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More than 8,600 full-time employees

Annual budget $2.4B

~7,800 in New Mexico

~800 in California

1185 buildings, 6.5 M sq. feet

1,550 PhDs, 2,500 Masters

• Mechanical Engineering – 15%
• Electrical Engineering – 25%
• Other Engineering – 14%
• Other Fields – 11%
• Physics – 8%
• Chemistry – 7%
• Math – 3%
• Computing – 11%
• Other – 6%

SNL in Round Numbers
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Organic Materials Employed in Service for Decades in 
Critical High Reliability and Performance Applications

Nuclear Power Plant Cable InsulationNuclear Power Plant Cable Insulation

Textiles/FibersTextiles/Fibers Protective ClothingProtective Clothing

OO--ringsrings

UNAGEDUNAGED 15 15 yryr in fieldin field
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Methodologies

Proposal of Underlying Degradation MechanismsProposal of Underlying Degradation Mechanisms



Power Plant Cables

Hashemian, Nuclear Technology 2011, vol. 176, 414-429

Nuclear Power Plant Cable Insulation
One of the 5 critical concerns for license renewal 
of US Nuclear Power Plants (NPPs)

Sample 
Prep

Aging

Tensile Testing

IEEE 383-1974:  ~50 Mrad (500 kGy) in 40 years at 50 °C



Dose-to-Equivalent Damage = DED
DED is assumed to be EB = 100%

(IEEE Standards Define End-of-Life when a cable achieves EB = 50%)

Power Plant Cables

Hashemian, Nuclear Technology 2011, vol. 176, 414-429

Nuclear Power Plant Cable Insulation
One of the 5 critical concerns for license renewal 
of US Nuclear Power Plants (NPPs)
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Figure taken from a collaborative (NRC/DOE/EPRI) document in 
progress to be published later in 2012 – NUREG 6923, “Expert 
Panel Report on Proactive Materials Degradation Assessment”
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Power Plant Cables

Hashemian, Nuclear Technology 2011, vol. 176, 414-429

Nuclear Power Plant Cable Insulation
One of the 5 critical concerns for license renewal 
of US Nuclear Power Plants (NPPs)
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Dose-to-Equivalent Damage = DED
DED is assumed to be EB = 100%

(IEEE Standards Define End-of-Life when a cable achieves EB = 50%)
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Nuclear Power Plant Cable Insulation
One of the 5 critical concerns for license renewal 
of US Nuclear Power Plants (NPPs)
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Figure taken from a collaborative (NRC/DOE/EPRI) document in 
progress to be published later in 2012 – NUREG 6923, “Expert 
Panel Report on Proactive Materials Degradation Assessment”
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Cables Insulation Types of Interest
Rank Insulation Material Entries

Percentage 
of total

1 XLPE 439 36
2 EPR 434 36
3 Silicone rubber 63 5
4 Kerite 61 5
5 Polyethylene 52 4
6 ETFE 39 3
7 Flame retardant 36 3
8 CSPE 28 2
9 Butyl rubber 20 2
10 Mineral 12 1
11 PVC 12 1
12 Polyimide 8 1
13 Polypropylene 3 0
14 XLN (cross-linked neoprene) 3 0
15 Neoprene 2 0
16 Industrite 2 0
17 Styrene 1 0

Total 1215

EPRI TR-103841 (1994)



Cables Insulation Types of Interest
Rank Insulation Material Entries

Percentage 
of total

1 XLPE 439 36
2 EPR 434 36
3 Silicone rubber 63 5
4 Kerite 61 5
5 Polyethylene 52 4
6 ETFE 39 3
7 Flame retardant 36 3
8 CSPE 28 2
9 Butyl rubber 20 2
10 Mineral 12 1
11 PVC 12 1
12 Polyimide 8 1
13 Polypropylene 3 0
14 XLN (cross-linked neoprene) 3 0
15 Neoprene 2 0
16 Industrite 2 0
17 Styrene 1 0

Total 1215

EPRI TR-103841 (1994)

SNL is actively studying XLPO, EPR, and SiR Cables of interest



SAND2005-7331 K. T. Gillen, R. A. Assink, and R. Bernstein

Ethylene Propylene Rubber (EPR)

Highly crystalline Highly crystalline polymerpolymer Exhibits Large “Induction Time”Exhibits Large “Induction Time”

Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties – Thermal Aging
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties – Thermal Aging
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties – Thermal Aging
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties – Thermal Aging
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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TimeTime--Temperature SuperpositionTemperature Superposition

If same mechanism:If same mechanism:

•• same shape (log graph)same shape (log graph)
•• should be constant acceleration (multiple)should be constant acceleration (multiple)

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

Does mechanism change as a function of temperature?Does mechanism change as a function of temperature?

1.1. Pick a reference temperaturePick a reference temperature
2.2. Multiply the time at each temperature by the constant that gives the best Multiply the time at each temperature by the constant that gives the best 

overlap with the reference temperature dataoverlap with the reference temperature data
3.3. Define that multiple as ‘aDefine that multiple as ‘aTT’ (a’ (aT T = 1 for ref. temp.)= 1 for ref. temp.)
4.4. Find aFind aTT for each temperaturefor each temperature

kk =Ae=Ae--Ea/RTEa/RT ln(k) = ln(A) ln(k) = ln(A) –– Ea/RTEa/RT

Empirical equationEmpirical equationArrhenius equation:Arrhenius equation:

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Trends in Polymer Science, Extrapolation of Accelerated Aging Data Extrapolation of Accelerated Aging Data --Arrhenius or Erroneous? 1997Arrhenius or Erroneous? 1997, , 55, 250, 250--257.257.



Time-Temperature Superposition
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Time-Temperature Superposition
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Time-Temperature Superposition
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Time-Temperature Superposition
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Arrhenius Plot
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Arrhenius Plot
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Thermal-Oxidative Prediction
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~450 years
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Gamma Irradiation + Thermal Effects
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Gamma Irradiation + Thermal Effects

Inverse Temperature EffectsInverse Temperature Effects

Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Brandrex XLPO

Crystalline Polymer

• Cross-linked medium to high 
density ethylene-
vinylacetate co-polymer

• Melting region between

~ 89 and 119 °C 

• Obvious mechanism change 
when aging  at elevated 
temperatures
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Gamma Irradiation + Thermal Effects
Brandrex XLPOBrandrex XLPO
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Gamma Irradiation + Thermal Effects
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VALIDATION OF PREDICTIVE 
MODELS

Field Returned Materials
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Validation of Field Aged Materials
Making Predictions is easy…  Validating predictions provides confidence in both the 
predictions and the methodologies employed in our aging programs.

Prediction employed EA to be 100 kJ/mol

SAND2005-7331 K. T. Gillen, R. A. Assink, and R. Bernstein

Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs of age, Tavg ~ 27 °C, RH ~70%, shown in red, 
plotted with previously obtained  accelerated aging data for Anaconda Durasheeth EPR cable data (shown in grey). 
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Validation of Field Aged Materials
Making Predictions is easy…  Validating predictions provides confidence in both the 
predictions and the methodologies employed in our aging programs.

Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs of age, Tavg ~ 27 °C, RH ~70%, shown in red, 
plotted with previously obtained  accelerated aging data for Anaconda Durasheeth EPR cable data (shown in grey). The predicted tensile data correlates 
very well when compared to the field returned material, particularly as these are not identical cables (i.e., Densheath vs Durasheath) and the laboratory 
aged cables were submitted to thermal-oxidative conditions (i.e., no humidity).

Prediction employed EA to be 100 kJ/mol

SAND2005-7331 K. T. Gillen, R. A. Assink, and R. Bernstein



Future Directions

 Work towards understanding relevant/abnormal NPP cable conditions 
(temperature, dose rates/total expected dose) to increase the veracity of the 
current predictive models

 Collaborate with EPRI and Industry to identify these conditions

 Investigate inverse temperature and dose rate effects at low dose-rates and 
low temperatures for EPR and XLPO materials 

 Validate predictive models
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QUESTIONS?
Thank you for your attention!
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LICA AND THE CURRENT 
CAPABILITIES?

Recent Modernization



Low Intensity Cobalt Array

LICA is a unique low intensity

gamma irradiation facility 

located in TA-V at SNL NM.

Studies conducted here can be tailored to help 
elucidate gamma irradiation effects on materials and 
components.



Irradiation Dose Rates

••Headspace gas control (flowing system)Headspace gas control (flowing system)
••Thermal controlThermal control

SouthNorth

~ dose rate (PE), Gy/hr as of 2/2012

A

B

C

D

12345678

28016538123



Irradiation Dose Rates

Dosimetry is measured with CaF2 TLDs as 
a function of position within the cans.  
The dose rates are corrected for material 
of interest, e.g. polyethylene.

220 Gy/hr124 Gy/hr 165 Gy/hr



LICA Control System, ~2011

Tunable

 Temperature

 Gas Environment

“Ancient” Technology



Gas Environments

 Capability to perform 
experiments in an air or 
inert atmosphere

 Current experiments are 
run with an air flow rate 
of 5 cm3/min



Thermal Environments

 Experiments can be performed at varying 
temperatures
 27 °°CC to 150 °°CC (± 0.2 °C)

 Remote access for thermal control and 
monitoring on the SRN

 Email alerts for extreme temperature 
variation

 Backup power supply for data logging in 
case power loss

 4 elevated temperature cans and up to 7 
ambient temperature cans



Diffusion Limited Oxidation

OO22
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HomogeneousHomogeneousHeterogeneousHeterogeneous

rxn rate > diffusion raterxn rate > diffusion rate rxn rate < diffusion raterxn rate < diffusion rate



DLO Effects with Temperature
Modulus profiles for samples aged at Modulus profiles for samples aged at 95 95 °°C show that diffusionC show that diffusion--limited oxidation (DLO) is limited oxidation (DLO) is 
becoming important; at 125becoming important; at 125°°C, DLO effects are very significantC, DLO effects are very significant
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Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, 1995, 49, 403-418.

Virgin vs Aged

Aged cable with DLO

Images shown below courtesy from our 
collaborator Kevin Simmons at PNNL



DLO Effects in Combined Environments

Virgin vs Aged

Aged cable with DLO

This same phenomena has been noted for irradiation dose rates…

K. T. Gillen and R. Bernstein, SAND 2010-7266

Combined environment tensile aging data for Okonite neoprene material with DED = 50% Combined environment tensile aging data for Okonite neoprene material with DED = 50% EEBB

Images shown below courtesy from our 
collaborator Kevin Simmons at PNNL



Enhanced Extrapolation ‘Good’
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Enhanced Extrapolation: ‘Bad’
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Thermal-oxidative Aging: Nylon Shift 
Factor Graph
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Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.



Arrhenius Equation

56

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

kk =Ae=Ae--Ea/RTEa/RT

Arrhenius equation:Arrhenius equation:

What is Ea?What is Ea?

kk = anything= anything

ln(k) =ln(k) =––( Ea/R)(1/T) + ln(A) ( Ea/R)(1/T) + ln(A) 



Ea
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Reaction coordinateReaction coordinate
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reactantsreactants
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------Imagine a marbleImagine a marble------
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Reaction coordinateReaction coordinate

EnergyEnergy

reactantsreactants

productsproducts

Intermediates/Transition statesIntermediates/Transition states

EEaa



Kinetics vs. Thermodynamics (really the same thing)
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Ea
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Arrhenius Equation
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kk = = AeAe--EaEa/RT/RT

Critical assumption is that Critical assumption is that EEaa is CONSTANT is CONSTANT 


