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Abstract

Building the next-generation of extreme-scale distributed systems will require overcoming sev-
eral challenges related to system resilience. As the number of processors in these systems grow,
the failure rate increases proportionally. One of the most common sources of failure in large-scale
systems is memory. In this paper, we propose a novel runtime for transparently exploiting mem-
ory content similarity to improve system resilience by reducing the rate at which memory errors
lead to node failure. We evaluate the viability of this approach by examining memory snapshots
collected from eight HPC applications and two important HPC operating systems. Based on the
characteristics of the similarity uncovered, we conclude that our proposed approach shows promise

for addressing system resilience in large-scale systems.
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1 INTRODUCTION

1 Introduction

Building the next-generation of extreme-scale distributed systems will require overcoming several chal-
lenges related to system resilience. As we aggregate larger numbers of processors to construct more
powerful systems, the rate at which failures occur increases proportionally [35]. As the rate of failures
increases, more time is spent preparing for and recovering from failures and less time is spent doing
useful work. This effect is especially pronounced in systems that employ traditional checkpoint/restart
techniques, as the entire computation has to be rolled back each time a failure occurs [13, 10].

Memory-related errors are one of the most frequently observed sources of node failure in large-
scale distributed systems [35]. Moreover, power concerns may exacerbate this problem as we consider
deploying low voltage memory chips that are more prone to error [7].

Effective fault tolerance strategies in extreme-scale systems may also need to address hardening
operating systems against memory failures [14]. If every region of memory is equally likely to experience
an uncorrectable error, we would expect to see relatively few errors in kernel memory because it
typically occupies a much smaller memory footprint than the application. However, recent evidence
suggests that kernel memory may be more prone to memory errors than other regions of memory [20].

In this paper, we present a novel approach for using content similarity in the memory of HPC
systems to improve resilience to uncorrectable memory errors. We then evaluate the viability of
this method by examining: (a) the application memory of eight important and representative HPC
workloads running on a Cray XE6 supercomputer; and (b) regions of kernel memory for two well-
known operating systems used in HPC. By carefully considering the characteristics of these memory
regions, we estimate the relative costs and benefits of this approach.

The remainder of this paper is organized as follows: in the next section, we describe the approach
used for this similarity analysis. Then in Section 3, we describe our test methodology and platform
used. Section 4 presents our memory similarity results for each of our HPC workloads. Also, this

section further analyzes our representative applications to get an idea on the costs of maintaining this
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2 PROPOSED APPROACH

similarity information throughout the lifetime of an application. In Section 5, we review related work
in the area and place the contribution of our work in that context. Finally in Section 6, we summarize

our results and outline future avenues of promising research.

2 Proposed Approach

A parallel algebraic multigrid solver for linear systems arising from

ASC Sequoia AMG problems on unstructured grids [17].
Marquee
Performance Implicit Radiation Solver. Solves the radiation transport equa-
Codes [26] IRS tion by the flux-limited diffusion approximation using an implicit
matrix solution [24].
CTH A multi-material, large deformation, strong shock wave, solid me-
DOE Production chanics code [28]
Applications LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator. A
classical molecular dynamics simulator [33].
HPCCG Designed to mimic the finite element generation, assembly and

Mantevo Mini- solution for an unstructured grid problem.

Applications Parallel Heterogeneous Dynamic Mesh. An application designed

32, 18] phdMesh | to mimic the contact search applications in an explicit finite ele-
ment application.

Structured Adaptive Mesh Refinement Application Infrastructure.
SAMRAI | Designed to enable the application of structured adaptive mesh
Miscellaneous refinement to large-scale multi-physics problems [25].

Applications
Solves a 1-group time-independent discrete ordinates (Sn) 3D

Sweep3D cartesian (XYZ) geometry neutron transport problem [27].

Table 1: A brief summary of HPC applications used

We propose to exploit memory content similarity to allow applications to recover from uncorrectable
DRAM ECC errors that would otherwise lead to application termination or node failure. The basic

idea is that when a memory error occurs on a page that is similar to one or more other pages in the
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2.1 Page Classification 2 PROPOSED APPROACH

address space of an application, we can use information about the page’s similarity to reconstruct the
contents of the damaged page without needing to terminate the affected application or restart it from a
known good state. Our approach consists of two components: (a) classifying pages to identify memory
content similarity; and (b) using the memory content similarity we identify to reconstruct pages that

suffer memory errors.

2.1 Page Classification

We begin by placing each page in the address space of an application into one of four categories:

e DUPLICATE PAGES : pages whose contents exactly match one or more other pages and include

at least one non-zero byte.
e ZERO PAGES : pages whose contents are entirely zero.

e SIMILAR PAGES : pages that (a) are not duplicate or zero pages; and (b) can be paired with
at least one other page in application memory such that the difference between the two can be
represented by a cx_bsdiff [36] patch that is smaller than a tunable threshold. The results in

this paper were collected using a threshold of 1024 bytes.
e UNIQUE PAGES : pages that do not fall into any of the preceding three categories.

In practice, we can treat zero pages as duplicate pages. If a memory error occurs on a zero page,
reconstruction of the damaged page is straightforward. However on some systems, zero pages may be
an artifact of memory allocation and may not represent memory that is actually being used. But if zero
pages represent unused memory, they cannot be the source of memory errors. Therefore, zero pages
can only increase the protective effect of our approach. Nonetheless, because we cannot determine
which zero pages are actually used, our analysis distinguishes between zero pages and duplicate pages.

The result being a possible underestimate of the protective benefit of our approach.
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2.2 Page Reconstruction

When an uncorrectable ECC error is detected in an x86 system, the memory controller raises a Machine
Check Exception (MCE) in the processor. The consequences of raising an MCE vary by operating
system. Recent versions of Linux attempt to minimize the impact of an MCE by adopting simple
recovery strategies. For example, in the event that the memory is unmapped,’ the hardware page is
poisoned and no other action is required. In the event that none of its recovery strategies is successful,
Linux poisons the hardware page and kills all of the processes that had the faulted page mapped into
their address space [22]. In other operating systems (e.g., the Kitten lightweight kernel [34], older
versions of Linux), raising an MCE simply crashes the node.

For each duplicate or similar page, we maintain a description of its reference page(s) (i.e., the other
pages in the system that are either duplicated by or similar to the page under consideration). In the
case of similar pages, we also store the appropriate patch data. Because the patches generated by
cx_bsdiff are not symmetric, every similar page requires its own patch data.

When a memory error occurs on a similar or duplicate page, we can use the metadata that we
have collected to reconstruct the faulted page. Reconstructing duplicate pages is straightforward.
We simply restore the contents of the damaged page from the contents of one of its reference pages.
For similar pages, the process is only modestly more complex. We reconstruct the damaged page by

applying a patch to one of its reference pages.

3 Evaluation

To evaluate the viability of this approach, we considered the memory of several important HPC work-
loads and two key operating systems. By analyzing application and kernel memory, we were able to

characterize memory content similarity in the system.

1This might happen if, for example, the MCE was raised by a memory scrubber. However, given the analysis in [20]
it is not clear that this is a common scenario.
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We examined memory in systems running the eight HPC workloads described in Table 1 using
MPICH on 8 nodes of a Cray XE6 supercomputer. We used 8 processes on each node for a total of 64
MPI ranks. This set of applications are representative of several important workloads. In particular,
three of these applications, AMG, IRS and LAMMPS, are taken from the ASC Sequoia Marquee
Performance Codes: a set of codes that was assembled expressly for ensuring that key workloads would
perform well on the Sequoia supercomputer at Lawrence Livermore National Laboratory. Additionally,
our set includes two important U.S. Department of Energy (DOE) production applications: CTH and
LAMMPS.

In addition, we examined similarlity in the contents of kernel memory for two operating systems:
Linux 2.6.37 (a full-weight kernel) and Kitten (a lightweight kernel) [34]. Although lightweight kernels
have been shown to have superior performance characteristics [31], the generality and familiarity of

full-weight kernels enable them to dominate today’s largest machines [30, 3, 29].

3.1 Data Collection
3.1.1 Application Memory

We built a library, 1ibmemstate, to collect snapshots of the applications’ memory and linked it against
each of the target applications. The MPI Profiling layer allows us interpose libmemstate in all calls by
the application to MPI_Init and MPI_Finalize. By intercepting the call to MPI_Init, libmemstate
snapshots the application’s memory after initialization but before the application has started execu-
tion. To generate a snapshot of the application’s memory, libmemstate reads the /proc/<pid>/maps
file provided by Linux to gather information about the application’s address space. Based on the
information it gathers, 1ibmemstate writes a copy of the address space to stable storage.

After the initialization snapshot is complete, libmemstate sets a timed signal (SIGALRM) that allows
it to periodically snapshot memory as the application runs. We collected the data in this paper by

configuring libmemstate to capture a memory snapshot every 60 seconds of application execution time.
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3.1 Data Collection 3 EVALUATION

The process is similar when the application calls MPI_Finalize. The MPI Profiling layer interposes a
call to 1libmemstate. This allows 1libmemstate to take a finalization memory snapshot and disable its
timer.

Each snapshot includes all of the application’s heap, stack and anonymous memory. We excluded
memory-mapped files because the majority of pages that corresponding to memory-mapped files in
the applications that we considered are mapped read-only. The most straightforward way to recover
these pages is to re-read their contents from the backing store. As a result, our approach offers little
additional protective benefit. While the backed by stable storage can be used as reference pages for

other pages in application memory, we excluded these pages to simplify our analysis.

3.1.2 Kernel Memory

To collect data on kernel memory similarity, we used the checkpointing functionality of the Palacios
Virtual Machine Monitor (VMM) [23] to periodically capture the entire memory state of the guest.
Specifically, we used Palacios to capture snapshots of both a Linux and a Kitten guest running a single
rank of the HPCCG benchmark.

After capturing guest memory state, identifying the regions of kernel memory within the guest
memory footprint requires additional information; we use different approaches for this purpose in
Kitten and Linux. In Kitten, a region of low memory (by default, 64 MB) beginning at address 0 is
reserved for kernel use. During the initial boot sequence, a very simple allocator (bootmem) is used to
manage this memory. Near the end of the boot sequence, management of all unused kernel memory
is transferred to a buddy allocator. By instrumenting the buddy allocator, we could determine which
pages of kernel memory are in use at any given instant. This allowed us to extract the relevant portions
of the guest’s memory footprint. Although this approach fails to capture the memory allocated by the
bootmem allocator, it does allow us to identify all of the memory allocated after the kernel memory
subsystem has been initialized.

In Linux, every page of physical memory is represented by an instance of struct page. The
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flags field within each of these structures allowed us to determine characteristics about the page.
In particular, pages that are managed by a slab allocator have the PG_slab bit set. Based on this
structure, we built a kernel module that allows us to traverse physical memory and determine which
pages belong to a slab cache.? Although this approach does not capture all of kernel memory (and
captures some memory that may not be in active use), it does capture all of the memory allocated by
kmalloc. Moreover, given the complexity of memory allocation in the Linux kernel, this is a relatively

straightforward approach that allows us to approximate the similarity characteristics of kernel memory.

3.2 Data Analysis

We analyzed collected memory snapshots of the applications and kernels offline. For each snapshot,
we walked through the virtual address space from low addresses to high, categorizing each page of
memory into one of the four categories described above: (a) duplicate; (b) similar; (c) zero; or (d)

unique.

3.2.1 Duplicate Pages

Naively, identifying duplicate pages is a O(n?) operation. To reduce the cost of identifying duplicate
pages, we compute the MD5 sum of each page and use it as the key of a hash table. Each collision
represents a duplicate page. Although it is conceivable that two or more different pages could yield
the same MD5 sum, we assume that the memory contents of the applications we consider are not
adversarial. As a result, by using the birthday problem [19], it can be shown that the likelihood of

such an event is exceedingly small (i.e., =~ 107'%) even for very large memory snapshots [39)].

2Although the SLAB allocator has been largely replaced by the more efficient SLUB allocator [9], the “slab” nomen-
clature still predominates.
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3.2.2 Similar Pages

As with identifying duplicate pages, the naive approach to identifying similar pages is an O(n?) op-
eration. To mitigate this cost, we use an approach inspired by [16]. Instead of computing patches
between every pair of pages, we attempt to identify a tractably small set of pages for each candidate
page that are likely to be similar to it.

During initialization, we randomly choose four locations in a 4kB page of memory. For each page
that we examine, we collect one 128-byte block at each of these locations. Each of these blocks is used
as a signature of the page contents.

As we examine each candidate page in the address space of an application, we identify pages that
match one or more of the candidate page’s signatures. In the event that more than one page matches a
single signature we choose the page nearest to the candidate page. This approach identifies up to four
pages that may be similar to the current candidate page. In addition to these pages, we also consider
the page that occupies the next lowest virtual address in use in the application’s address space. In all,
this approach identifies as many as five pages that are likely to be similar to the candidate page.

We then compute a patch between the current candidate page and each member of the set of likely
similar pages. If any patch is smaller than a threshold, in this case 1024 bytes, we mark the current
candidate page as similar. Because cx_bsdiff does not generate symmetric patches, observing a single
patch that falls below our threshold is sufficient to categorize only a single page as similar. Therefore,
we also compute the reciprocal patch of each of the pages in the set of likely similar pages to determine
whether any of them should also be marked as similar.

As in [16], this is a statistical, heuristic approach. Although there may be more effective ways of
identifying similar pages, the fraction of similar pages we identify using this approach is a lower bound

on the total number of similar pages in application memory.
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3.2.3 Zero Pages

Identifying zero pages is a straightforward process that leverages the process of identifying duplicate
pages. Initially, we make no effort to distinguish zero pages from any other page; we insert them into
the duplicates hash table as we would any other page. By precomputing the MD5 sum of a 4kB zero
page, we can then identify the zero pages as the set of pages that were stored in the duplicates hash

table using the zero page MD5 sum as a key.

3.2.4 Unique Pages

Unique pages are those pages that fall outside of the criteria for the preceding three categories. How-
ever, we note that this is not a rigid definition; it is highly dependent on our choice of patch size
threshold. In particular, increases to the patch size threshold will increase the number of similar pages
and decrease the number of unique pages. With a sufficiently large patch size threshold, we could, in
principle, transform all of the unique pages into similar pages. In subsequent sections, we examine the

tradeoffs involved in changing the patch size threshold.

3.3 Repeatability

Non-determinism exists in our methods for collecting and analyzing data. With respect to data analy-
sis, the source of non-determinism is explicit: as described above, we randomly choose the locations of
four signatures. To estimate the variation introduced by this approach, we ran our analysis ten times
on the memory snapshots collected for LAMMPS, randomly choosing the four signature locations each
time. The number of similar pages varied by less than 0.23% across all of the snapshots (excluding
the initialization and finalization snapshots) we collected.

With respect to data collection, the timers we use to determine the interval between memory
snapshots are not precise. As a result, from run to run we cannot be sure that the snapshots are

taken precisely relative to the application’s progress. Therefore, it is unlikely that any two sequences
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of memory snapshots will agree on the exact contents of memory at any given time. Moreover, there
may be some variability in the layout of each application’s address space that may effect the content
of the pages in an application’s memory.

To evaluate the variability in our data collection mechanism, we collected memory snapshots for
ten separate runs of LAMMPS. We then used our analysis scripts to categorize the pages for each
sequence of memory snapshots. To control for the variability introduced by our analysis scripts, we
fixed the locations of the four signatures used in our similarity detection algorithm. We observed
that the percentage of similar pages varied by up to 27%, ranging from 15.6% to 20.0% of application
memory.

Figure 1 demonstrates one possible source of this variation. For LAMMPS, a significant majority
of the patches are between 1024 and 2047 bytes in size, just larger than our patch threshold of 1024
bytes. As a result, small changes in the content of a page (e.g., because the memory snapshots across
executions are not synchronized relative to execution time) have the potential to cause many pages to

be recategorized.

4 Results

4.1 Application Memory

In this section, we present the results of our examination of application memory. The goal of our ex-
amination is to develop an understanding of the potential benefits and costs of our proposed approach.
4.1.1 Benefits

The principle benefits of our approach will be expressed in terms of the degree and extent to which
we are able to protect application memory against uncorrectable errors. To characterize this benefit,

we examine the prevalence of similar and duplicate pages in application memory. In practice, we can
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Figure 1: The percent of similar pages for rank 0 as a function of patch size threshold. A patch size
of 4096 (a redundant copy of page with no actual similarity) will take all applications to 100%
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also protect zero pages. However, because zero pages may be an artifact of memory allocation or other

platform features, we exclude them from our consideration of our approach’s potential benefits.

Overview Figure 2 presents the fraction of each application’s address space that falls into each of
the four categories described above. Excluding the initialization and finalization snapshots, this figure
presents the results for the memory snapshot for rank 0 that contains the smallest fraction of similar

and duplicate pages.
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Figure 2: Page categorization within Rank 0 for each application. This data represents the page
categorization for the memory snapshot that contained the smallest fraction of similar and duplicate

pages.
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The first observation we make is that the memory of all of the applications is comprised of a
significant fraction of pages that can be protected with our technique. For five of the applications
(AMG, IRS, CTH, HPCCG and phdMesh), more than than 35% of the pages in their memory are
similar or duplicate pages. In no case do similar and duplicate pages comprise less than 20% of

application memory.
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Figure 3: Three temporal behaviors observed in all our applications considering only similar and
duplicate pages; Stable, the most commonly observed pattern, represented here by Sweep3D but also
observed with LAMMPS, IRS, HPCCG, and phdMesh; Noisy, represented here by SAMRAI, but also
observed with CTH; and, Dynamic, observed with AMG.

Temporal Behavior We next look at the behavior of memory content similarity over time. For the
applications that we considered, we observe three distinct temporal trends in the fraction of similar
and duplicate pages: (a) Stable; (b) Noisy; and (¢) Dynamic. Examples of the behavior that is
characteristic of each of these categories is shown in Figure 3. LAMMPS, IRS, HPCCG, phdMesh
and Sweep3D constitute the temporally stable category. Excluding the initialization and finalization
snapshots, the virtual address space of each these applications includes a stable fraction of duplicate
and similar pages. In contrast, the fraction of similar and duplicate pages in the memory of CTH and
SAMRALI is more erratic. They show significant fluctuations in the number of duplicate and similar

pages in their virtual address spaces over the lifetime of the application. For example, the number of
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duplicate pages in SAMRALI spikes twice during this particular run. Similarly, at one point the number
of duplicate pages nearly triples. CTH exhibits similar, but less pronounced, noisy behavior. Early
in its execution, the number of duplicate pages drops by more than 10%. Although the snapshots
of these applications captured only a handful of deviations, it suggests that the memory contents of
these applications may be more dynamic and unpredictable than the other applications we considered.
Lastly, AMG memory exhibits significantly different behavior in this regard than any of the other
applications. For roughly the first half of its execution, the fraction of duplicate and similar pages in
the memory of AMG steadily decreases before stabilizing for the remainder of its run.?

To summarize, for the majority of the workloads tested, the fraction of similar and duplicate
pages was temporally stable. Only in SAMRAI, CTH, and AMG did the extent of similarity change
significantly over the lifetime of the application. Because the protective benefit of our approach is
highly dependent on the fraction of similar and duplicate pages in application memory, these data also
suggest that for many applications the protective benefit of our proposed approach will be stable over

the lifetime of the application.

NUMA We ran all of our tests of application memory on a Cray XE6 system. Because each of the
XE6 compute nodes uses a NUMA architecture, we may be able to increase similarity by considering
Memory across processes.

Each compute node of the XE6 contains two 8-core AMD Opteron Magny-Cours processors. Each
Magny-Cours processor is divided into two NUMA domains. Each NUMA domain is comprised of four
cores [37]. We used the default MPICH layout method which results in SMP-style placement of MPI
ranks. Based on this architecture, we were able to group our memory snapshots by rank to effectively
examine content similarity within a NUMA domain for each application. The results of considering
memory across a NUMA domain are shown in Table 2.

Expanding the scope of memory significantly increased the number of duplicate pages in memory of

3We also observe that AMG is the only application that allocates significant quantities of memory after MPI initial-
ization.
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L Rank 0-3 NUMA Domain A A % Increase
Application
# Similar | # Duplicate Total # Similar | # Duplicate Total Similar | Duplicate Total
AMG2006 269748 185119 454867 222675 234162 456837 -47073 49043 0.4 %
CTH 27688 40507 68195 4691 63583 68274 -22997 23076 0.1 %
IRS 15085 55235 70320 11210 59320 70530 -3875 4085 0.3 %
LAMMPS 57922 14299 72221 36770 35541 72311 -21152 21242 0.1 %
SAMRAI 7841 4003 11844 4451 7437 11888 -3390 3434 0.4 %
HPCCG 297155 557443 854598 76327 778302 854629 || -220828 220859 0.0 %
phdMesh 192590 8005 200595 188845 13921 202766 -3745 5916 1.1 %
Sweep3D 3748 3376 7124 965 6183 7148 -2783 2807 0.3 %

Table 2: Effect of considering the nodes in a single NUMA domain collectively. Although the number
of duplicate pages increases significantly when all of the application memory in a NUMA domain is
considered, these gains are almost entirely offset by reductions in the number of similar pages.

most of the applications we considered. For example, in LAMMPS, the number of duplicates increased
by 148.6%. However, the number of similar pages decreased by nearly an equal amount for every
application we considered. As a result, processing the memory in a NUMA domain collectively yielded
very modest increases in the total fraction of similar and duplicate pages.

The result is that, for many applications, there may be little incentive to collectively consider
application memory within a NUMA domain. Nonetheless, because the cost of computing and storing
metadata is higher for similar pages than for duplicate pages, there is a tradeoff to be made between

local, similar pages and remote, duplicate pages.

Input Effects In addition to variations among applications, the input description for each applica-
tion has the potential to impact the extent of content similarity. To examine the effect of changing
inputs, we examined the memory of CTH and LAMMPS for several different inputs.

For CTH, we counsidered two inputs: (a) a model of the detonation of a conical explosive charge;
and (b) a model of a fragmenting pipe. All preceding results for CTH presented in this paper were
obtained using the conical shape charge input.

Figure 4 shows the fraction of similar and duplicate pages for each input. Each colored box repre-

sents the average fraction of similar or duplicate pages over the lifetime of the application (excluding
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Figure 4: The effect of different inputs on the fraction of similar and duplicate pages observed in the
application memory of CTH
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the initialization and finalization snapshots). The error bars represent the minimum and maximum
fraction of each category observed over the run. For the fragmenting pipe input, we observed substan-
tially higher percentage of similar pages than for the conical charge input. The relative frequency of
similar and duplicate pages is also noticeably different between the two inputs. For the conical charge
input, there are 60% more duplicate pages than similar pages whereas for the fragmenting pipe input,
there are less than half as many duplicate pages as similar pages.

For LAMMPS, we considered four potentials as input: (a) Lennard-Jones (LJ); (b) Embedded Atom
Model (EAM); (c) Rhodopsin (Rhodo) protein; and (d) SNAP*. All preceding results for LAMMPS
presented in this paper were obtained using the LJ potential.

Figure 5 shows that the percentage of similar pages in the SNAP and Rhodo potentials is nearly
twice as large as for the LJ and EAM potentials. Additionally, the fraction of duplicate pages is
substantially lower for the Rhodo input than for the other three inputs.

These results illustrate that content similarity varies not only across applications but also across

inputs to a single application.

4.1.2 Costs

Due to the metadata required, our proposed approach imposes two prinicple costs: (a) temporal costs;
and (b) storage costs. The temporal costs include the number of CPU cycles that are taken from the
application for metadata maintenance. The need for metadata maintenance is driven by how often
the contents of similar and duplicate pages change. The storage costs include the number of bytes
required to store the necessary metadata. The amount of storage required is largely dependent on the

size of the patches for each of the similar pages.

Modification Behavior The time required to maintain the metadata necessary to make this ap-

proach work will be deducted from the time that the application would otherwise run. The magnitude

4SNAP is a computationally intensive potential that uses the same kernel as the GAP potential [2].
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Figure 5: The effect of using different potentials as input on the fraction of similar and duplicate pages
observed in the application memory of LAMMPS
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of this temporal overhead will depend largely on the frequency with which similar and duplicate pages
are modified. Each time a similar or duplicate page is modified, we no longer know the relationship
between the page and its reference page(s). As a result, we need to update our metadata to account
for this change. The more rapidly that similar and duplicate pages change, the higher the temporal

overhead of managing metadata will be.

L Changed Changed Changed Changed Changed
Application

1+ Times 1 Time 2 Times 3 Times 4+ Times
AMG2006 20.8 % 9.9 % 54 % 1.7 % 3.8 %
CTH 38.9 % 6.9 % 35 % 13.7 % 14.8 %
IRS 328 % 18.3 % 0.2 % 0.0 % 14.3 %
LAMMPS 37.6 % 0.5 % 0.6 % 0.5 % 36.0 %
SAMRAI 79.5 % 13.6 % 7.7 % 32.0 % 26.3 %
HPCCG 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
phdMesh 21.6 % 6.2 % 1.9 % 0.5 % 13.0 %
Sweep3D 4.1 % 1.7 % 0.7 % 0.0 % 1.8 %

Table 3: Modification behavior of the pages in the memory of Rank 0 that are ever categorized as
similar or duplicate.

To get a sense of how frequently similar and duplicate pages change, we compared the memory
contents across the sequence of snapshots we collected for each application. By hashing each page, we
were able to determine whether a given page in the application’s virtual address space changed from
one snapshot to the next.? Table 3 shows the modification behavior for all of the pages in application
memory that are ever classified as duplicate or similar.

The data in this table suggests that for most applications, a substantial majority of the similar and
duplicate pages are either read-only/read-mostly or are written to without being modified [12]. For
five of the eight applications (AMG, IRS, HPCCG, phdMesh and Sweep3D), more than 84% of the
similar and duplicate pages are modified either once or not at all.

The modification behavior of HPCCG is particularly striking; a vanishingly small percentage of its

5This approach underrepresents the frequency of page modifications because it does not account for modifications
that occur between memory snapshots.
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Figure 6: HPCCG Rank 0 address space Similarity and modification heat maps. Due to HPCCG’s
computation pattern, the address space occupied by similar and duplicate pages is almost entirely
disjoint from the range occupied by modified pages
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similar or duplicate pages are ever modified. A more detailed examination of HPCCG’s application
memory shown in Figure 6 reveals that the range of the application’s address space occupied by similar
and duplicate pages is almost entirely disjoint from the range occupied by modified pages.

Similar and duplicate pages are confined to the low end of the virtual address space and modified
pages occupy the high virtual addresses. We speculate that because HPCCG is a conjugate gradient
solver, the low end of the virtual address space contains the sparse matrix that is provided as input
(and is never modified) and the high virtual addresses contain the solution vector that is refined on
each iteration.

Although the heat maps for HPCCG appear to tell a coherent story about the source of the
similarity, the same does not hold for the other applications we considered. In general, the pattern of
similarity within the application’s memory appears to reveal little about the source of the similarity.
For example, Figure 7 shows the similarity and modification heat maps for CTH. Although these
figures are not without structure, reasoning about the source of the similarity based on these plots
is challenging. The heat maps for the other six applications (IRS, Sweep3D, AMG, SAMRAI, and
phdMesh) are similarly difficult to reason about. We believe that this is due in part to the difficulty
of reasoning about the relationship between application data structures and similarity. We also note
that HPCCG is a mini-application and many of the other workloads we used are more complete (and
complex) applications.

Despite these promising results, there are applications that frequently modify similar and duplicate
pages. For example, unlike the other applications that we considered, a majority of the similar and
duplicate pages in the memory of SAMRAI are modified at least once; more than half are modified
three or more times.

Taken as a whole, these results indicate that similar and duplicate pages are comprised largely of
read-only and read-mostly data. As a result, the metadata associated with these pages need only be
infrequently updated. This evidence suggests that, for many applications, the overhead of our proposed

approach will be manageable and commensurate with its protective effect.
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Figure 7: CTH Rank 0 address space similarity and modification heat maps. We see similar heat
maps for LAMMPS, IRS, Sweep3D, AMG, SAMRAI, and phdMesh. The similarity and modification
pattern is more chaotic and not as clean as the disjoint pattern of HPCCG.
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Patch Size Threshold The patch size threshold represents a trade-off between the number of pages
that are similar and the quantity of metadata that must be maintained. A threshold of 1024 bytes
strikes a conservative balance between maximizing similarity and minimizing metadata.

For six of the eight applications that we considered, the metadata associated with 1024-byte thresh-
old would occupy less than 1.5% of the application memory. The metadata for AMG and phdMesh
would occupy a slightly larger, but still modest, fraction (4.0% and 5.8%, respectively) of the appli-
cation’s memory. By changing the patch size threshold, we can strike a different balance between the
number of similar pages and the size of the associated metadata.

Figure 8 shows the fraction of similar and duplicate pages as a function of metadata size for each of
the applications that we considered. The slope of the curves represents the ratio of cost to benefit. For
applications like AMG, LAMMPS and phdMesh, we can extract significant similarity with a modest
increase in metadata. In particular, for phdMesh, if we allow the metadata to occupy even a small
fraction of application memory we see dramatic gains in the number of similar pages. IRS, Sweep3D
and SAMRAT represent applications for which the benefits come at a higher cost. Finally, in the
case of CTH and HPCCG, increasing the patch size increases the metadata by a very small increase
in metadata. There are two principle reasons for this behavior. First, the patch sizes for these two
applications happen to be quite small. As shown in Figure 1, most of the patches for these two
applications are smaller than 256 bytes. Second, the memory of these applications are dominated by
pages that are not suitable for patching: zero pages for CTH; duplicate pages for HPCCG. Because
there are a small number of small patches, increasing the patch size requires very little additional

metadata for these two applications.

4.2 Kernel Memory

In this section, we examine similarity in kernel memory. Although the case for resilient operating

systems is still emerging [14], we discuss why these results are promising for our proposed approach.
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Figure 8: The percent of similar and duplicate pages as a function of metadata size. Figure 8(a) shows
the three applications for which the cost of increasing the patch size is modest. Figure 8(b) shows the
three applications for which increasing the patch size comes at a higher cost. Figure 8(c) shows the
applications for which the cost of increasing the patch size is quite small. On each of the curves, a
solid circle indicates the point on the curve that corresponds to a patch threshold of 1024 bytes.

4.2.1 Similarity Overview

Figure 9 shows the composition of kernel memory for two important operating systems: Linux (a
heavyweight OS) and Kitten (a lightweight OS). The data for each operating system represents the
snapshot, excluding the initialization and finalization snapshots, that exhibits the smallest extent of

similarity. These data were collected while a user process was running HPCCG.
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The first observation we make is that both Linux and Kitten have a very large number of similar
pages. Also, the kernel memory of both operating systems contains very few duplicate pages. This
result is consistent with how the OS uses this memory; the majority of the state maintained by these
OSs is comprised of table-based structures containing objects such as page table mappings, etc. Finally,
we observe that Linux has a much higher fraction of unique pages than Kitten. We speculate these
unique pages comprise some portion of the Linux buffer cache. In contrast, Kitten lacks a kernel buffer

cache and handles buffering in userspace memory.

4.2.2 Patch Size Threshold

We now consider the tradeoff between patch size and memory overhead in these HPC operating systems.
Figure 10 shows the fraction of similar and duplicate pages as a function of metadata size. The slope
of these curves represents the ratio of cost to benefit. For Kitten, increasing the patch size results in a
dramatic increase in the fraction of similar pages yet it requires only a very small increase in metadata
size. For Linux, increasing the patch size comes at a greater (but still modest) cost. For both OSs,
only a modest amount of metadata (less than 10%) is required to protect all of kernel memory using
our proposed approach.

The results in this section point to the potential of this novel technique to efficiently protect
against uncorrectable memory errors in kernel memory. In addition, because we believe that much of
this memory is used to store tables that are written once and read many times, we speculate that the

maintenance of the associated metadata will be relatively inexpensive.

5 Related Work

Memory content similarity has been explored for more than a decade. As a result, a significant body
of relevant research has emerged. Although memory content similarity has been examined in several

contexts, the preponderance of the relevant research has been in virtualization. In [6], the authors
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introduced the concept of transparent memory sharing in VMMSs. By intercepting disk requests that
DMA data into memory, the Disco VMM could consolidate read-only pages (e.g., text segments of
applications, read-only pages in the buffer cache) containing data from the disk across virtual machines.
In some cases, this approach allowed the Disco VMM to significantly reduce memory consumption.

More recently, [38] described the broader approach to memory de-duplication that is used in the
VMware ESX server. Instead of intercepting disk requests, the authors propose identifying all pages
in a virtual machine by their contents. When any two pages are found to have the same contents,
the pages are consolidated using copy-on-write (COW). Applying this approach to systems running as
many as 10 identical VMs running the SPEC95 benchmark on Linux, the VMware ESX server is able
to reduce memory consumption by nearly 60%.

The authors of [39] advocate broadening the scope of sharing in virtualization to consider intranode
sharing. To evaluate the feasibility of this approach, they consider the prevalence of intranode shar-
ing between nodes running several HPC applications. For some workloads (notably HPCCG), they
observe that significant inter- and intra-node sharing opportunities exist. Based on these promising re-
sults, they propose a Content-Sharing Detection System for exploiting intranode sharing in virtualized
environments. Similarly, SBLLmalloc has been used to demonstrate that memory consumption can
be significantly reduced by consolidating duplicate pages in the application memory of several HPC
applications [4].

Most memory de-duplication research has considered consolidating only duplicate pages. However,
the Difference Engine [16] introduced the idea that similar pages could also be consolidated. In this
context, two pages are similar if the difference between them can be represented by an xdelta patch
file that is smaller than 2kB.

In addition to virtualization, content duplication has been effectively exploited in other domains. In
context of data storage, reducing storage requirements in primary and archival data storage applications
by eliminating duplicate data blocks has been widely studied [41, 40]. Kernel Shared Memory (KSM)

allows duplicate memory to be consolidated in Linux with or without virtualization [1].
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A number of resilience techniques have been explored for HPC. Traditional checkpoint/restart [10,
11] is the most common approach. Asynchronous checkpointing [21, 15] and replication [13] have
also been considered. In addition to these system-level approaches, algorithm-based techniques for
enabling applications to withstand memory errors have been explored [5, 8]. In contrast, our approach
will allow the system to transparently recover from memory errors without requiring application restart

or detailed application knowledge.

6 Conclusion and Future Work

In this paper, we have described a novel approach for improving system resilience by exploiting sim-
ilarities in system memory. We have also demonstrated the feasibility of this approach by presenting
data indicating that significant similarity exists in several important HPC applications. We draw five

specific conclusions from the data and analysis presented here.

e Significant similarity (greater than 35%) exists for several applications even with a conservative
patch size threshold. Given the extent of memory content similarity, if we assume that memory
errors are distributed uniformly over the virtual address space of an application, the approach
we propose has the potential to reduce the rate of memory-induced application failure by a

significant fraction.

e Most of the similarity and duplication comes from pages that are modified infrequently. This
suggests that the temporal overhead of our proposed approach may be manageable relative to

its protective benefit.

e For the applications that we considered, expanding the scope of the memory that we consider
to include a NUMA domain provides a very modest improvement. This effect is due to the fact
that the increase in duplicate pages is largely offset by a decrease in similar pages. Nonetheless,

there may be circumstances in which we should choose local, similar pages over remote, duplicate
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pages. The costs and benefits of this trade-off will be explored more fully in our future work.

e Memory content similarity is not determined by the application alone. Even for a single applica-
tion, the degree to which application memory is comprised of duplicate and similar pages varies

significantly across inputs.

e Kernel memory in Linux and Kitten is comprised of a large fraction (greater than 85%) of similar
pages. Moreover, the associated storage costs are modest; the metadata would occupy a small

fraction (less than 10%) of memory.

While these results are promising, we have not yet collected data on the impact of this approach on
execution runtime. However, based on existing work in memory de-duplication [16, 4] we are optimistic
that the execution time overhead will be reasonable. For example, in [16] the authors showed that
application performance in systems using the Difference Engine, which also exploits page similarity at
runtime, was within 7% of native.

Taken as a whole, these initial results suggest that using memory content similarity may be a very
effective technique for correcting errors in application memory. As a result, we intend to pursue this
idea further and to begin work on implementing a runtime that can, by exploiting memory content

similarity, reduce the rate at which memory errors lead to node failure.
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