
Final Report

DoE Award Number: ER25789

Name of Recipient: Purdue University

Project Title: Hierarchical Petascale Simulation Framework for Stress Corrosion Crack-

ing

1 Project Accomplishments

A number of major accomplishments resulted from the project. These include:

• Data Structures, Algorithms, and Numerical Methods for Reactive Molecular Dynamics. We
have developed a range of novel data structures, algorithms, and solvers (amortized ILU,
Spike) for use with ReaxFF and charge equilibration.

• Parallel Formulations of Reactive MD (Purdue Reactive Molecular Dynamics Package, PuReMD,
PuReMD-GPU, and PG-PuReMD) for Messaging, GPU, and GPU Cluster Platforms. We
have developed efficient serial, parallel (MPI), GPU (Cuda), and GPU Cluster (MPI/Cuda)
implementations. Our implementations have been demonstrated to be significantly better
than the state of the art, both in terms of performance and scalability.

• Comprehensive Validation in the Context of Diverse Applications. We have demonstrated the
use of our software in diverse systems, including silica-water, silicon-germanium nanorods, and
as part of other projects, extended it to applications ranging from explosives (RDX) to lipid
bilayers (biomembranes under oxidative stress).

• Open Source Software Packages for Reactive Molecular Dynamics. All versions of our soft-
ware have been released over the public domain. There are over 100 major research groups
worldwide using our software.

• Implementation into the Department of Energy LAMMPS Software Package. We have also
integrated our software into the Department of Energy LAMMPS software package.

In the rest of this report, we elaborate on these accomplishments.

2 Performance and Scalability of Purdue Reactive Molecular Dy-
namics (PuReMD) Package

In our previous reports, we have demonstrated the superlative performance of our serial and parallel
PuReMD releases compared to other implementations. Here, we summarize the performance of our
most recent releases – PuReMD GPU for Nvidia GPUs and PG-PuReMD for GPU clusters. For
a detailed discussion of the serial and parallel (MPI) formulations, we kindly refer the reader to
[3, 4].

1

System size Look-up tables W/o look-up tables

6540 7.13 13.6

10008 7.61 13.04

25050 9.06 16.02

36045 9.16 16.36

50097 8.15 16.55

Table 1: Speedup achieved for various sizes of water systems

2.1 PuReMD-GPU: Experimental Results

Our detailed benchmarking of PuReMD-GPU demonstrates a speedup of 16x for a model water
system, leveraging various algorithms and optimizations [2].

Here, we summarize our evaluation of the performance, stability, and accuracy of PuReMD-
GPU. All simulations are performed on an Intel Xenon CPU E5606 operating at 2.13 GHz processor,
24GB of RAM with Linux OS and equipped with Tesla C2075 GPU. The PuReMD code is compiled
with the following compiler options - “-funroll-loops -fstrict-aliasing -O3”. PuReMD-GPU is com-
piled in CUDA 5.0 environment with the following compiler options “-arch=sm 20 -funroll-loops
-O3”. All arithmetic operations are double precision. Fused Multiplication Addition (fmad) opera-
tions are not used in the PuReMD-GPU implementation so that results perfectly match those from
PuReMD execution. All simulations use a block size of 256 threads. Some kernels are designed to
use multiple threads per atom, and the block size for these kernels is mentioned where necessary.
The model systems in all these simulations use a time-step of 0.1 femtoseconds, a tolerance of 10−10

for the QEq solver, and NVE ensemble unless otherwise noted.
We use water and silica model systems for in-depth analysis of accuracy and performance, since

they represent diverse stress points for the code. Water systems of sizes 6,540 atoms, 10,008 atoms,
25,050 atoms, 36,045 atoms and 50,097 atoms are used. Silica systems of sizes 6,000 atoms, 12,000
atoms, 24,000 atoms, 36,000 atoms and 48,000 atoms are used.

2.1.1 Scaling Studies of Performance

Water systems with different sizes are used to test scaling properties of PuReMD-GPU. Table 1
shows the speedup achieved for water systems of various sizes. We clearly observe that as the system
size increases, the effective speedup also increases. For the water system we achieve a speedup of
16x compared to the PuReMD implementation. This is the key result of our development effort.
In all these simulations, neighbor-list, hydrogen-bond , matrix-vector, and coulombs/van der waals
force kernels use multiple threads per atom, and all the other kernels use one thread per atom.

2.1.2 Performance Across Diverse Systems

Apart from the water system, we also used silica systems of different sizes to further validate the
performance of PuReMD-GPU. From Table 2, we observe that PuReMD-GPU yields a similar
performance improvement as observed with water systems, compared to baseline PuReMD im-
plementation. Speedup achieved with silica systems is lower compared to water systems. In the
silica system, there are no hydrogen bonds. Four-body interactions dominate in these systems, as
every atom participates in four-body interactions. Even with the use of auxiliary memory in the
bond-list, atomic operations cannot be avoided in this kernel. This is because of the following
reason: assuming that atoms (i, j, k, l) participate in a four-body interaction, we store three-body

2

System size look-up tables W/o look-up tables

6000 5.8 9.64

12000 5.951 10.13

24000 6.5 10.86

36000 6.6 11.39

48000 6.6 11.45

Table 2: Speedup achieved for various sizes of silica systems

water-6540 silica-6000
Data-structure PuReMD PuReMD-GPU PuReMD PuReMD-GPU
Neighbor-list 75.1 150.09 43.32 86.54

Hydrogen-bond list 7.12 32.8 4.5 13.73
QEq Matrix 25 54.4 14 32.77
Bond-list 27.7 42.6 26.03 40.11

Three-body-list 9.7 9.7 27 27

Total Memory 144.62 289.59 114.85 200.15

Table 3: Memory footprint for water-6540 system. (All the memory footprints are at system
initialization. They may grow as the simulation progresses.)

interactions among atoms (i, j, k) and atoms (j, k, l) in the three-body-list and atoms j and k are
central atoms. The thread processing the four-body interactions for atom j, needs to update the
force on atom l during the processing of this interaction. We use an atomic operation in this case
to avoid maintaining another data structure for resolving this dependency. Avoiding this atomic
operation may improve the performance of this kernel for systems where four-body interactions
are dominant, at the expense of additional memory usage. However, this significantly increases
complexity of the kernel (overheads such as use of additional local variables and increased use of
shared memory needs to taken into account).

2.1.3 Performance Analysis of PuReMD-GPU

We now present a detailed analysis of our PuReMD-GPU implementation.

Memory Footprint of PuReMD and PuReMD-GPU Table 3 presents memory usage of
various data structures used in PuReMD and PuReMD-GPU. Neighbor-list memory usage in
PuReMD-GPU is doubled, compared to PuReMD. This is because PuReMD-GPU maintains re-
dundant neighbors in this list. Bond-list and hydrogen-bond list data structures (in PuReMD-GPU)
are augmented with additional memory to store temporary results during various computations to
help resolve dependencies. This explains the increased memory usage by these lists compared to
PuReMD. Separate kernels process this auxiliary memory, utilizing coalesced global memory access
and shared memory resulting in better performance. QEq matrix storage is doubled in PuReMD-
GPU because both upper and lower triangular parts of the symmetric matrix are stored; this is
not the case in PuReMD. Three-body list storage is identical in PuReMD and PuReMD-GPU.
Overall memory footprint of PuReMD-GPU is roughly double compared to PuReMD. However,
this increase in memory usage allows us to achieve significant speedups on the GPU.

3

Water-6540 Silica-6000
Computation CPU GPU GPU CPU GPU GPU

Time Time Overhead Time Time Overhead
Neighbor list generation 117 14 - 85.3 11.9 -

Initialization 232.8 31.1 12 163 10.8 0.57
Bond Order 4.1 0.5 - 10.9 0.7 -
Bond Energy 2.4 0.2 0.03 4.5 0.313 0.03

Lone Pair Interactions 2.7 0.8 0.1 4.8 1.25 0.09
Three Body Interactions 37.4 5.9 0.4 113.5 13.2 0.56
Four Body Interactions 34.7 8.1 0.5 252.8 58.9 0.89

Hydrogen Bonds 133.1 6.2 4.9 0.05 0.9 0.5
Charge Equilibration 589.9 43.0 - 97.5 21.9 -
Couloumbs Forces 1001.9 24.2 0.1 587.2 14.9 0.1

Table 4: Timings for various computational components of a single time-step for the water-6540
system and silica-6000 systems. All the timings are in milliseconds.

Detailed Performance Analysis Table 4 presents a comparison of PuReMD and PuReMD-
GPU implementations and overheads associated with various computations in the GPU implemen-
tation. Overheads are incurred in PuReMD-GPU because it uses additional kernels to perform
computations that are not present in PuReMD. It is evident from this table that the overhead
incurred by most kernels is much less than the cost of (essential) computation in the kernel, thus
resulting in good speedups. An exception to this is the hydrogen bond kernel, which takes 6.2
msecs and has an overhead of 4.9 msecs. This overhead is because of processing the hydrogen-bonds
list, which is large compared to the bond-list.

Neighbor-list generation does not have any overhead when compared to PuReMD implemen-
tation, since it is implemented in a single kernel. The initialization step, during which bond-list,
QEq matrix and hydrogen-bond-list are generated, uses separate post processing kernels to make
the bond-list and hydrogen-bond list symmetric. Bond-list is made symmetric in PuReMD-GPU
in two stages. Bond-list is generated during the initialization step and a separate kernel iterates
over the bond-list and updates pointers so that bond (i, j) and bond (j, i) point to each other. A
similar approach is taken for hydrogen bonds list construction as well.

Bond-energy interaction includes overhead of separate kernels that compute Ebe of the system.
Lone-pair interaction has the overhead of three kernels, which compute Elp, Eov, and Eun. A
post-processing step is used to compute the force on each atom due to this interaction. Three-body
interaction has the overhead of kernels that perform reduction on lists to compute Eang, Epen,
and Ecoa. Another post-processing kernel is used to compute the force for each atom due to this
interaction and intermediate derivatives. Four-body interaction has the overhead of the kernels
that perform reduction for computing Etor and Econ. A post-processing step is also used for
computing the force on each atom due to this interaction and intermediate derivatives. Hydrogen-
bond interaction has the overhead of the kernel for computing Ehb. Two separate kernels are used
for post-processing, one to iterate over the hydrogen-bond-list and one iterating over bond-list to
compute the force on each atom due to this interaction.

Of all the bonded interactions, hydrogen-bond interaction is the most expensive, followed by
three-body and four-body interactions for the water system. Four-body interactions dominate among
the bonded interactions in silica systems. Bond-order, bond-energy and lone-pair interactions are
simpler kernels, costing only a fraction of the total time spent in the bonded interaction compu-

4

Kernel 1/ atom 2 / atom 4 / atom 8 / atom 16 / atom 32 / atom

Water
Neighbor-generation 23.1 16.2 13.9 13.7 14.7 22.2

Three-body 6.1 6.4 5.7 6.3 9.3 13.9

6540 At.
Four-body 8.1 11.2 11.7 13.3 17.8 24.9

Hydrogen-bonds 7.6 6.6 6.1 5.7 5.9 6.2
GMRES 193.0 100.0 74.5 58.9 53.9 54.7

Coulombs/ VDW 30.4 28.5 26.8 24.5 23.9 24.3

Water
Neighbor-generation 127.2 85.6 73.2 73.7 80.1 120.5

Three-body 23.0 25.3 25.5 31.9 47.3 71.9

36045 At.
Four-body 39.9 55.7 59.7 69.7 98.4 138.9

Hydrogen-bonds 38.0 32.8 31.1 30.4 31.6 33.1
GMRES 1132.9 562.8 329.5 220.0 183.8 178.5

Coulombs/VDW 162.4 148.6 136.9 132.1 128.7 132.5

Table 5: Effect of multiple threads per atom on the kernel performance. All the timings are in
msecs

Computation atomic add. memory

Bond Order 0.5 0.5

Bond Energy 7.6 0.2

Lone Pair Interactions 122.1 0.8

Three Body Interactions 265.3 6.0

Four Body Interactions 55.9 8.1

Hydrogen Bonds 157.5 6.2

Coulombs/van der Waals 24.2 24.2

Table 6: Timings for each interaction when using atomic operations vs additional memory to resolve
dependencies for the water-6540 system. All the timings are in msecs.

tations. Three-body and four-body interactions are implemented using multiple threads per atom.
Table 5 presents the associated timings. Multiple threads per atom kernels for three-body and four-
body interactions are not significantly better than single thread per atom implementations, because
of the fact that bond-lists of each atom have only a few entries, and if multiple threads per atom are
used, a large number of thread-blocks are created, which affects the performance of these kernels
because of low kernel occupancy.

For non-bonded interactions, Coulombs and Van Der Waals forces are computed by iterating
over the neighbor-list of each atom. Table 6 presents the timings of each of these kernels using
multiple threads per atom. We clearly observe from this table that using multiple threads per
atom yields better performance because of coalesced memory operations and effective use of shared
memory to process intermediate results.

The sparse matrix-vector kernel is implemented using a 2D partitioning of the QEq matrix.
Table 5 presents the impact of varying number of threads per atom for this kernel.

Atomic operations vs. additional memory to resolve dependencies Table 6 presents
timings for each of the bonded and non-bonded interaction kernels when atomic operations are
used to update global memory locations (updating the energies of the system). We observe from
this table that the performance of all of the kernels is significantly impacted by the use of atomic
operations to update the global memory.

5

 0

 2

 4

 6

 8

 10

 12

 14

 16

6540 10008 25050 36045 50097

T
ot

al
 T

im
e

pe
r

st
ep

 (
se

co
nd

s)

Water System Size

gpu.lookups
gpu.no.lookups

cpu.lookups
cpu.no.lookups

Figure 1: Time per time-step for the water systems.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

6000 12000 24000 36000 48000

T
ot

al
 T

im
e

pe
r

st
ep

 (
se

co
nd

s)

Silica System Size

gpu.lookups
gpu.no.lookups

cpu.lookups
cpu.no.lookups

Figure 2: Time per time-step for silica systems.

6

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400 450 500 550

T
im

e
(m

ill
i s

ec
on

ds
)

Blocksize

neighbors
init

bonded
non-bonded

Figure 3: Effect of block size on the performance of kernels.

Using Lookup Tables. Figures 1 and 2 show the performance of PuReMD and PuReMD-GPU
with and without the use of lookup tables for various sizes of water and silica model systems. We
observe from these figures that PuReMD’s performance is significantly impacted if lookup tables
are not used, whereas PuReMD-GPU’s performance remains inert to this change. Since GPU’s run
kernels in SIMT fashion, it represents a few instruction overhead compared to serial execution of
these instructions on the CPU, which consume a large number of instruction/memory cycles. This
explains why lookup tables yield significant performance benefits on CPU’s and not so on GPUs.

Block Size and System Performance GPU kernel performance is a function of block size, as
well as resources (shared memory and registers) available at each SM. The Tesla C2075 GPU has
a 32K register file and 48KB of shared memory per block. To hide memory access latency, CUDA
switches between blocks, which means that a single multiprocessor can run up-to 8 blocks of threads
(this may vary depending on the GPU used), provided it has the resources it needs. Each resident
or active block is assigned its own set of resources, facilitating fast switch among the resident
blocks on the multiprocessor. Each block is bound to the multiprocessor on which it is scheduled to
execute until its completion. Recall that the occupancy of a CUDA kernel is defined as the ratio of
active warps to maximum number of active warps. Occupancy is limited by the resource constraints
on the SM (shared memory usage per block, number of registers used per block, and block-size).
Kernels with low occupancy have a harder time hiding latency. Consequently, it is desirable to have
high occupancy in order to achieve better performance, especially for memory-bound applications.

Kernels with fewer threads in a block may have high occupancy, but the performance degrades
because the SM cannot schedule enough instructions to hide latency (only 8 blocks can be scheduled
at any point of time). As a result, the SM waits on the instructions to complete before scheduling
the rest of the blocks. Larger number of threads limit the occupancy because of resource constraints.
This decreases the performance of the kernel. Figure 3 shows the timings of each of the kernels with
different block sizes. We observe that the performance of kernels varies with block size, which can
be directly attributed to the available resources to that specific kernel. Each kernel uses different
amounts of resources and is tuned to yield peak performance at a certain thread block size.

7

After 10K steps After 100K steps

Energy CPU-GPU(%) for water CPU-GPU(%) for silica CPU-GPU (%) for water CPU-GPU(%) for silica

Ebe -3.904e−02 (6.836e−06%) -1.289e−00 (1.319e−04%) 1.454e02 (-2.547e−02%) 1.824e02 (-1.866e−02%)

Eov + Eun -2.901e−03 (1.214e−05%) -5.645e−02 (7.307e−05%) 9.831e01 (-5.706e−01%) -9.744e01 (1.281e−01%)

Elp 2.600e−09 (4.277e−03%) 5.602e−06 (-4.599e−01%) -6.540e−08 (4.838%) 3.705e−05 (-2.298%)

Eang + Econ -2.073e−02 (-2.512e−04%) -1.348e−01 (-2.581e−04%) -2.430e01 (-2.949e−01%) -3.137e01 (-6.113e−02%)

Ehb 4.985e−03 (-5.601e−05%) 0 (0%) 1.616e02 (-1.816%) 0(0%)

ETor + Econj -1.396e−04 (-7.211e−04%) 7.294e−02 (3.680e−03%) -1.694e−01 (-8.562e−01%) 5.825e0 (2.939e−01%)

Evdw 2.077e−02 (1.779e−05%) -1.461 (-4.124e−04%) 3.029e02 (2.600e−01%) 2.357e01 (6.641e−03%)

Ecoul -2.348e−01 (8.731e−05%) -1.385 (2.647e−04%) 4.538e02 (-1.694e−01%) -8.138e01 (1.550e−02%)

Epol -2.013e−01 (-1.114e−04%) -1.187 (-3.430e−04%) 3.835e02 (2.133e−01%) -7.095e01 (-2.041e−02%)

Table 7: Differences in various energies between PuReMD and PuReMD-GPU after 100,000 step
simulation on water-6540 and silica-6000 systems. At the beginning of the simulation the energies
between CPU and GPU match perfectly to machine precision

2.1.4 Accuracy of PuReMD-GPU

We perform extensive validation tests of PuReMD-GPU’s accuracy compared to PuReMD. Table 7
presents the deviation in various energies between PuReMD and PuReMD-GPU after the 0th

step, 10,000 steps, and 100,000 steps. After the 0th step, various energies are identical between
PuReMD and PuReMD-GPU. After 10,000 steps, the deviation in various energies is negligible.
After 100,000 steps, the maximum deviation observed is about 4.8%. This can be attributed to the
fact that arithmetic operations on the GPU are not performed in the same order as the CPU.

2.2 Experimental Results: GPU Cluster Formulation

We report here on our comprehensive evaluation of the performance of PG-PuReMD. All the
simulations are performed on Lawrence Berkeley National Laboratory’s GPU Cluster (DIRAC).
This is a 50 GPU node cluster inter-connected with Quad Data Rate (QDR) InfinitiBand switch.
Each GPU node contains 2 Intel 5530 2.4 GHz, 8MB cache, 5.86GT/sec QPI Quad core Nehalem
processors (8 cores per node) and 24GB DDR3-1066 Reg ECC memory. Out of the 50 nodes, 44
nodes have NVIDIA Tesla C2050 Fermi GPUs with 3GB of memory (this pool was used extensively
for the evaluation of PG-PuReMD). PG-PuReMD is compiled in CUDA 5.0 environment with the
following compiler options “-arch=sm 20 -funroll-loops -O3” and MPI is used to link all the object
files to produce the final executable. All the arithmetic operations are double precision. Fused
Multiplication Addition (fmad) operations are not used in the PG-PuReMD implementation so
that the results perfectly match the serial implementation. Thread block size for all the kernels
in this section is 256 except matrix-vector dot product which uses a block size of 512 threads.
Neighbor-list kernel uses 16 threads per atom, while hydrogen-bonds, coulombs/van der waals
force and matrix-vector dot product kernels uses 32 threads per atom. The model systems in all
these simulations use a time-step of 0.25 femtoseconds, a tolerance of 10−6 for the QEq solver, and
NVE ensemble.

We used water systems of various sizes for in-depth analysis of performance, since it represents
diverse stress points for the code. For the weak scaling tests, we use water systems with 10,000
atoms per GPU and 16,000 atoms per GPU, and for strong scaling analysis, we use water systems
with 80,000 and 200,000 atoms.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

T
im

e
(s

e
c
o

n
d

s
)

of GPUs

80K
200K

Figure 4: Strong scaling results for Water systems (Water-80K and Water-200K).

To better understand the results of our experiments, we identify six key parts of PG-PuReMD:

• comm: initial communications step with neighboring processors for atom migration and
boundary atom information exchange.

• nbrs: neighbor generation step, where all atom pairs falling within the interaction cut-off
distance rnbrs are identified.

• init forces: generation of the charge equilibration (QEq) matrix, bond list, and H-bond list
based on the neighbors list.

• QEq: is the charge equilibration part that solves a large sparse linear system using Conjugate
Gradients with a diagonal preconditioner. This involves costly matrix-vector multiplications
and both local and global communications.

• bonded: is the part that includes computation of forces due to all interactions involving
bonds (hydrogen bond interactions are included here as well). This part also includes identi-
fication of 3-body and 4-body structures in the system.

• nonb: is the part that computes nonbonded interactions (van der Waals and Coulomb).

Each of these parts has different characteristics: some are compute-bound, some are memory-
bound while others are interprocess communication-bound. Together they comprise almost 99%
of the total computation time for typical systems. We perform detailed analyses of these major
components to better understand how PuReMD responds to increasing system sizes and increasing
number of processors. We also use these results to infer the impact of various machine parameters
on performance.

2.2.1 Strong Scaling Results

Figure 4 presents timings of PG-PuReMD for two water systems. It can be seen that as the number
of GPUs increases, the time per time step for the water systems decreases consistently, suggesting
that PG-PuReMD scales well when the system size is constant while increasing the number of

9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30 35 40

T
im

e
(s

e
c
o

n
d

s
)

of GPUs

comm
nbrs

init
bonded

nonb
qeq

Figure 5: Strong scaling results for key components of ReaxFF of Water-80K systems.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40
 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
(s

e
c
o

n
d

s
)

S
p

e
e

d
u

p
 C

o
m

p
a

re
d

 t
o

 S
in

g
le

 C
P

U

of GPUs

10K:Time step
16K:Time step
10K:Speedup
16K:Speedup

Figure 6: Weak scaling results for Water systems (10K/GPU and 16K/GPU).

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20 25 30 35 40

T
im

e
(s

e
c
o

n
d

s
)

of GPUs

comm
nbrs

init
bonded

nonb
qeq

Figure 7: Weak Scaling results for key components of ReaxFF of Water systems (16K/GPU)

10

GPUs, at least to moderate configurations. Because of limited available memory on GPUs (3GB
of global memory per GPU), the water-200K system can only be run on 12 GPUs and beyond.

Figure 5 presents the timings of major components (per time-step) for the water 80K system.
comm, nbrs, init and nonb scale well as the number of GPU’s is increasing for this system. The
time for comm is almost constant after 4 GPUs. nbrs and nonb use multiple threads per atom,
when using 36 GPUs, each GPU is processing about 2222 atoms. With 16 threads per atom and a
block size of 256 nbrs kernel has about 139 blocks and nonb kernel (32 threads/atom) has about
278 blocks yielding enough thread blocks to keep the SM ’s saturated because of which we see the
curves for these two kernels trending downwards consistently as the GPUs are increasing for this
system. Because of multiple threads per atom, the number of thread blocks decreases sharply for
these two kernels when increasing the number of GPUs, which is the reason why steep drop is
noticed for these two curves for small number of GPUs. The time for the bonded kernel is almost
constant beyond 27 GPUs. This is because all the bonded interactions except uses hydrogen-bond
interaction uses single thread per atom implementation. With 27 GPUs, each GPU processes
about 2962 atoms, resulting in 12 blocks each of 256 threads. From this point onwards we have
less number of thread blocks than SM ’s indicating that it reached the lower bound on its timing
per time-step. Since all the bonded interactions, except hydrogen-bond interactions, uses single
thread per atom implementation, we see consistent drop when using small number of GPUs and it
tends to become flat after 18 GPUs, after this point the number of thread blocks created for these
kernels become less than the number of SM ’s on the GPUs. The init kernel, which builds bond-list,
hydrogen-bond list and QEq matrix, drops sharply compared to other kernels when small number
of GPUs are used, because each GPU is processing large number of atoms(quantum of work per
each thread is also large) and we have large number of thread blocks. As we increase the number
of GPUs, this curve tends to become flatter since the number of thread blocks becomes less than
the number of SM ’s on the GPU.

The communication bound parts of PG-PuReMD do not scale as well. QEq is one of the
most expensive parts of PG-PuReMD. Since QEq involves four communication operations (two
message exchanges and two global reductions) in every iteration of the linear solver, as the number
of GPUs increases the communication overhead increases as well. Moreover, as the sub-domain
size decreases, the amount of computation decreases and the communication overhead starts to
dominate.

2.2.2 Weak Scaling Results

We used water systems with 10,000 atoms per GPU and 16,000 atoms per GPU for benchmarking
the PG-PuReMD application under weak scaling scenarios. For water systems with 16,000 atoms
per GPU, we achieve a speedup of 359x on 36 GPUs when compared to single CPU time for the
same water system. Figure 6 illustrates the weak scaling performance and speedup’s achieved.

Figure 7 presents weak scaling results of water system with 16K atoms/GPU. For all the
components, we observe that the time per time-step is almost constant, yielding excellent scaling
over the range of GPUs used. An interesting observation can be made about the QEq computation
– this computation is heavily dependent on the communication. Furthermore, it is executed in a
lockstep fashion for every iteration of the linear solve. The QEq time almost doubles from 4 GPUs
case to 36 GPUs. This can be attributed to the amount of communication and execution of each
iteration in a lock step fashion.

Table 8 presents efficiency results for water systems under weak scaling. We achieve a speedup of
about 10x per MPI process when compared to PuReMD implementation. This results in decreased

11

10K per GPU 16K per GPU

GPU’s QEq
TotalT ime

% Efficiency QEq
TotalT ime

% Efficiency

1 11.80 100.00 10.99 100.00

2 13.11 95.97 11.66 99.17

4 14.61 93.46 12.33 97.10

8 15.45 91.52 12.93 96.33

12 16.10 91.21 13.61 95.27

18 16.47 90.17 13.70 94.74

27 20.53 84.68 17.78 89.92

36 21.04 84.02 18.25 89.04

Table 8: Efficiency results of Water system for weak scaling simulations

parallel efficiency as we increase the number of GPUs. PuReMD [4] achieves an efficiency of 99%
with 32 MPI processes; PuReMD runs on CPUs and it takes 16 MPI processes to completely use
a single CPU. In comparison PG-PuReMD achieves about 84% efficiency for comparable number
of MPI processes. The reduction in efficiency is a consequence of the faster serial execution by the
GPUs.

3 Technology Transfer

Three major outcomes of the project are:

• Public domain release of the PuReMD, Parallel PuReMD, and PuReMD-GPU, packages.
These packages are used by over 100 research groups, worldwide.

• Integration of PuReMD into LAMMPS (fix Reax/C). This fix is used by a large number of
users (we do not track this user group, but provide timely response to the user group feature
requests and bug tracking).

• We are currently working with Scientific Computing and Modeling Inc (a company based in
Amsterdam) to incorporate PuReMD into the ADF Molecular Modeling Suite. While we
make the software available to them free of cost, SCM optimizes it, validates it, and supports
it for its paying customers.

4 Human Resources Development

The project funded two students, Hasan Metin Aktulga and Joseph Fogarty. Dr. Aktulga has
graduated and joined Lawrence Berkeley Lab.

12

References

[1] S. Kylasa, H. Aktulga, and A. Grama, PG-PuReMD: A Parallel-GPU Reactive Molecular Dy-
namics Package, Proceedings of IPDPS, submitted, 2013.

[2] S. Kylasa, H. Aktulga, and A. Grama, PuReMD-GPU: A Reactive Molecular Dynamic Simu-
lation Package for GPUs, Journal of Molecular Graphics and Modeling, submitted, 2013.

[3] H.M. Aktulga, S. Pandit, A.C.T. van Duin, A. Grama Reactive Molecular Dynamics: Numerical
Methods and Algorithmic Techniques SIAM J. Scientific Computing, 34(1), 2012.

[4] H.M. Altulga, J.C. Fogarty, S.A. Pandit, A. Y. Grama, Parallel Reactive Molecular Dynamics:
Numerical Methods and Algorithmic Techniques, Parallel Computing, 38(4-5): 245-259, 2012.

[5] J.C. Fogarty, H.M. Aktulga, A.C.T. van Duin, A.Y. Grama, S.A. Pandit, A Reactive Simulation
of the Silica-Water Interface, J Chem Phys., 132(17):174704, 2010.

[6] Y. Park, H.M. Aktulga, A.Y. Grama, A. Strachan, Strain relaxation in Si/Ge/Si nanoscale bars
from MD simulations, J Appl Phys, 106, 034304, 2009.

[7] H.M. Altulga, A. Y. Grama, PuReMD User Guide, Technical Report, Purdue University, 2010.

13

