
Parallel Tools GUI Framework
DOE SBIR Phase I Final Technical Report

Award Number: DE­SC0009499TDD

Topic/Subtopic: 2b

Principal Investigator: James Galarowicz

Company: Argo Navis Technologies LLC
PO Box 6732
Annapolis, MD 21401

Report Date: December 5th, 2013

1



Contents

1 Introduction

2 Comparison of Objectives to Accomplishments
2.1 Proposed Technical Objectives
2.2 Actual Technical Objective Accomplishments

3 Project Activities
3.1 Core Executable and Main Window Library
3.2 Plugin, Action and Setting Managers
3.3 Extended Widget Library
3.4 Help and Welcome Screen Plugins
3.5 Abstracted Visualizations
3.6 Network Update Plugin

4 Products Developed
4.1 Public Software Release
4.2 Public Presentations and Demonstrations
4.3 Websites
4.4 Collaborations

5 References

2



1 Introduction
Many parallel performance, profiling, and debugging tools require a graphical way of displaying
the very large datasets typically gathered from high performance computing (HPC) applications.
Most tool projects create their graphical user interfaces (GUI) from scratch, many times
spending their project resources on simply redeveloping commonly used infrastructure. Our goal
was to create a multi­platform GUI framework, based on Nokia/Digia’s popular Qt libraries, which
will specifically address the needs of these parallel tools.

The Parallel Tools GUI Framework (PTGF) uses a plugin architecture facilitating rapid GUI
development and reduced development costs for new and existing tool projects by allowing the
reuse of many common GUI elements, called “widgets.” Widgets created include, 2D data
visualizations, a source code viewer with syntax highlighting, and integrated help and welcome
screens.  Application programming interface (API) design was focused on minimizing the time to
getting a functional tool working.

Having a standard, unified, and user­friendly interface which operates on multiple platforms will
benefit HPC application developers by reducing training time and allowing users to move
between tools rapidly during a single session.

However, Argo Navis Technologies LLC will not be submitting a DOE SBIR Phase II proposal
and commercialization plan for the PTGF project.  Our preliminary estimates for gross income
over the next several years was based upon initial customer interest and income generated by
similar projects.  Unfortunately, as we further assessed the market during Phase I, we grew to
realize that there was not enough demand to warrant such a large investment.  While we do find
that the project is worth our continued investment of time and money, we do not think it worthy of
the DOE's investment at this time.  We are grateful that the DOE has afforded us the opportunity
to make this assessment, and come to this conclusion.

2 Comparison of Objectives to Accomplishments
Throughout Phase I of this project we found our proposed goals to be reasonably aligned with
what we have been able to accomplish.

2.1 Proposed Technical Objectives
The following technical objectives were proposed in our Phase I proposal:

1. Facilitate the rapid development of cross­platform user interfaces for new and existing
parallel tools.

3



2. Target a stable version of Qt4 which is currently available on many existing cluster
platforms throughout the DOE computing complex.  This version will not be the latest
available, but will allow for easier adoption on existing platforms.  The framework shall
also be forward­compatible with all following versions of Qt4.

3. Provide abstracted visualizations for easy inclusion in multiple parallel tools.  These
abstracted visualizations will accept a simple dataset.  The visualization plugins will also
act as dynamic libraries, which can be easily extended by tool developers looking to
specialize a particular view.

4. Provide a scalable design/model which will allow tools with very large datasets to be
used effectively within the PTGF.

5. Provide a standardized interface such that users will find enough similarities between
tools to make learning additional ones easier.

6. Provide facilities for user learning of a new parallel tool from within PTGF, and the ability
to link to online resources.

7. Assess the viability, and usefulness to DOE facilities, of providing a mechanism for
network updates of PTGF plugins.

2.2 Actual Technical Objective Accomplishments
To meet objective one, we took measures to facilitate rapid parallel tool GUI development
through clean and simple API design.  This helps the tool developer to learn the PTGF quickly,
and use it effectively with a minimum amount of code.  We feel that objective one has been fully
met, and was proved through the rapid development and deployment of user interfaces for two
parallel tools created by the Los Alamos National Laboratory’s (LANL) High Performance
Computing (HPC) system support team.

We have not only met, but exceeded expectations set forth in objective two.  Red Hat Enterprise
Linux (RHEL) and it’s open source derivative, CentOS, are a stable OS distribution used
throughout the DOE computing cluster systems, which has one of the oldest stable versions of
Qt that we could find in wide use, 4.6.2 released in February of 2010[1].  The PTGF seamlessly
supports versions of Qt4 starting at 4.6.2 through the latest releases of Qt5 (5.1.1 at the time of
this report).

4



Objective three was met using the existing abstract data model types defined in Qt[2], which
allows tools to simply populate an object in memory with their data, and pass that model to a
pool of run­time loaded view plugins.  The Open|SpeedShop[4] GUI (Figure 1) currently being
developed using the PTGF is subclassing one of the visualization plugins for specialization to
specifically handle specialized call stack trace data in an intuitive manner.  Further, we are able
to demonstrate the scalability of the PTGF through the display of Open|SpeedShop’s large data
sets, fully satisfying objective four.

Figure 1: Demonstration of Open|SpeedShop’s utilization of default PTGF visualizations, running
alongside another set of parallel tools under the CBTF DaemonTool tab.

With the development of PTGF interface plugins for the two LANL tools previously mentioned,
and Open|SpeedShop, we are able to demonstrate (Figure 1) that objective five has been met.
The PTGF allows rapid context switching between the two sets of tools, and offers interfaces for
both that appears seamless and intuitive to a user.

5



Objective six was met through the use of integrated help file access that can be registered by a
tool’s plugin, which allows the user to view compiled and uncompiled HTML­based help files
from within the tool GUI.  Further, links to online help resources, like YouTube demonstration
videos, or tutorials on a company website, are displayed to the user on the Welcome screen
(Figure 2).  While the base functionality for some of these features already existed going into
Phase I, the API has been cleaned up for easier development, feature “stubs” have been
extended for full support, and the system is now backed by a regression testing harness
ensuring quality of future additions.

Figure 2: Integrated links to help and other documentation that can be used by tool plugins.

To meet objective seven we had several discussions with HPC support personnel at DOE
Laboratories.  Unfortunately, the conclusion that we came to was that while technically feasible,
and a desirable feature, this was not something that could be easily implemented with existing
security protocols.

6



3 Project Activities
With these objectives in mind, we proposed the following milestones for the Phase I work plan:

1. Core Executable and Main Window Library
2. Plugin, Action and Setting Managers
3. Extended Widget Library
4. Help and Welcome Screen Plugins
5. Abstracted Visualizations
6. Network Update Plugin

3.1 Core Executable and Main Window Library
A plugin architecture was chosen to allow components to be loaded at runtime.  This empowers
the cluster system administrator, or even the user, to pick and choose which tools are available
within the framework, without having to recompile every part of the project.

The framework is split into three major sections, each with many components.  Figure 3
illustrates this layout.  The core executable (a.k.a. main executable) is a very small piece of code
that is solely responsible for loading and initializing the various linked libraries.

Figure 3: Logical layout of libraries and plugin architecture

These dynamically linked libraries include the main window widget responsible for presenting
each of the loaded plugins registered as a main widget. Please see Figure 2 for a screenshot of
the existing system with two parallel tool’s registered main widgets, Open|SpeedShop and CBTF
DaemonTool.

7



We proposed the following for Phase I:  The main window manager will allow tool plugins to
register a “main window” for the tool, which will act as the representation of a gateway to the
user for the tool.  The main window will interact closely with the notification and logging manager,
the library responsible for user notifications and simplified error logging.  User notifications will
take the form of a notification bar at the top of the screen, a modal dialog box, or a progress bar
informing the user of the status of a long running operation.

All of these items were completed by the end of Phase I.  In addition, we were able extend the
existing Qt debug interfaces to include an error and debug information window that can be
hidden or shown by the user as needed.  Further, this functionality allows a minimum notification
“debug level” to be set, whereby a user will not be notified of unimportant messages using the
notification bar, further reducing the message load on the user.

3.2 Plugin, Action and Setting Managers
To better facilitate rapid development of a user interface for a given tool, we planned several
managers to automatically deal with specific tasks by managing objects that implement a
pre­defined interface.

3.2.1 Plugin Manager
The plugin manager does what its name implies, it scans predefined and user­defined
directories for plugin files that can be loaded.  Plugins are required to follow a predefined
interface, which allows the plugin manager to query the plugin for a list of dependencies.  The
manager will then sort the ordering of the plugin initializations, such that plugins that depend on
other plugins to be initialized first, are.

In Phase I we have been able to, as proposed, update the plugin manager to work with the latest
Qt5 architecture, as well as extend the functionality to include better plugin path searching,
allowing multiple plugin paths, enabling the user to set the paths from the GUI or through
environment variables.  We’ve also added better handling of failures during plugin loading, and
meaningful error messages empowers the user to solve problems with minimal effort.

3.2.2 Action Manager
The action manager is responsible for menu and toolbar items displayed to the user throughout
the lifetime of the application.  With multiple parallel tools existing within the same application,
methods for preventing collisions of shortcut keys, and menu item placement is an absolute
must.  Prior to Phase I some initial design work had been performed on the action manager, but
it had not been implemented.  Having created several tools that interact with this framework, we
have discovered that this is an absolute must to ensure easy creation and integration of future
tools.

8



During Phase I we fully implemented an action manager that can handle menu creation using
simple “path” descriptors to locate each clickable menu item, with priority numbering to deal with
ordering.  Contexts allow the menu items to be easily disabled or hidden when appropriate.
These features enable the tool developer to create a quick menu system that integrates with the
user interface, while having no knowledge of how other tools are using the menu system.

3.2.3 Setting Manager
Qt4 has facilities for storing and retrieving settings, however these are simplified and require that
they are persisted in a flat text file in the user’s home directory.  In our proposal we planned to
expand functionality to allow for not just user customization, but system specific settings that
can be specified by the system administrator.  As well as persistence of settings using a SQL
database, which will enable a central server to host the settings across multiple machines where
home directories aren’t shared.

During our Phase I work, we were able to perform the above tasks with the exception of SQL
database usage, due to technical limitations of the Qt framework.  We were, however, able to
extend the settings manager to include persisting to XML files, which can be useful in some
situations.

3.3 Extended Widget Library
Many of the Qt standard widgets have more features than are necessary for a parallel tool’s GUI.
However, there are several commonly needed widgets that are lacking.  Further, there are many
features in newer versions of Qt that are unavailable on some DOE machines due to upgrade
issues.  A library of extended widgets would alleviate both of these issues.

Proposed widgets included a tab widget which hides the tab bar when there is only one tab, for a
cleaner initial interface; a collapsible group box for hiding, but making easily accessible,
advanced functionality from novice users; placeholder text in line edit boxes for better user
prompting; and a set of control widgets standard to debugging and profiling tools connecting to
live applications (play, pause, step, stop, etc.).

In addition to the proposed Phase I work, we also extended the tab widget with the use of a
stylesheet to improve appearance of an empty set of tabs, which is common case when the
application is first opened.  Further we were able to animate the collapsible group box, giving
some professional flair to tool developer’s GUIs, something that users are expecting more and
more with exposure to popular cell phone app interfaces.

As part of the Phase I work, we also found the need for an unproposed text console widget, that
provides an easy interface for displaying textual information to the user.  This can be useful for
in­GUI debugging information, or CLI output from the original tool.

9



3.4 Help and Welcome Screen Plugins
Existing plugins for the help system and welcome screens are loaded at runtime by the plugin
manager.  Demonstrated in Figure 2, is a screenshot containing the welcome widget’s display
immediately presented to the user.  The welcome plugin allows tools to register various items to
help the novice user get started.  Documentation, tutorials, and online videos can all be
presented to the user.  Prior to Phase I, only feature stubs which emulated this functionality
existed.  As proposed for Phase I, we implemented methods for the tool developer to register
actions to the welcome screen, as well as tutorial documentation and videos, “tips and tricks”
texts, and RSS feeds for news.

We also proposed that the help system will allow tool plugins to register a Qt­style compiled help
package, local or remote HTML, or possibly a PDF document that the user can reference from
within the GUI.  We were able to complete all tasks for the help system, save the PDF viewer.
While it was hoped to implement PDF documentation viewing during Phase I, we did not have
enough time to complete more than an assessment of available libraries we could possibly use
in the future.

3.5 Abstracted Visualizations
Visualizations and specialized widgets can be componentized into plugins that are loaded at
runtime.  This will allow the widget to be easily shared between multiple tools with a minimized
memory and CPU resource footprint.  We proposed several base visualizations, such as pie
charts, line charts and bar charts, to be created for the PTGF and made available to tools using
the framework.  The abstracted data model­view mechanisms already offered by Qt are ideal for
the visualization plugins in this framework, and we capitalized on these existing features.

Further we proposed to investigate the feasibility of the following visualizations using available
libraries:  3D surface plots; directed graph visualization; network analysis graphs.  Investigations
will include work required for implementation during Phase II, which may require creating the
visualization from scratch without the use of an external library.

10



Figure 4: Visualization charts demonstrated

Using previous work on the O|SS GUI we created an abstracted ViewManager for handling views
and matching them to customer’s data models.  For example, a tool developer can provide a
populated data model to the view manager, and get a list of compatible views in return.  From
there the developer can select the most appropriate view, and present it to the user.

During Phase I we extended Qt’s default table view to handle a wider variety of data types, like
percentages.  We were also able to create an abstracted source code viewer and annotation
widget, which allows the user to see collected data alongside their source code.  Created 2D
views include column chart, bar chart and line chart views (Figure 4, and Figure 1).

Unfortunately, a suitable visualization library for simple pie charts and scatter plots were not
found, and the visualization work will have to be performed from scratch at a future time.

11



Figure 5: Node List Widget demonstrated

Although work for a node list widget was performed under funds from another project, we think it
worth mentioning here.  The node list widget allows the user to manually select from a list of
nodes using the mouse, or using a textual representation of a node list.  This node list is
currently automatically populated by job allocation on Slurm machines.  Given this, a user can
manually select nodes 1,2,3,5, and 10 using the mouse, or could type "1­3,5,10" into a text box.
This allows both novice and expert users to quickly select node sets for use with a tool.  See
Figure 5 for a screenshot.

3.6 Network Update Plugin
The choice of working with a runtime loading plugin architecture allows for the possibility of
on­the­fly updating of individual components through a networked updating system, further
easing system administration.  We proposed to assess, during Phase I, the possibility of
including this feature in future work.  As explained previously in at the end of Section 2.2, after
several conversations with DOE laboratory personnel it was found that, while this feature could
technically have a place in their HPC production environments, network security policies would
likely prevent a feature like this from actually being used.

12



4 Products Developed
In this section we identify PTGF related products developed under the Phase I award and
technology transfer activities[5].

4.1 Public Software Release
A public release of the Parallel Tools GUI Framework v0.4­alpha[5].

4.2 Public Presentations and Demonstrations
Technology demonstrations, and a slide show of the Parallel Tools GUI Framework were given
to attendees of the annual Supercomputing 2013 conference at the Open|SpeedShop booth [3].

4.3 Websites
A website detailing PTGF features and exhibiting screenshots was created to reach out to
potential customers and users, <http://www.paralleltoolsguiframework.com/>.  The source code
and API documentation can be accessed publicly at the project’s current public repositories,
<https://github.com/PTGF>.

4.4 Collaborations
The PTGF is currently being used by several open source projects, and Argo Navis
Technologies is actively working toward expanding the adoption of the framework as other tool’s
user interfaces.  Current tools are as follows:

● Open|SpeedShop[4] [Krell Institute]
● Stackwalker Analysis Tool[6] (SWAT) [University of Wisconsin]
● CBTF DaemonTool [LANL], a suite containing the following individual parallel tools:

○ psTool
○ memTool

13



5 References

[1] J. McDonald. (2010, Feb. 15) Qt 4.6.2 Released [Online]. Available:
http://blog.qt.digia.com/blog/2010/02/15/qt­462­released/

[2] A. Somers, Nokia. (2011, Dec. 15) “Model/View Programming,” Qt 4.7 Project
Documentation [Online].  Available:
http://qt­project.org/doc/qt­4.7/model­view­programming.html

[3] D. Gardner. (2013, Dec. 4) Supercomputing 2013 Followup [Online]. Available:
http://www.paralleltoolsguiframework.com/sc13­followup/

[4] Krell Institute. (2013) Open|SpeedShop Overview [Online]. Available:
http://www.openspeedshop.org

[5] D. Gardner. (2013, Dec. 8) Parallel Tools GUI Framework Public Release 0.4­alpha
[Online]. Available: https://github.com/PTGF/PTGF/releases/tag/0.4.0

[6] Paradyn Tools Project, “Stackwalker Analysis Tool,” University of Wisconsin­Madison,
poster presented at the Supercomputing Conference, Salt Lake City, UT, 2012. Available
FTP: ftp://ftp.cs.wisc.edu/paradyn/posters/SWAT12SWAT.pdf

14


