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ABSTRACT: This study examines the accuracy and value of three different PV module performance modeling 
approaches by calibrating selected performance models to outdoor IV data measured on different module 
technologies. We compare measured and modeled IV characteristics by examining the error distributions and 
correlations with time varying quantities to assess the accuracy of each model for the modules tested. The equivalent 
circuit diode models (e.g., PVsyst, PV*SOL, CEC, etc.) are popular, but include technology-specific corrections and 
calibration is challenging. Empirical models such as the Sandia PV Array Performance Model (SAPM) and 
TEL/SRCL “Loss Factors model” (LFM) are better able to represent technology performance differences and 
changes over time. Several of the SAPM coefficients lack of physical meaning whereas the LFM coefficients relate 
directly to IV characteristics. This study explores the strengths and weaknesses of each approach to model PV 
module and system performance with the goal of reducing prediction uncertainty and project risk, and improving the 
quality and value of PV system modeling and simulations.
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1 INTRODUCTION

PV module performance models are used to estimate 
a module’s IV characteristic as a function of irradiance 
and cell temperature, including spectral and reflection 
effects. A number of different model forms exist to fit 
measured IV curves. Some models represent the full IV 
curve (e.g., single diode equivalent circuit models such as 
PVsyst [1], PV*SOL [2], and the CEC model [3]) while 
others, such as the Sandia PV Array Performance Model 
(SAPM) [4] and the “TEL/SRCL” Loss Factors Model 
(LFM) [5-8], estimate only key points on the IV curve 
such as the maximum power point (Vmp, Imp), short 
circuit current (Isc), and open circuit voltage (Voc). The 
LFM also estimates performance losses due to series and 
shunt resistances.

This study quantitatively compares three PV module 
performance models in order to identify advantages and 
disadvantages of each approach in order to be able to 
predict performance. IV curves that were measured for a 
variety of PV module technologies while mounted on a 
two axis tracker in New Mexico are used for the 
comparison. These data are used to demonstrate 
differences between module models. Modules selected 
for this test include six commercially available modules 
(mono-Si, poly-Si, and CdTe) and six different CIGS 
modules from four manufacturers.  

2 METHODS

Twelve test modules (Table 1) were used for all 
measurements in this paper. Each module was mounted 
on an Az/El 2-axis tracker (±0.5° accuracy) pointed at the 
sun for all measurements in this paper at Sandia National 
Laboratories (SNL) in Albuquerque, NM (~35.05° N, 
106.54° W) and held normal to the sun. Preconditioning 
was performed according to manufacturer guidance. Each 
module was instrumented with three Type-T 
thermocouples along the module diagonal. The solar 
irradiance in the plane of the module was measured using 
a standard silicon reference cell PRC-Kochmann RS1, 

Berlin, DE). Global normal irradiance was measured 
using a standard pyranometer (Kipp& Zonen CM-21, 
Delft, NL) calibrated for off-angle performance. A co-
located weather station provides redundant irradiance 
measurements. 

Table I: Modules Compared in this Study

Number Module Number Module

1 Mono-Si-1 7 CIGS-1
2 Mono-Si-2 8 CIGS-2
3 Mono-Si-3 9 CIGS-3
4 Poly-Si-1 10 CIGS-4
5 Poly-Si-2 11 CIGS-5
6 CdTe-1 12 CIGS-6

Note: CIGS modules are all preproduction modules 

IV scans were performed on each module at 1-minute 
intervals over the entire day for several days to cover a 
range of clear and cloudy (diffuse) conditions. Each IV 
scan took approximately 5 seconds; between scans, each 
module was held at its maximum-power operating point.
Irradiance before and after each trace was compared and 
used to filter out curves obtained during unstable 
irradiance conditions (e.g., irradiance changes >2%). 
Noise in the current near Isc would indicate variable 
irradiance during the trace. The average back surface 
temperature for each module was obtained from the three 
thermocouples.

Module temperature coefficients for Isc, Voc, Imp
and Vmp were also measured outdoors for each module 
using test protocols developed at Sandia National 
Laboratories [9]. This measurement was performed near 
solar noon during stable, clear sky and calm wind 
conditions. An opaque cover was placed on the front 
surface of the module and it was allowed to cool to 
ambient temperature. The cover was then removed and 
the module exposed to sunlight and allowed to warm to
equilibrium operating temperature. I-V scans were 
collected continuously as the module warmed to normal 
operating temperature.
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Data for each module was collected over the course 
of several years. Thus, none of the data presented in this 
paper was collected simultaneously. Further, module 
performance was typically measured at different times of 
the year (e.g. one module might have been measured for 
a week in December, another module for a week in June). 

In order to explore strengths and weaknesses of the 
different modeling approaches, we used these IV data to 
estimate parameters for each model (SAPM, LFM, and 
the CEC model) using methods that are described later.
Next using the estimated parameters and measured 
environmental conditions we ran each model to predict 
the maximum power point (MPP) for each of the 
measured IV curves used for model calibration and 
compared the predictions with measurements.
Distributions of error in predicted Pmp, Imp, and Vmp are 
compared between the models. We limited the focus of 
this study to the comparison between the IV models 
specifically and neglected an examination of the various 
methods used to correct for spectral effects, angle of 
incidence losses, etc. We did this by using “effective 
irradiance” (Ee) in place of measured irradiance as input 
to the performance models and by comparing data taken 
only while the module was normal to the sun on the 
tracker. The Ee quantity is discussed in next section.

2.1 Loss Factors Model
The Loss Factors Model (LFM) [5-8] was developed 

to fit measured outdoor IV curves to not only predict 
energy yield over time but also to detect and analyze the 
root causes of observed degradation and seasonal 
variation with physical meaning. It has been used by TEL 
to examine several years continuous data in Switzerland 
and Arizona studying degradation and seasonal 
annealing. For Sandia, it has been studied with data for a 
week or so to characterise each module. The model is 
based on a set of normalized parameters that describe 
each IV curve and a set of fitting coefficients that 
describe how these parameters vary with irradiance Gi

and module temperature Tmodule. Given a measured IV 
curve (prefix = “m”) and a reference IV curve at STC 
(prefix = “r”), the following six normalized LFM 
variables (prefix = “n”) are defined [6,7]. mVr and mIr
are coordinates of the intersection point of lines tangent 
to the ends of the measured IV curve as shown in the 
example in Fig 1.
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�����,��� =  1 + ���� × (25 − �������), and Gi is 
plane-of-array (POA) irradiance in suns. In the original 
versions of LFM, temperature coefficients for Voc and 
Isc, respectively, were used for the temperature 
corrections. We discovered in this study that the model 
performance is improved by using temperature 
coefficients associated with Vmp and Imp, respectively –
an updated and more accurate version of the LFM will be 

published taking into consideration these findings for 
short term data.

Figure 1. Example measured and reference IV curves 
showing key points in the electrical coordinate system 
(V, I).

A predictive model is developed by fitting each of these 
normalized parameters to Gi using the following 
functional form for each fit:

��(��) = �� + �� × ��(��) − �� × ��
� .

As this is a normalised equation the values of c1 will 
usually be 100±<10%, c2 and c3 will usually be 0±<10%. 
MPP can be then predicted (prefix = “p”) at any 
irradiance and temperature conditions by first calculating 
the normalized LFM variables from the fitted equations 
and then evaluating the two equations below:

���� = ����� × ��� × ���� × ���� × ���� × ��

÷ �����.���
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MMF is the spectral mismatch factor which can be 
calculated from measured spectrum and quantum 
efficiency of the PV cell (e.g., IEC 60904-7). In the 
previously published versions of the LFM model [6,7], 
����� is spectrally corrected using measured outdoor 
spectra. In our test setup in New Mexico we did not then 
have access to spectral data nor to the quantum efficiency 
of the test modules, both of which are needed to evaluate 
spectral mismatch. Instead we substituted “effective” 
irradiance (Ee) for the quantity MMF × Gi in the equation 
for pImp. Ee is determined from mIsc, rIsc, module 
temperature, and ���� (temperature coefficient for Isc) as 
(eq. 22 in [4]):

�� = ���� [���� × {1 + ����(������� − 25)}]⁄ .

This approach allows easier comparison between models
and removes the additional uncertainties associated with 
irradiance and spectral mismatch. Because we are using 
���� to temperature-correct nImpT and ����to calculate 

Ee, nIscT will not be equal to one, unless ���� = ����.
Figure 2 displays an example of the normalized 

measurements corresponding to each variable in the LFM 
model, and the fitted functions of irradiance for each 
variable as specified above.



Figure. 2. LFM parameters as a function of irradiance 
with curve fits for the Poly-Si-1 module.

2.2 Sandia Array Performance Model (SAPM)
SAPM is an empirical model of module output at 

open-circuit, short-circuit and maximum power 
conditions. The fundamental equations in SAPM are 
described in detail in [4]. Coefficients for this model are 
obtained by fitting model equations to IV curves 
measured outdoors on a two-axis tracker [9].

2.3 California Energy Commission (CEC) Model
The CEC model is based on the conceptual “single 

diode” equivalent circuit shown in Figure 3 for a PV cell.

Fig. 3. Single diode equivalent circuit used to represent a 
PV cell.

Assuming identical cells obtains an equation for the IV 
curve of a PV module comprising Ns cells in series: 
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where IM and VM are the current and voltage, respectively, 
of the module. The five parameters are primary to all 
single diode equivalent circuit models:

 IL : light current (A)
 I0 : diode reverse saturation current (A)
 Rs : series resistance (Ohm)
 Rsh : shunt resistance (Ohm)
 n : diode ideality factor (unitless)

Additional equations describe how these five parameters 
vary with irradiance and temperature; these equations 
vary among the various models (e.g., PVsyst [1], 
PV*SOL, and CEC [10]) which use the single diode 
equation. For our comparison we examined the CEC 
model which uses the following additional equations:
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where the subscript ~0 indicates a value at STC 
conditions. In the CEC model [10] both Rs and n are 
constant.

Single diode models are difficult to calibrate to data
[11]. Most commonly, a single IV curve at STC 
conditions is used to determine the necessary parameter 
values [e.g., 12]. This approach implicitly assumes the 
additional equations correctly describe how parameters 
change with irradiance and temperature. Recently, Sandia
National Laboratories has developed calibration methods 
that fit all equations for a single diode model to a set of 
measured IV curves [13] which permits evaluation of 
each equation’s ability to describe a module’s behavior.
We used these techniques in our analysis.

2.4 Test Modules
Twelve modules were compared in this study. Their 

cell technologies and ID number are listed in Table 1.

2.5 Temperature Coefficients
To determine temperature coefficients for this study, 

we used IV curves measured during the outdoor thermal 
test, where the module was insulated from the back and 
exposed to full sun after being initially covered. During 
the test, the module heats rapidly until it reaches thermal 
equilibrium when the test ends. Measured Voc and Vmp
were corrected for small variations in irradiance by 
typical methods. For example, for Voc:

������ = ���� −
�� ��

�
ln (��)

where Ns is the number of cell in series, k is Boltzmann’s 
constant (1.38066×1023 J/K), n is a representative diode 
ideality factor for each technology, and q is the 
elementary charge (1.60218×10-19 coulomb). Similar 
corrections are made for Vmp. Results are not very 
sensitive to the value of n; e.g., we assumed 1.1 to be 
representative for all silicon-based technologies. Figure 4
show an example of the analysis that determines 
temperature coefficients. Table II in the appendix lists the 
temperature coefficients for each module.

Figure 4: Example data and result from the thermal test to 
determine voltage temperature coefficients.



3 MODEL COMPARISON

Each model was run in a forward manner to predict 
performance for the measured conditions corresponding 
to each IV curve recorded during the electrical 
performance test. The models were evaluated by 
comparing predicted Pmp, Imp, and Vmp against 
measured values.

For the CEC model, the parameter estimation method 
[13] did not converge sufficiently to produce a reasonable 
predictive model for CIGS-4; therefore we do not show 
CEC model results for this module.

Figure 5 compares relative mean bias errors and 
relative root mean square errors between models for each 
module. The LFM model has the lowest bias errors, 
although the bias errors are quite low for all models (note 
10-3 factor at top of y-axis). Except for module 6 (CdTe-
1) and module 9 (CIGS-3), the relative RMSEs are quite 
similar between models.

Figure 5: Mean bias and root mean square errors for 
Pmp. Modules numbers are listed in Table 1.

3.1 Residuals
Examination of model residuals of Pmp, Imp, and 

Vmp more closely show clear differences in how the three 
models perform with the test modules. Figures 6-8 show
cumulative distributions of the residuals for each of the 
modules.

Figure 6: Cumulative distribution functions for residuals 

in Pmp, Imp, and Vmp for the SAPM model.

Figure 7: Cumulative distribution functions for residuals 
in Pmax, Imax, and Vmax for the LFM model.

Figure 8: Cumulative distribution functions for residuals 
in Pmax, Imax, and Vmax for the CEC model.

4. DISCUSSION

The comparison between models illustrates that for 
most modules all three models can be calibrated to 
predict MPP with similar levels of accuracy. It is 
interesting to note that when predictions are examined in 
detail, certain models have distinct errors for one or more 
modules. For example the CdTe-1 module (blue line in 
Figures 6-8) show different error patterns for different 
models. The SAPM model slightly underestimated Imp
for this module, resulting in a slight underestimate of 
Pmp. The underestimate of Imp results from SAPM’s 
expression of Imp as quadratic in effective irradiance
(i.e., with slightly negative but constant curvature), 
whereas the data show negative curvature that changes 
over the range of effective irradiance. In contrast, the 
LFM model exhibits a slight overestimate bias in Imp
during certain conditions. For the CEC model, the CdTe-
1 module stands out for not being well represented by the 



model (largest variance in model residuals). For the CEC 
model, the relatively large prediction errors result from 
considering the series resistance as constant, whereas the 
values of series resistance estimated for each IV curve 
vary strongly with effective irradiance.  The differences 
in performance between models based on the same IV 
data raise important concerns about criteria used to 
choose performance models. How does one ensure that 
the chosen model is valid for a selected module? Which 
model is most appropriate to use?

Once an accurate performance model is calibrated, it 
is valuable to be able to examine a module’s model 
coefficients and say something about the health or 
condition of the module under test. One of the biggest 
drawbacks of the SAPM model is that the values of many 
of the individual model coefficients have little physical 
meaning and cannot be readily compared between 
modules. This is due to the use equations whose 
coefficients represent fitting parameters for functions 
with variables that are in engineering units (e.g., volts, 
amps, etc.) whose ranges can vary widely between 
different PV modules (e.g. c-Si modules typically have 
high Isc and low Voc values whereas thin film modules 
tend to have low Isc and high Voc). For the CEC model, 
although fitting parameters have physical units, the 
relationship between these parameters and module 
performance (e.g., between Rsh and Vmp) is 
mathematically complex and difficult to visualize. In 
contrast, the LFM model is based on fits to normalized 
variables in equations for points on the IV curve, thus the 
fitting parameters for different modules can easily be 
compared and used to discern important differences 
between modules.  

Figure 2 shows a great example of the LFM variables 
vs. irradiance for a crystalline silicon module that is 
performing well (Poly-Si-1). nVocT increases with 
irradiance due to the logarithmic rise in Voc with 
temperature. nRoc decreases due to the series resistance 
loss increasing with the square of irradiance (e.g., loss ~
I 2 × Rseries). Some scatter is present but the data trends 
are clear and consistent.

In contrast, the CdTe-1 module is an example where 
model fitting exposes a minor performance issue. Figure 
9 shows the 6 LFM variables plotted against Ee. This plot 
displays an interesting feature, “synchronised” distinct 
traces above the nVmp fit and below the nRoc fit.

Figure 9: LFM variables vs. Ee for CdTe-1.

These traces (nVmp>1.27) occur during clear days 
when the wind speed increased and lowered module 

temperature to below 40C. Figure 10 demonstrates this as
scatter plot of nVmp vs. Tmodule at high and low irradiance, 
which indicates clear and cloudy conditions, respectively 
as these measurements are made on a tracker.

Figure 10: nVmp vs. Tmodule for CdTe-1.

We suspect that this behavior may indicate some level of 
metastability or defect in the module and may reflect a 
slight reversible Schottky rollover effect [e.g., 14, 15], 
possibly caused by the rapid temperature fluctuations.

CIGS-4, which is a preproduction prototype module,
provides an example of a module with more serious 
performance issues. The LFM variables are plotted in 
Fig. 13 against Ee. In contrast with “optimal behaviour” 
from Fig 2, the low values of nRoc and nRsc at low 
irradiance indicates a poor performing module with 
highly nonlinear performance as a function of irradiance 
as if shunt resistance were decreasing with irradiance.
Increasing nVmp with Ee relative to nImp provides clues 
to the source of the problem. The LFM plot clearly 
displays these relationships and provides valuable 
understanding that is not immediately evident from a set 
of SAPM or CEC module coefficients.

Figure 13: LFM variables vs. Ee for CIGS-4.

Plotting model residuals vs. time or other quantities 
can yield additional insights.  For example, an 
examination of the model residuals vs. time (bottom plot 
in Fig. 11) for the CdTe-1 module indicates that module 
performance is improving during the period of 
measurement, likely due to well-known light soaking 
effects for CdTe. This observation indicates that the 
preconditioning routine may not have been sufficient to 
stabilize the module before testing. Similar indications of 



metastable behavior were observed for CIGS-1, however 
in this case, the fill factor is seen to decrease over the 
time of the test.

Figure 11: Top plot is of Ee and normalized Tmodule vs. 
time step. Bottom plot displays model residuals (% 
relative to Pmp at STC).

Plotting model residuals vs. independent variables 
(e.g., module temperature) can reveal model deficiencies. 
For example, model residuals for Vmp are plotted against 
module temperature in Figure 12. It is clear that the CEC 
model for this module results in a biased prediction of 
Vmp with errors correlated with temperature, which 
results in the larger variance for the CEC model for this 
module shown in Figure 8. This sensitivity of the CEC 
model residuals to temperature is evident for all of the 
thin film modules for which we were able to estimate 
parameters, but not for the c-Si and poly-Si modules, 
suggesting that some aspects of the CEC model itself 
may not be appropriate when applied to thin-film 
modules.

Figure 12: Vmp model residuals vs. Tmodule.

6. CONCLUSIONS

We have compared three different PV module models 
with fundamentally different formulations. 

The CEC model displays the largest errors for certain 
modules and is difficult to fit (converge) for others. The 
CEC model is currently the only one of the three models 
able to predict the continuous IV curve, which may prove 
to be of increased importance in the future as system 
DC/AC ratios increase and PV systems are operated off 
their MPP (also possible with LFM and SAPM with 
small adaptations). However, the CEC model also 
appears to exhibit a strong sensitivity to temperature for 
the thin film modules for which we were able to derive 
coefficients. This suggests that there are still an 
opportunities for improving methods for estimation of 

model coefficients for single diode type models, 
especially for thin film modules. Developing methods to 
estimate these parameters remains an active research 
area.

The SAPM model resulted in similar bias errors to 
the CEC model and random errors comparable to the 
LFM model. The SAPM model coefficients do not 
provide diagnostic information about the relative “health” 
condition of the modules, since their parameters have no 
physical meaning.   

The LFM model showed the lowest bias errors and 
comparable random errors to the SAPM. The data from 
Sandia resulted from a 2D tracker and needed small 
adaptions to get the same accurate curve fits as the TEL 
data on a fixed tilt. 

We used temperature coefficients for Imp and Vmp
rather than Isc and Voc. In addition, we substituted 
effective irradiance for measured irradiance to remove 
uncertainties related to spectral mismatch.

The LFM model has been shown to be able to fit a 
wide variety of modules of varying quality, but its unique 
strength is that it allows quick identification of strange 
performance patterns and provides insightful information 
on why performance is nonstandard. The LFM curve fit 
parameters have physical meaning since they relate 
directly to the behavior of the key points on the 
normalized IV curve with changing irradiance. By 
plotting the 6 normalized LFM variables with irradiance 
module health can be quickly assessed. An examination 
of these fits over time has been shown to be a valuable 
tool for detecting changes in performance over time (or 
season) [6].

The limitations of this work include: the use of only 
IV data collected on 2-axis tracker (no angle of incidence 
effects) and lack of field measured spectrum. Future work 
will include analyses using fixed tilt module IV data and 
also take advantage of new outdoor spectrometer 
capability at Sandia’s test site. We also plan to focus on 
accurately representing performance of series and parallel
connected arrays taking into account module variability 
and associated mismatch. IV curves from series 
connected strings of modules are currently being 
collected for this work. This step will assist the extension 
of module-scale modeling to modeling of an entire PV 
power plant.

Based on the results of this study, Sandia National 
Laboratories plans to add the LFM analysis methodology 
to its standard set of methods used for outdoor module 
characterization.
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