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SNL in Round Numbers ) i,

More than 8,600 full-time employees
~7,800 in New Mexico
~800 in California

1185 buildings, 6.5 M sq. feet
1,550 PhDs, 2,500 Masters

» Mechanical Engineering — 15%
* Electrical Engineering — 25%

» Other Engineering — 14%

» Other Fields — 11%

* Physics — 8%

» Chemistry — 7%

* Math — 3%

» Computing — 11%

» Other — 6%
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Annual budget $2.4B apd1
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apdi Nothing more current?
Alton P. Donnell, Jr., 12/7/2010
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Organic Materials Employed in Service for Decades in i) e
Critical High Reliability and Performance Applications

Laboratories

‘UNAGED 15 yrin field

O-rings Nuclear Power Plant Cable Insulation

Protective Clothing




Polymer Aging - Approaches/Goals

Macroscopic level
Physical Properties

Tensile Property

Permeation Elongation

Dimensional changes

Goals
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Molecular Level

Chemical Properties

Mass Spectrometry

* Prediction of physical properties vs. time
* Predict remaining physical properties of field materials
» Develop condition monitoring method
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Power Plant Cables )

Nuclear Power Plant Cable Insulation

One of the 5 critical concerns for license renewal
of US Nuclear Power Plants (NPPs)

IEEE 383-1974: ~50 Mrad (500 kGy) in 40 years at 50 °C
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Power Plant Cables )

Nuclear Power Plant Cable Insulation

One of the 5 critical concerns for license renewal
of US Nuclear Power Plants (NPPs)
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Dose-to-EquwaIent Damage = DED progress to be published later in 2012 — NUREG 6923, “Expert
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DED is assumed to be E;z = 100% P 9

(IEEE Standards Define End-of-Life when a cable achieves Egz = 50%)
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Nuclear Power Plant Cable Insulation
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Nuclear Power Plant Cable Insulation

One of the 5 critical concerns for license renewal
of US Nuclear Power Plants (NPPs)
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Cables Insulation Types of Interest M.

Rank Insulation Material Entries Percentage
of total

1 XLPE 439 36

2 EPR 434 36

3 Silicone rubber 63 5

4 Kerite 61 5

5 Polyethylene 52 4

6 ETFE 39 3

7 Flame retardant 36 3

8 CSPE 28 2

9 Butyl rubber 20 2

10 Mineral 12 1

11 PVC 12 1

12 Polyimide 8 1

13 Polypropylene 3 0

14 XLN (cross-linked neoprene) 3 0

15 Neoprene 2 0

16 Industrite 2 0

17 Styrene 1 0

Total 1215

EPRI TR-103841 (1994)
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Total 1215

SNL is actively studving XLPO. EPR. and SiR Cables of interest

EPRI TR-103841 (1994)



Ethylene Propylene Rubber (EPR)  ([@E.

Eaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties — Thermal Aging

Eaton Dekoron Elgstoset EPR Cable Insulatiorll
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Tensile Properties — Thermal Aging

Eaton Dekoron Elgstoset EPR Cable Insulatiorll
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Tensile Properties — Thermal Aging

Eaton Dekoron Elgstoset EPR Cable Insulatiorll
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Tensile Properties — Thermal Aging @&

Eaton Dekoron Elgstoset EPR Cable Insulatiorlm
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Time-Temperature Superposition

Does mechanism change as a function of temperature?

If same mechanism:

» same shape (log graph)
» should be constant acceleration (multiple)

—

Pick a reference temperature

2. Multiply the time at each temperature by the constant that gives the best
overlap with the reference temperature data

Define that multiple as ‘a;’ (a; = 1 for ref. temp.)

Find a; for each temperature

B W

Plot log(at) vs 1/T linear if Arrhenius

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erroneous? 1997, 5, 250-257.

Arrhenius equation: Empirical equation

k =AeEalRT In(k) = In(A) — Ea/RT
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Time-Temperature Superposition @

Eaton Dekoron Ellastoset EPR Cable Insulatlion
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Time-Temperature Superposition @

| Eaton Dekoron Ellastoset EPR Cable Insulatilon
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Time-Temperature Superposition @

Eaton Dekoron Ellastoset EPR Cable Insulatlion
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Arrhenius Plot )

Eaton Dekoron Elastoset ElPR Cable Insulation
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Arrhenius Plot )

Eaton Dekoron Elastoset EPR Cable Insulatlon
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Thermal-Oxidative Prediction ),

Eaton Dekoron Elastoset EPR Cable Insulation
Predicted Time in Years at 50 °C
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Gamma Irradiation + Thermal Effects h) i,

Eaton Dekoron Elastoset EPR Cable Insulation
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Gamma Irradiation + Thermal Effects (5.

Eaton Dekoron Elastoset EPR Cable Insulation
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Gamma Irradiation + Thermal Effects h) i,

Eaton Dekoron Elastoset EPR Cable Insulation

DED, kGy to Eg = 50%
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Brandrex XLPO )

0-5 T 7 L T 7 ‘ [ ‘ T T ‘ [

Crystalline Polymer 125 152

* Cross-linked medium to high
density ethylene-
vinylacetate co-polymer

Heat Flow (W/g)

* Melting region between | | | | |
(1 5 sy

~ 89 and 119 OC 40 60 8% 100 0120 140 160
emperature ( C)

* Obvious mechanism change
when aging at elevated
temperatures
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Gamma lIrradiation + Thermal Effects @i,
Brandrex XLPO

DED, kGy to Eg = 50%
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Gamma Irradiation + Thermal Effects

Brandrex XLPO
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Field Returned Materials

VALIDATION OF PREDICTIVE
MODELS



Validation of Field Aged Materials @

Making Predictions is easy... Validating predictions provides confidence in both the
predictions and the methodologies employed in our aging programs.

Predicted time in years at 27 °C
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Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs of age, T,,4 ~ 27 °C, RH ~70%, shown in red,
plotted with previously obtained accelerated aging data for Anaconda Durasheeth EPR cable data (shown in grey).



Validation of Field Aged Materials @

Making Predictions is easy... Validating predictions provides confidence in both the
predictions and the methodologies employed in our aging programs.

Predicted time in years at 27 °C
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Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs of age, T,,4 ~ 27 °C, RH ~70%, shown in red,
plotted with previously obtained accelerated aging data for Anaconda Durasheeth EPR cable data (shown in grey). The predicted tensile data correlates
very well when compared to the field returned material, particularly as these are not identical cables (i.e., Densheath vs Durasheath) and the laboratory

aged cables were submitted to thermal-oxidative conditions (i.e., no humidity).



Future Directions rih) et

= Work towards understanding relevant/abnormal NPP cable conditions
(temperature, dose rates/total expected dose) to increase the veracity of the
current predictive models
= Collaborate with EPRI and Industry to identify these conditions

= |nvestigate inverse temperature and dose rate effects at low dose-rates and
low temperatures for EPR and XLPO materials

= Validate predictive models
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Recent Modernization

LICA AND THE CURRENT
CAPABILITIES?



Low Intensity Cobalt Array ).

LICA is a unique low intensity [
gamma irradiation facility
located in TA-V at SNL NM.

Studies conducted here can be tailored to help
elucidate gamma irradiation effects on materials and
components.




Irradiation Dose Rates ) i,
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Irradiation Dose Rates ) i,

North South
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Laboratories

LICA Control System, ~2011 i)

Tunable

= Temperature

= Gas Environment
“Ancient” Technology




Gas Environments

: Capablllty to perform
experiments in an air or

inert atmosphere
= Current experiments are

run with an air flow rate
of 5 cm3/min

Sandia
National
Laboratories




Thermal Environments ) i,
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= Experiments can be performed at varying
temperatures
= 27°Cto 150 °C (0.2 °C)
= Remote access for thermal control and
monitoring on the SRN

=  Email alerts for extreme temperature
variation

=  Backup power supply for data logging in
case power loss

= 4 elevated temperature cans and up to 7
ambient temperature cans




Diffusion Limited Oxidation
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rxn rate > diffusion rate

Heterogeneous

rxn rate < diffusion rate

Homogeneous




DLO Effects with Temperature ) .

Modulus profiles for samples aged at 95 °C show that diffusion-limited oxidation (DLO) is

becoming important; at 125°C, DLO effects are very significant Images shown below courtesy from our
collaborator Kevin Simmons at PNNL
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DLO Effects in Combined Environments )&,

Combined environment tensile aging data for Okonite neoprene material with DED = 50% E,
Images shown below courtesy from our

107 e S S collaborator Kevin Simmons at PNNL
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Thermal-oxidative Aging: Nylon Shift e
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Arrhenius Equation

Arrhenius equation:

k =Ae-Ea/RT
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In(k) =—( Ea/R)(1/T) + In(A)

k = anything

Plot log(at) vs 1/T linear if Arrhenius

What is Ea?
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Kinetics vs. Thermodynamics ... @k
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Arrhenius Equation ) &,

k — Ae-Ea/RT

Critical assumption is that E, is CONSTANT




