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Modern internal combustion engine concepts 
rely on compression ignition

Peroxy radical chemistry governs low-temperature (T < 900 K) ignition.
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The low-temperature oxidation chemistry of       
1-butanol is underexplored
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How does the OH group in 1-butanol influence reactivity, in particular 
the critical competition between HO2 vs OH forming pathways?
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Theoretical characterization of the    
hydroxybutyl + O2 reactions

Quantum chemistry:

– Geometries and harmonic frequencies:                          
B3LYP/6-311++G(d,p)

– Energies: CBS-QB3

Time-dependent master-equation calculations (Variflex):

– VRC-TST for the barrierless R + O2 entrance channel

– RRKM calculations for tight transition states

– Collisional energy transfer: Exponential-down model

– Torsional modes treated as 1-D hindered internal 
rotations

– Tunneling: Asymmetric Eckhart potential

The solution of the time-dependent master equation 

→ gives product branching ratios within each 
hydroxybutyl + O2 reaction (here at 550 K, 4 Torr)

→ includes formally direct and sequential pathways



α-hydroxybutyl + O2 leads to                     
chain-terminating formation of butanal + HO2
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ß-hydroxybutyl + O2 makes mainly OH via the 
“Waddington  mechanism”
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γ-hydroxybutyl + O2 is dominated by           
OH-forming pathways as well
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The OH group influences the reactivity even 
in δ-hydroxybutyl + O2
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Predicted main product channels for each 
hydroxybutyl + O2 reaction
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Experimentally we probe the chemistry of ALL 
four hydroxybutyl isomers simultaneously

Relative concentrations
of stable species from multiplexed 

time-resolved synchrotron 
photoionization mass spectrometry 

(MPIMS)
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Experimentally we probe the chemistry of ALL 
four hydroxybutyl isomers simultaneously
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Probing oxidation chemistry using MPIMS

Time-resolved mass spectrum

m/z = 72

3-D dataset

Photoionization spectrum

m/z = 72Concentrations (in molecules cm-3)
[1-butanol]: 4 x 1013

[O2]: 1 x 1016

[Cl2]: 2 x 1014

[Cl]0: 6 x 1012



m/z = 72 corresponds to the HO2 byproducts

Calibration spectra Product spectrum
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m/z = 72 corresponds to the HO2 byproducts
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Relative product concentrations

Theory:               2 : 4 : <1 : 100

Experiment:    0 – 5 :        5 – 10 :               <1               : 100



The observed concentration relative to butanal agrees well with theory

We detect propanal – a product of the 
Waddington mechanism in ß-hydroxybutyl + O2

The photoionization spectrum of m/z = 58 contains mainly propanal

Theory: 35 : 100
Experiment: 37 :    100

propanal, m/z = 58



The main product from γ-hydroxybutyl + O2

has an unstable cation

 weak Franck-Condon overlap between neutral and cationic state
 weak detection efficiency
We are unable to experimentally identify and quantify this product

neutral cation

lactol



Our data is consistent with lactol formation 
from δ-hydroxybutyl + O2

2-hydroxy-THF (m/z = 88)

The experimental yield is a factor 
of 8 lower than predicted!

m/z = 42 does not come from 
propene photoionization. Is it from 
dissociative ionization of a lactol?



The experimental acetaldehyde yield is much 
larger than predicted

TS has substantial 
multireference character

expected:    1      :       1
observed:    3      :       1

Acetaldehyde formation occurs also 
on the “wrong” side

We see 57% acetaldehyde relative to 
butanal, theory predicts 2%



Summary

The reaction of the hydroxybutyl isomers 
with O2 shows selectivity for either HO2 (α) 
or OH formation (ß, γ, δ)

MPIMS experiments give 
relative product concentrations, 
which can be prepared to 
theoretical predictions.

The OH group substantially 
influences the RO2 chemistry
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