.814962 | 1.835070 |
|                     | 9   | 1.754938 | 1.749034 | 1.758530 | 1.792918 | 1.800980 | 1.826220 | 1.836408 | 1.829064 | 1.814960 | 1.835068 |
|                     | 10  | 1.754944 | 1.749030 | 1.758532 | 1.792920 | 1.800988 | 1.826222 | 1.836410 | 1.829072 | 1.814958 | 1.835064 |
| 400 hrs             | 1   |          |          | 1.758680 | 1.793034 | 1.801110 | 1.826346 | 1.836588 | 1.829224 | 1.815092 | 1.835172 |
|                     | 2   |          |          | 1.758684 | 1.793036 | 1.801116 | 1.826346 | 1.836582 | 1.829230 | 1.815102 | 1.835170 |
|                     | 3   |          |          | 1.758688 | 1.793028 | 1.801112 | 1.826354 | 1.836580 | 1.829226 | 1.815096 | 1.835168 |
|                     | 4   |          |          | 1.758684 | 1.793032 | 1.801106 | 1.826354 | 1.836588 | 1.829228 | 1.815096 | 1.835170 |
|                     | 5   |          |          | 1.758688 | 1.793032 | 1.801114 | 1.826348 | 1.836586 | 1.829226 | 1.815098 | 1.835172 |
|                     | 6   |          |          | 1.758680 | 1.793030 | 1.801106 | 1.826352 | 1.836584 | 1.829230 | 1.815096 | 1.835174 |
|                     | 7   |          |          | 1.758690 | 1.793030 | 1.801116 | 1.826346 | 1.836582 | 1.829226 | 1.815096 | 1.835170 |
|                     | 8   |          |          | 1.758688 | 1.793032 | 1.801106 | 1.826350 | 1.836578 | 1.829232 | 1.815100 | 1.835172 |
|                     | 9   |          |          | 1.758688 | 1.793038 | 1.801114 | 1.826348 | 1.836582 | 1.829228 | 1.815098 | 1.835178 |
|                     | 10  |          |          | 1.758690 | 1.793038 | 1.801110 | 1.826352 | 1.836588 | 1.829232 | 1.815096 | 1.835178 |
| 600 hrs             | 1   |          |          |          | 1.801234 | 1.826468 | 1.836736 | 1.829370 |          |          |          |
|                     | 2   |          |          |          | 1.801238 | 1.826470 | 1.836734 | 1.829366 |          |          |          |
|                     | 3   |          |          |          | 1.801242 | 1.826464 | 1.836736 | 1.829368 |          |          |          |
|                     | 4   |          |          |          | 1.801236 | 1.826468 | 1.836742 | 1.829368 |          |          |          |
|                     | 5   |          |          |          | 1.801236 | 1.826464 | 1.836736 | 1.829364 |          |          |          |
|                     | 6   |          |          |          | 1.801240 | 1.826464 | 1.836740 | 1.829364 |          |          |          |
|                     | 7   |          |          |          | 1.801244 | 1.826466 | 1.836736 | 1.829370 |          |          |          |
|                     | 8   |          |          |          | 1.801236 | 1.826464 | 1.836734 | 1.829362 |          |          |          |
|                     | 9   |          |          |          | 1.801234 | 1.826466 | 1.836736 | 1.829366 |          |          |          |
|                     | 10  |          |          |          | 1.801244 | 1.826470 | 1.836736 | 1.829368 |          |          |          |
| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
| Meas #              | H52 | H53      | H54      | H55      | H56      | H57      | H58      | H59      | H60      | H61      |          |
| 800 hrs             | 1   |          |          |          |          |          | 1.801340 | 1.826562 | 1.836874 | 1.829496 |          |
|                     | 2   |          |          |          |          |          | 1.801342 | 1.826560 | 1.836868 | 1.829494 |          |
|                     | 3   |          |          |          |          |          | 1.801346 | 1.826560 | 1.836870 | 1.829490 |          |
|                     | 4   |          |          |          |          |          | 1.801346 | 1.826558 | 1.836870 | 1.829494 |          |
|                     | 5   |          |          |          |          |          | 1.801342 | 1.826560 | 1.836868 | 1.829490 |          |
|                     | 6   |          |          |          |          |          | 1.801340 | 1.826560 | 1.836864 | 1.829490 |          |
|                     | 7   |          |          |          |          |          | 1.801340 | 1.826556 | 1.836866 | 1.829492 |          |
|                     | 8   |          |          |          |          |          | 1.801340 | 1.826558 | 1.836866 | 1.829490 |          |
|                     | 9   |          |          |          |          |          | 1.801336 | 1.826556 | 1.836868 | 1.829490 |          |
|                     | 10  |          |          |          |          |          | 1.801338 | 1.826560 | 1.836870 | 1.829492 |          |
| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
| Meas #              | H52 | H53      | H54      | H55      | H56      | H57      | H58      | H59      | H60      | H61      |          |
| 1000 hrs            | 1   |          |          |          |          |          |          | 1.801416 | 1.826616 | 1.836962 | 1.829586 |
|                     | 2   |          |          |          |          |          |          | 1.801416 | 1.826620 | 1.836962 | 1.829580 |
|                     | 3   |          |          |          |          |          |          | 1.801410 | 1.826622 | 1.836960 | 1.829582 |
|                     | 4   |          |          |          |          |          |          | 1.801412 | 1.826616 | 1.836962 | 1.829586 |
|                     | 5   |          |          |          |          |          |          | 1.801410 | 1.826618 | 1.836958 | 1.829586 |
|                     | 6   |          |          |          |          |          |          | 1.801408 | 1.826624 | 1.836960 | 1.829580 |
|                     | 7   |          |          |          |          |          |          | 1.801408 | 1.826616 | 1.836954 | 1.829580 |
|                     | 8   |          |          |          |          |          |          | 1.801410 | 1.826620 | 1.836960 | 1.829586 |
|                     | 9   |          |          |          |          |          |          | 1.801408 | 1.826620 | 1.836962 | 1.829578 |
|                     | 10  |          |          |          |          |          |          | 1.801412 | 1.826622 | 1.836954 | 1.829580 |
| Measured Weight (g) |     |          |          |          |          |          |          |          |          |          |          |
| Meas #              | H52 | H53      | H54      | H55      | H56      | H57      | H58      | H59      | H60      | H61      |          |
| 1200 hrs            | 1   |          |          |          |          |          |          |          |          |          |          |
|                     | 2   |          |          |          |          |          |          |          |          |          |          |
|                     | 3   |          |          |          |          |          |          |          |          |          |          |
|                     | 4   |          |          |          |          |          |          |          |          |          |          |
|                     | 5   |          |          |          |          |          |          |          |          |          |          |
|                     | 6   |          |          |          |          |          |          |          |          |          |          |
|                     | 7   |          |          |          |          |          |          |          |          |          |          |
|                     | 8   |          |          |          |          |          |          |          |          |          |          |
|                     | 9   |          |          |          |          |          |          |          |          |          |          |
|                     | 10  |          |          |          |          |          |          |          |          |          |          |

Table 104: Raw Data, Expt. #9, RG-CO<sub>2</sub>/550°C/20MPa, NF616 Shot Peened

|                 |                                                     |                                   |                                           |
|-----------------|-----------------------------------------------------|-----------------------------------|-------------------------------------------|
| Project:        | <b>SCCO2</b>                                        | Rel. Uncertainty in Meas. Mass:   | $\Delta m = \pm 0.000002$ g               |
| Contact:        | PRJ39TC                                             | Rel. Uncertainty in Meas. Length: | $\Delta l = \pm 0.001$ mm                 |
| MDS:            | 24386                                               | Rel. Uncertainty in Meas. Width:  | $\Delta w = \pm 0.001$ mm                 |
| Expt. #:        | <b>7</b>                                            | Uncertainty in Meas. Area:        | $\Delta A = \pm 0.000178$ cm <sup>2</sup> |
| Phase:          | <b>Shot Peened</b>                                  | Supplier/UNS ID:                  |                                           |
| Phase Type:     | Research CO2                                        | Metal Type:                       |                                           |
| Temp. (°C):     | 550                                                 | Color Designation:                |                                           |
| Pressure (MPa): | 20                                                  | Hole Diameter in Sample (mm):     | 3                                         |
| Sample ID:      | <b>NF616</b>                                        |                                   |                                           |
| Notes:          | Bare weight is meas weight of samples after peening |                                   |                                           |

| Meas #               | Sample # / Description |  |  |  |  |  |          |          |          |          |          |
|----------------------|------------------------|--|--|--|--|--|----------|----------|----------|----------|----------|
|                      |                        |  |  |  |  |  | N62      | N63      | N65      | N66      | N67      |
| <b>1</b>             |                        |  |  |  |  |  | 1.787062 | 1.771886 | 1.781804 | 1.778558 | 1.739888 |
| <b>2</b>             |                        |  |  |  |  |  | 1.787068 | 1.771880 | 1.781806 | 1.778556 | 1.739884 |
| <b>3</b>             |                        |  |  |  |  |  | 1.787062 | 1.771886 | 1.781800 | 1.778566 | 1.739890 |
| <b>4</b>             |                        |  |  |  |  |  | 1.787062 | 1.771880 | 1.781802 | 1.778560 | 1.739892 |
| <b>5</b>             |                        |  |  |  |  |  | 1.787070 | 1.771888 | 1.781800 | 1.778566 | 1.739892 |
| <b>6</b>             |                        |  |  |  |  |  | 1.787070 | 1.771886 | 1.781810 | 1.778566 | 1.739892 |
| <b>7</b>             |                        |  |  |  |  |  | 1.787068 | 1.771880 | 1.781804 | 1.778556 | 1.739888 |
| <b>8</b>             |                        |  |  |  |  |  | 1.787070 | 1.771878 | 1.781800 | 1.778556 | 1.739886 |
| <b>9</b>             |                        |  |  |  |  |  | 1.787072 | 1.771884 | 1.781806 | 1.778560 | 1.739888 |
| <b>10</b>            |                        |  |  |  |  |  | 1.787072 | 1.771882 | 1.781808 | 1.778566 | 1.739886 |
| <b>1<sub>L</sub></b> |                        |  |  |  |  |  | 12.596   | 12.600   | 12.627   | 12.578   | 12.604   |
| <b>2<sub>L</sub></b> |                        |  |  |  |  |  | 12.612   | 12.593   | 12.643   | 12.567   | 12.612   |
| <b>3<sub>L</sub></b> |                        |  |  |  |  |  | 12.598   | 12.584   | 12.640   | 12.546   | 12.602   |
| <b>4<sub>W</sub></b> |                        |  |  |  |  |  | 12.643   | 12.611   | 12.632   | 12.621   | 12.585   |
| <b>5<sub>W</sub></b> |                        |  |  |  |  |  | 12.650   | 12.639   | 12.627   | 12.609   | 12.598   |
| <b>6<sub>W</sub></b> |                        |  |  |  |  |  | 12.653   | 12.650   | 12.583   | 12.570   | 12.583   |
| <b>1</b>             |                        |  |  |  |  |  | 1.507    | 1.537    | 1.543    | 1.555    | 1.522    |
| <b>2</b>             |                        |  |  |  |  |  | 1.520    | 1.538    | 1.544    | 1.558    | 1.524    |
| <b>3</b>             |                        |  |  |  |  |  | 1.518    | 1.538    | 1.523    | 1.552    | 1.515    |
| <b>4</b>             |                        |  |  |  |  |  | 1.527    | 1.539    | 1.544    | 1.558    | 1.521    |
| <b>5</b>             |                        |  |  |  |  |  | 1.525    | 1.537    | 1.534    | 1.556    | 1.522    |

Table 105: Raw Data, Experiment #9, RG-CO<sub>2</sub>/550°C/20MPa, NF616 Shot Peened

|          |    | Measured Weight (g) |          |          |          |          |          |
|----------|----|---------------------|----------|----------|----------|----------|----------|
| Meas #   |    | N62                 | N63      | N65      | N66      | N67      |          |
| 200 hrs  | 1  |                     | 1.791492 | 1.776060 | 1.786526 | 1.781598 | 1.743950 |
|          | 2  |                     | 1.791492 | 1.776052 | 1.786534 | 1.781604 | 1.743954 |
|          | 3  |                     | 1.791490 | 1.776050 | 1.786536 | 1.781606 | 1.743958 |
|          | 4  |                     | 1.791490 | 1.776052 | 1.786528 | 1.781604 | 1.743960 |
|          | 5  |                     | 1.791492 | 1.776058 | 1.786530 | 1.781600 | 1.743950 |
|          | 6  |                     | 1.791496 | 1.776058 | 1.786532 | 1.781604 | 1.743956 |
|          | 7  |                     | 1.791490 | 1.776054 | 1.786530 | 1.781606 | 1.743954 |
|          | 8  |                     | 1.791490 | 1.776060 | 1.786534 | 1.781606 | 1.743954 |
|          | 9  |                     | 1.791492 | 1.776052 | 1.786528 | 1.781604 | 1.743950 |
|          | 10 |                     | 1.791498 | 1.776054 | 1.786526 | 1.781608 | 1.743952 |
| 400 hrs  | 1  |                     | 1.793838 | 1.778260 | 1.788710 | 1.783288 | 1.746056 |
|          | 2  |                     | 1.793844 | 1.778254 | 1.788708 | 1.783284 | 1.746056 |
|          | 3  |                     | 1.793842 | 1.778254 | 1.788714 | 1.783280 | 1.746056 |
|          | 4  |                     | 1.793838 | 1.778258 | 1.788712 | 1.783288 | 1.746052 |
|          | 5  |                     | 1.793844 | 1.778258 | 1.788718 | 1.783288 | 1.746056 |
|          | 6  |                     | 1.793838 | 1.778258 | 1.788716 | 1.783288 | 1.746056 |
|          | 7  |                     | 1.793840 | 1.778256 | 1.788710 | 1.783284 | 1.746056 |
|          | 8  |                     | 1.793840 | 1.778256 | 1.788712 | 1.783290 | 1.746052 |
|          | 9  |                     | 1.793844 | 1.778260 | 1.788714 | 1.783290 | 1.746054 |
|          | 10 |                     | 1.793840 | 1.778254 | 1.788712 | 1.783288 | 1.746054 |
| 600 hrs  | 1  |                     | 1.796470 | 1.780624 | 1.790988 | 1.785172 |          |
|          | 2  |                     | 1.796466 | 1.780626 | 1.790984 | 1.785172 |          |
|          | 3  |                     | 1.796466 | 1.780628 | 1.790984 | 1.785170 |          |
|          | 4  |                     | 1.796466 | 1.780626 | 1.790982 | 1.785174 |          |
|          | 5  |                     | 1.796464 | 1.780626 | 1.790980 | 1.785170 |          |
|          | 6  |                     | 1.796468 | 1.780624 | 1.790984 | 1.785172 |          |
|          | 7  |                     | 1.796466 | 1.780624 | 1.790990 | 1.785172 |          |
|          | 8  |                     | 1.796468 | 1.780622 | 1.790984 | 1.785174 |          |
|          | 9  |                     | 1.796466 | 1.780626 | 1.790982 | 1.785174 |          |
|          | 10 |                     | 1.796470 | 1.780624 | 1.790988 | 1.785170 |          |
| 800 hrs  | 1  |                     |          |          |          |          | 1.798954 |
|          | 2  |                     |          |          |          |          | 1.798956 |
|          | 3  |                     |          |          |          |          | 1.798956 |
|          | 4  |                     |          |          |          |          | 1.798958 |
|          | 5  |                     |          |          |          |          | 1.798960 |
|          | 6  |                     |          |          |          |          | 1.798954 |
|          | 7  |                     |          |          |          |          | 1.798956 |
|          | 8  |                     |          |          |          |          | 1.798954 |
|          | 9  |                     |          |          |          |          | 1.798950 |
|          | 10 |                     |          |          |          |          | 1.798954 |
| 1000 hrs | 1  |                     |          |          |          |          | 1.801390 |
|          | 2  |                     |          |          |          |          | 1.801386 |
|          | 3  |                     |          |          |          |          | 1.801388 |
|          | 4  |                     |          |          |          |          | 1.801388 |
|          | 5  |                     |          |          |          |          | 1.801384 |
|          | 6  |                     |          |          |          |          | 1.801386 |
|          | 7  |                     |          |          |          |          | 1.801388 |
|          | 8  |                     |          |          |          |          | 1.801386 |
|          | 9  |                     |          |          |          |          | 1.801386 |
|          | 10 |                     |          |          |          |          | 1.801388 |
| 1200 hrs | 1  |                     |          |          |          |          |          |
|          | 2  |                     |          |          |          |          |          |
|          | 3  |                     |          |          |          |          |          |
|          | 4  |                     |          |          |          |          |          |
|          | 5  |                     |          |          |          |          |          |
|          | 6  |                     |          |          |          |          |          |
|          | 7  |                     |          |          |          |          |          |
|          | 8  |                     |          |          |          |          |          |
|          | 9  |                     |          |          |          |          |          |
|          | 10 |                     |          |          |          |          |          |