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Information Processing

Laboratories

 Fulfill all of DiVicienco’s criteria

* Long trapping and coherence times

* High fidelity state preparation, detection and single qubit operations
* High fidelity two-qubit gates

* Entangled state of up to 12 ions have been demonstrated

e All basic quantum
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Laboratories scaling trapped ion QIP
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) i Scaling trapped ion QIP

National
requirements
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Memory region Electrode segments

* Linear segments for processing and storing Ql in ion chains
* Junctions
e Optical access for individual addressing of ions

* Efficient light collection
* Integrated optics to allow remote link and processing closeby
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SR why are they still being used?
att et al., Innsbruck pe et al. JO! -‘ f .
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) i Surface lon traps

First Surface ion trap:

 Gold on fused silica
* Few electrodes
* Exposed dielectric

NIST, Boulder

Seidelin et al. PRL 96, 253003 (2006)
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@) i Thunderbird trap

the workhorse

e 2-layer design

e though chip slot

* in operation around the world

* can be equipped with chip capacitors

Excellent trapping times proven @ Duke
* > 8h cooled

e > 30min dark

* Heating rates (Yb, 2MHz) 0.5 gq/ms

s 22 . @ ol 47 Bal’S

Sandia National Laboratories

Emily Mount/Jungsang Kim
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20kVv X1,000 10pm WD 16.0mm

SEI

D. L. Moehring, et al. New J. Phys 13, 075018 (2011).

SEI 30KV X550 10ym WD 13.0mm
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@Sandia Y-junCtiOn trap
making shuttling work

Modulated spatial frequencies

Center DC
connected

Pseudo-potential (meV)
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lon transport
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m Splitting/Recombination Multiple ions

Successful shuttling in multiple independent systems with
identical voltage solutions.
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SEI

D. L. Moehring, et al. New J. Phys 13, 075018 (2011).

SEI 30KV X550 10ym WD 13.0mm




National
Laboratories

ke Fabrication capabilities

four metal layer process
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M1

top silicon

wafer silicon

e

precisely recessed oxide
Grounded M3

Routing on M2

Gold coating from front and back side AR o T
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) i Modern 4-layer traps
any trap topology possible

4-layer process:

* No exposed routing
* |slanded electrodes
* New topologies

Imagine your trap geometry:
it can be realized
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optimus prime

Only realizable in 4-layer design
Greatly reduced rf ripple

3 switchable rf electrodes
Engineered for low capacitance and
improved phase control
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Y-junction circulator
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X-junction circulator

Circulator trap

Junctions based on demonstrated
Y trap (SNL and GT)

93 independent electrodes; 216
electrodes all junctions co-wired
Slot for vertical optical access, 4
loading holes

Shuttled around Y trap with
identical shuttling voltages in
each turning direction
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ke Packaging and testing

Plug-and-trap design Low profile wirebonding Parametric verification

18 pum round wires

83400 5.00kV 47.1mm x75 SE 3/1/2012

Features:

* Plug-and-trap design:
most trapping groups can accommodate the package
e Standard for chip ion traps
* Low profile wirebonds: good optical access
* Checks for opens and shorts > 40 MQ
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) i working with chip traps

Dust-free handling of trap chips

e shorts and voltage breakdowns
e dust particles can charge:
unreliable conditions

Ultra high vacuum

* helps realizing good trapping times

* lifetimes without cooling >20min

e Clean and absolutely grease-free handling
of components

« NEG

Optical beam quality

e optical access is smaller
e optimal beam quality is essential to prevent
scatter
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Optimizing surface traps for QIP

Challenges:

 Geometry and optical access:

* Individual addressing
* Resonant excitation for remote entanglement
* Quantum gates with Raman beams

* Trap parameters
* Trap frequencies > 2MHz (Yb) facilitate ground state cooling and
quantum gates
* Low residual micromotion for photon generation and quantum gates
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Loading Holes

1.2mm

Quantum Region

Schematic
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* |Isthmus mechanically very stable
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@ Sandic High Optical Access trap

beam clearance
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Clearance of vertical beam
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(). Trap parameters

Yb*, 250V, 40MHz  Sandia High Optical Accesstrap
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) Geometry optimization
linear section
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S3400 2.00kV 17.1mm x60 SE 1/23/2013
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= Interposer

e Connections to package
* Unobstructed optical access

Interposer also serves:

* Filter (rf shunt)

* RCfilter

e Universal from future and
existing traps
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Trench v. Surface Capacitors for Surface lon Traps ATC 116 Series Microcaps

= High-k dielectric surface areas: still large Surface mount: 1.27 x 1.27 mm?, 821+20% pF
= Thin dielectric challenges: yield, reliability

=  Vertical surfaces: more available area

Area relationship for

Trench Capacitor Architecture trench v. horizontal plate capautors
161(? T '|IIII| 1 T 17
B 2
Capacitor Top Capacitor - dCIdA 94 3 fFI pm 4
Electrode Bottom 1.4 10 (surface equivalent) ’/ 4
Electrical Electrode I ‘
Via Capacitor Spacer
Dielectric 1.210" - 1
Metal i
Inter-level 110° N l
Dielectric i
= 8000 - _
o i Capacitor Dielectric: 20 nm Si;N,
6000 - -
I iy —@— trench cap: width/pitch = 0.5/1.0 ym
4000 I —&— plate capacitor
~ "trench pradiction: dCfdA = 84.2 fFfum?2
2000
_._’-——!
0 —_— ]
0 1x10° 2x10° 3x10°

Horizontal Surface Area (im32)

D.T.C. Allcock, et al., Appl Phys B (2012) 107:913-919
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Integrated Trench Capacitors

Laboratories

Trenches: 1 um wide, 150 pum long, 19 um deep

1.05 nF trench cap, 0.045 mm?/cap
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@ Sandia Anomalous heating in surface traps
Laboratories and how to fight it

Problem:
*  Anomalous heating in ion traps o d’
* Due to electrical flield noise of patch potentials

Remedies:
* Operate at Cryogenic temperatures
e Surface cleaning

N e

D.A. Hite et al. PRL 109, 103001 (2012) H. Haffner et al., UC Berkeley
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lon Trap Chip Packaging
surface cleaning

Is in situ Ar plasma trap cleaning feasible? One possible implementation

Inductive RF loop

Can a micro-plasma be established in such a
small place?

a(pd)

_ Vb= In(pd)+ b

L
10" 10° 10" 10° 10°
pd [Torr em)

Paschen Curve for inert gases:
Ar: 10 Torr, 100V, 1 mm

Ar* plasma Ground grid

Trap surface
(grounded/floating)

Energies should stay below sputter thresholds
of trap materials

—

S—
L=~

Inductively coupled plasmas:

control of ion energies.
* Surface adsorbate bond energies <12 eV

2.0 x 107 [

4h 100 sccm Ar  |—a——&— 5 mTorr
7 —m—,—0-10 mTorr
el —eo—,—0—20 mTorr |4
1.5 10 —4—,—4—40 mTorr
1.2x107f
8.0x 10"
4.0x 107
0.0

0 5 10 15 20 25 30 35 40
Energy (eV)
M.G. Blain, et al., Appl. Phys. Lett., 75 3923 (1999)




() MUSIQC architecture

* Long linear section (27 electrode pairs)
* Two 7 electrode pair zones, 1.8mm separated
* Integrated optics can be used for separate imaging
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= Package Requirements
= (lon optical access/optics integration)

= Interposers and through substrate vias (TSVs):
e “2.5D” integration

= Integrated capacitors




@Sandia Thunderblrd Trap
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with integrated diffractive optlc
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Ceramic Fiber
Stabilizer Ferrule
=S Ceramic
Spacer
Lens Amay —; o

PGA Chip
Package

lon Trap
Chip

 Optics have been integrated into linear ion trap.

* No detrimental effects to ultra-high vacuum.

* Successful shuttling with same voltage solutions as
linear trap without integrated optics.

* Compensated any charging on dielectric lenses.

* Dielectric lenses ~150 microns away from ion.

G. R. Brady, et al. Appl. Phys. B: Lasers and Optics 103, 801-808 (2011).

Eight level F/1 fused sil ca DOE

L, Integrated Optics

Ll

Silcon Wafer
Trap Electrode 4
and Insulator
Layers
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DE, = 0.34% P/ 866 nm
N\ e o
7.1ns

38% 83.7% 96.7%
81 /2 —
397 nm
866 nm
PuT
2 us 1.5 ps 1.5 us treas

K 1,000,000 /
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DE=0.341%

positions (um)

0 10 20 30
positions (um)

DE,=0.023%

Detection measurements

DE,=0.315%

positions (um)

0 10 20 30 40
positions (um)

DE,:=0.236%

38



() it HOA + optic
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Turning prism
for light
collection from
side

Open hole in
fused silica

for standard
imaging
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E % 5 10 15 2
12.6 GHz Number of detected pho tons

)
» State detection fidelity >97%
* will be optimized further

* Expecting >98% fidelity

S. Olmschenk et al., PRA 76, 052314 (2007)
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@Sandia Single qubit manipulations

Rabi flopping
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@ﬁzﬁﬂ‘ﬁm Single qubit manipulations
Coherence time
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1 : r : r T . y :
L 0.958236 " exp(-x/ 465.721942)

Ramsey Contrast |

085 |

08 r

probability bright
Ramsey contrast

0.75 |

07 r

085 t

0 SIO 1II30 1%0 - QIIJO 250 3|Ij|j 350 0 QIO 4I0 BIO 8I0 1EI)0 120 1;10 150 1EI30 200
analyzing phase [degres] wait time [ms]

* Coherence time approx 400ms (expected >1s)

* Coherence time is currently limited by light leaking through the switches

* Verified that leaking light can be reduced by 30dB with additional single mode fiber

* System is upgraded, new measurement to follow this month
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@Sandia Outlook: future technologies

through substrate vias
Types of through substrate vias: Cuand W

2 um x 40 um deep TSVs

L A ——
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= = Bond front to handle
= Backgrind to 75 um
= Dry etch to reveal TSVs

= Sjrecess
=  PECVD oxide
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@ Pictures of traps

Wineland et al. NIST Boulder




