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Adaptive quantum control via direct fidelity estimation and indirect
model-based parametric process tomography

Robert L. Kosut*

Abstract

The single and two-qubit logic gates which are uni-
versal for building a quantum computer are not, as yet,
produced “naturally’” — error correction and fault tol-
erant constructions are required, and making these re-
quires control. To meet the requisite stringent perfor-
mance goals places resource demands both spatially
(ancilla qubits for error correction) and temporally
(complex well timed control signals). On-line adap-
tive tuning of initially good controls offers a possible
means to significantly reduce these overhead require-
ments. Two methods are proposed for control tuning:
(i) direct estimation of fidelity between the actual system
and the desired (unitary) logic gate, and (ii) estimating
model parameters via compressive sensing. Both meth-
ods are evaluated numerically for a single qubit system
with Hamiltonian parameter uncertainty.

1. Introduction

Exploiting quantum superposition and/or entangle-
ment for information processing is a delicate process:
quantum information is fragile. A ”bit” in our present
computers utilizes an overwhelming number of elec-
trons which makes for an inherent robustness. A quan-
tum bit (qubit) may use just one electron which will
clearly be extremely sensitive to many sources of er-
ror: thermal fluctuations, other qubits, unwanted states
induced by material imperfections, etc. If the inherent
errors can be driven below a threshold value, which de-
pends on the physical implementation and the algorithm
being coded, then the specific quantum computation can
proceed unabated [1, 2]. To drive these inherent errors
down requires control.
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As outlined in [3], and numerous other surveys,
control for quantum systems can be broadly catego-
rized as open-loop control, learning control [4, 5],
measurement-based feedback control [6], and fully
quantum control sometimes referred to as coherent-
feedback quantum control [7, 8].Coherent quantum
feedback might be considered the Holy Graille of quan-
tum control, i.e., one quantum system is used to con-
trol another, a empquantum flyball governor. Currently
the predominant form of quantum control for quantum
computation is open-loop control, and as might be ex-
pected, a major problem is robustness. As such, there
has been considerable recent effort to develop robust
open-loop control procedures, all of which rely on nu-
merical optimization. Even a partial listing would be
too long for here so we refer the reader to the more com-
plete list in [9].

If the parameters do not change significantly over
long periods of time, then it would certainly be ex-
pected that online control tuning could improve perfor-
mance. Even the promise of modest improvements may
prove significant because of the ensuing overhead re-
duction in resources required for fault-tolerant compu-
tation. To accomplish this requires adjusting the control
to increase fidelity. So the question becomes first of
how to estimate fidelity from measurements, and con-
sidering the large number of quantum circuits, how to
do that efficiently and with a minimum amount of data
collection. In this paper two methods are proposed for
adaptive control tuning: (i) a direct approximation of
fidelity between the actual system and the desired (uni-
tary) logic gate, and (ii) estimating mode parameters via
a compressive sensing algorithm to obtain the process
matrix. A numerical example for a single-qubit system
with an uncertain Hamiltonian parameter is presented
to illustrate the ideas.

2. Fidelity and robust control design

A quantum system under open-loop control over
the time interval 0 <t < T is depicted schematically
in Fig. 1. The part labeled system (S) is of dimension n
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Figure 1. Quantum system under control.

and is accessible, whereas the bath (B) of dimension ng
is not. The total system-bath dynamics are described by
an nng x nng unitary U which maps the initial (assumed
decoupled) state (density matrix) p ® pg at timet =0
to the final state p att = T, not necessarily decoupled,
i.e., not a tensor product of a system and bath state. The
accessible system state p at t = T is given by by the
partial trace over the bath [1],

Ng
p=Trs(U(pope)U’) =3 SupS, ()
u=1

where {S, € C“X"}Zle are the matrix elements of the
operator-sum-representation (OSR) which under the
stated conditions are trace preserving, thatis, Trp =1
if and only if 3, ]Sy = ls.

The control goal is to make the map p — p as close
as possible to a desired unitary W acting solely on the
system states, i.e., p ~WpWT. A common measure of
this performance goal is to select the control to maxi-
mize the channel fidelity [10, 11],
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It is known that F € [0,1] with F = 1 only when each
OSR element is proportional to the desired unitary,
specifically when S;, = ;W with ¥, |t |2 = 1 [12].

A robust quantum control design problem is typi-
cally formulated as maximizing the channel fidelity (??)
for either a worst-case or average-case with respect to
uncertainties in the system. In an abstract form, the
problem we would like to solve is:

mingF(c,8) (worst-case)
maximize or

avgsF(c,0) (average-case)
subjectto c={c(t),0<t<T}e¥,d€cA

®)

The optimization variable is the external control de-
noted by c representing the time varying control field
c(t),0 <t < T. The set ¢ represents the control con-
straint set which is typically a convex set [9]. Simi-
larly 6 represents uncertainties which can be both de-
terministic (parameter uncertainty) as well as stochastic
(noise from the control hardware and/or bath fluctua-
tions). The set A represents the uncertainty set which
may not be convex. Though (3) is not convex, as men-
tioned in the introduction, numerical techniques have
been used to find very good local solutions. For ex-
ample, in [9], we used sequential convex programming
(SCP) to establish performance tradeoffs in level of un-
certainty vs. control constraints for a single qubit sys-
tem. We will use that example system here as well, tun-
ing robust controls from [9].

3. Quantum processtomography
via compressive sensing

We will assume that data is collected from a stan-
dard off-line procedure [1, Ch.8] using repeated identi-
cal experiments for each of ¢ system configurations of
state and observable pairs {p;j,0; € C™", j=1,...,¢}.
Each observable is represented by an Hermitian ma-
trix O; € C™" which has the spectral decomposition
0 = X, 4ijOij with A;j real, and with Ojj > 0 and
Y 0ij = Is. Using Born’s rule and (1), the probability
that the measurement outcome is A4;j with configuration
(pj;0j) Is,

Pij ZZTr(OijSupJ‘SL), i=1,....m, j=1,...,0 (4)
u

Let {T'y € C™" o =1,...,n%} be a basis for matrices
in C"<N", Expressing the OSR elements in this basis via
Sy = 23211 Xual o gives the outcome probabilities and
fidelity as,

pij = TI’(Min), F =Tr(GX) (5)

where X, M;j,G € c"™** with elements given as fol-

lows for o, 8 =1,...,n?,

Xap = ZuXuaX,g .
(Mij)[}a = Tr(OijFaijB) (6)
Gpo = Tr(W'Te)Tr(WIy)/n?

X is referred to as the process matrix and is in the con-
vex set,
n2
X>0, Y XepThTa=ls )
o,f=1



The positivity constraint follows from construction of
X, the linear constraint reflects the trace preserving con-
straint 3, S}Sy = ls.

Clearly estimating the process matrix X from the
probability outcomes would then provide an estimate
of fidelity F. There are two issues with this approach.
First, the probability outcomes pjj are not known and
can only be estimated from finite data, resulting in the
empirical probabilities pij = Nij/N;j where N;j is the
number of times outcome i occurred with configura-
tion (pj,0j) from N; trials; the total number of trials
is N = ¥;Nj. Thus the standard approach to estimat-
ing the process matrix, referred to as Quantum Process
Tomography (QPT), is to estimate X from the empir-
ical probability outcomes. This can be formulated as
a least-squares objective together with the convex con-
straint that X satisfies (7), e.g., [3]. Secondly, and ac-
tually of more significance, the number of real param-
eters in X is n* —n? where n = 29 for g system qubits.
This gives rise to an exponential scaling of the num-
ber of parameters to estimate, e.g.,, q = [1,2,3,4] =
n* —n? = [12,240,4032,65280]. As shown in [13] this
¢ (n*) scaling can be alleviated by selecting a basis
corresponding to the ideal unitary W, and under the as-
sumption that the system is designed (by control) to be
close to the ideal, then methods of compressive sensing
(CS) can be applied, because in this basis the process
matrix will be almost sparse. The result is a scaling
of &'(klogn) where k is the approximate sparsity level
[14, 15]. To see this, and because this basis will be
used subsequently for approximate fidelity estimation,
observe that the vectorized version of W can be decom-
posed via a singular value decomposition as,

W= [n..fnz} _ ®)

This basis is orthonormal (Tr (FLFB) = Ogp) With T’y =
W /4/n which gives the fidelity as,

F=Xu/n )

In this basis if the channel were the ideal unitary, then
X11 = n (equivalently F = 1) with all the other elements
of X equal to zero. If fidelity is close to one, then except
for the large X1; element, the rest are small. Specif-
ically, if F = 1 — ¢, then all other elements of X are
small, i.e., [Xop-11/X11] = & (€). Obtaining the pro-
cess matrix via compressive sensing in this basis, re-
ferred to in [13] as Compressed Quantum Process To-
mography (CQPT), is accomplished by solving the con-

vex optimization,

minimize || X||1
subjectto 3 ; (Pij — Tr(MijX))* <y (10)
X satisfies (7)

Here ||X||1 is the usual heuristic for sparsity. Since fi-
delity is a single number, and in fact a simple scaling
of the-11-element of the process matrix X, one would
think that it ought to be considerably easier to estimate
compared with having to estimate the entire process ma-
trix even by CQPT (10) just to obtain the 11-element.
Efforts in this direction are reported in [16, 17, 18]
for randomized benchmarking and related statistical ap-
proaches. These approaches have a strong theoretical
base in statistical analysis and are not strongly depen-
dent (if at all) on the system order. Nonetheless, these
approaches may still require a significant amount of
data collection to provide statistically meaningful av-
erages. If, however, the intended purpose of estimat-
ing fidelity is not just to estimate fidelity, but rather, to
adjust the control to increase fidelity, then the simpler
approach described in what follows may suffice. In par-
ticular, it is proposed here that it is more important that
when the approximate fidelity increases so does the ac-
tual fidelity, rather than trying to make the error between
the two small. Of course it would also be good if they
are not too far apart.

4. Adaptive control viafidelity estimation

li is assumed that the initial control provides good
fidelity over the anticipated range of model parameters.
Moreover, if the parameter range were smaller, then it is
also assumed known that another control would provide
even better performance. Rather than try to estimate
model parameters, a very difficult task even when if the
Hamiltonian structure is known [3, 19], the control will
be tuned directly from the estimated fidelity.

Towards this end, in the SVD-basis of W (8), where
F =Xu1/n (9) and I'1 =W /4/n, isolating the X141 term
in (6) gives,

pij = FTr (OjWpW ") + fi; (11)

Here pjj contains all elements of the process matrix ex-
cept X11. Note that the coefficient of F above is exactly
the probability outcome corresponding to the ideal uni-
tary W. If the assumption holds that the initial fidelity
is good, then as F — 1 fj; — 0. Using the empirical
estimates [j, an approximate fidelity estimate can be
obtained by solving for F from,

minimize 3 (ij — FTr (03w p;w 1))

12
subjectto 0<F <1 (12)



For a given control ¢ = {c(t),0 <t < T} let p(c)jj
and lf(c) denote, respectively, the empirical probabil-
ities and estimated fidelity. A variety of gradient and/or
randomized algorithms can now be used to adjust the
control so that the estimated fidelity increases. An open
question remains: under what conditions will increasing
the estimated fidelity also increase the actual fidelity? In
the next section we explore this with a numerical exam-

ple.
5. Numerical example

To illustrate the procedure we concentrate on the
single qubit system with Hamiltonian and control given

by,

Ht) = clt)oX+wZ= C(t“)’zwx C%&
ct) = O, (k-1)T/N<t<KT/N,k=1,...N
(13)

Here the control is in the Pauli-X term with a drift in
Pauli-Z. In addition, the control is piece-wise-constant
over uniform time intervals T /N with the design vari-
able the control magnitude vector 8 = [0 --- 6y]" € RN,
The robust control problem (3) now takes the form:

maximize Ming, o, {F = [Tr(W'U)/2?}
subjectto U = TIN_; exp{—iT /N(6kaxX + @,Z)}
w, € [a)zmin,()ozmaX]7 wy € [w;nin7wxmaX],
|6 <M k=1,...,N
(14)
The optimization variables are 6,k = 1,...,N. Using
the SCP routine in [9], we find a very good initial robust
control for the following parameters:

T :2’N =4, € [2.573.0],0)X:1’9max:4 (15)

As seen in Fig. 2, the worst-case fidelity error in the as-
sumed range for w;, (shown in thick blue) is log(1 —
Finitial) = —3.6 or Finitiar = 0.99975. However, sup-
pose the true value has drifted out of the assumed range
[2.5,3.0] and is actually o{™® = 2. The actual fidelity is
then 1094 (1 — Rrue) = —1.2223 or Fyye = 0.9401. For
quantum computing this heralds impending failure, or
would require serious overhead for fault tolerance miti-
gation.

To adapt the control to the actual system we use
(12) with a minimal measurement scheme consisting of
the single Pauli-Z observable O = Z and a single pure
input state y = [0 1]7. The probability outcomes for a
given control pulse sequence 6 are averaged to produce
the single number,

<Z(6)>=(U(O)W)'Z(U(O)y)  (16)
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Figure 2. Fidelity errors for initial robust and
adapted control pulses, respectively, for w; €

[2.5,3.0] and for o!i"¢ = 2.0.

The fidelity estimate (12) then becomes for a given con-
trol pulse sequence 6,

L <z0)> (UOWIZUO))
PO = Wytzwy) ~ wyzwy) 0

In this case the fidelity estimate can be interpreted as
the ratio of the actual response to the desired response.
We implement a direct Newton algorithm which obtains
the gradient and Hessian by perturbing the current con-
trol pulse magnitudes by small amounts and then mov-
ing in the direction of steepest ascent. The algorithm
converges in this case in 3-4 steps. The fidelity error
associated with the resulting adapted pulse is shown by
the red curve in Fig.2. At the true value wi™® = 2.0,
10910(1 — F (Badapt)) = —3.96 0Or F(Bagapt = 0.99989; a
considerable improvement over the initial control for
which Fyye = 0.9401. Fig. 3 shows a comparison of the
initial and adapted control pulses. Although close in
magnitude, these small differences are known to make
an enormous difference in performance, e.g., [20, 21, 9].

The adaptation scheme is repeated for the case
where the true value is within the anticipated range, i.e.,
here we set wi™*® = 2.75 at the center of the range for
which the initial control is designed. Figs. 4-5 show, re-
spectively, the fidelity errors and pulse magnitude com-
parison. Again, the fidelity error associated with the re-
sulting adapted pulse is shown by the red curve in Fig.4.
At the true value @™ = 2.75, 10g10(1 — F (Badapt)) =
—6.968 or If(eadapt = 0.999999892; even more of an
improvement then in previous case over the initial con-
trol within the region Fgye = 0.99975. Fig. 5 reveals
that the pulse magnitude difference are very small.
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Figure 3. Initial robust and adapted con-

trol pulse magnitudes, respectively, for w, €
[2.5,3.0] and for ®!¢ = 2.0.

6. Adaptive control
via parametric tomography

An alternative to direct fidelity estimation is to uti-
lize the stronger prior that a good parametric system
model is available. To illustrate the idea suppose in (13)
we seek ;. If we take a sample in a known range, here

o; € [1.5,2.5]. Then to each sample wz()k there corre-
sponds a unitary U ¥ (att = T) and an associated basis
set {T''} and maximally sparse process matrix X ),
that is, if the model is perfect and and the actual param-
eter is the sampled value, then it has a single nonzero
element equal to the Hilbert space dimension n. Figure
6 shows the results. The measurements are again from
the single Pauli Z-observable. In each of the plots in
Figure 6 we use only 10 samples of w; and in each keep
refining the range. It is important to emphasize that the
data set remains the same, only the off-line processing
changes as we change the basis set for CS. The final
plot shows the estimate converging to very near the true
value of w; = 1.95. A new control can then be designed
to enhance performance akin to what is seen in Fig. 4.

7. Concluding remarks

Adaptation may offer a means to significantly re-
duce the spatial and temporal overhead to achieve con-
tinual quantum computing. One obstacle to such as ap-
proach is the time to do the adaptation. Though the
speed of data collection for quantum systems though,
is very high (10* samples can be done in a few millisec-
onds. e.g., [13]), the specific demands are still to be
determined. The results from the numerical examples
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Figure 4. Fidelity errors for initial and adapted
control pulses, respectively, for w, € [2.5,3.0]
and for !¢ = 2.75.

shown here are encouraging. The procedure heralds the
use of a minimal data collection method. The examples
shown support using only a single observable and a sin-
gle input state. An important caveat in our examples is
that we have used the exact probability outcomes rather
than the estimated, or empirical probabilities. This will
make a difference since measurement errors will cause
the adapted control to converge, at best, to a neighbor-
hood of the perfectly tuned control, whose size depends
on the level of measurement error.

In summary, given the stringent performance de-
mands for quantum computing, the potential application
which drives this work, the enticement of significant fi-
delity improvement through the use of a minimal data
processing procedure would be valuable. Given the del-
icate nature of engineering quantum information, brings
to mind what Richard Feynman said, “Experiment is the
sole judge of scientific “truth’.”
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