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CIGS: The Promise and Problem

= Highest performing thin-film PV =  Growing, but limited understanding
= 2 20% efficiency (ZSW, NREL) = Complicated phase diagram
= Potentially low cost and flex = Difficult to control phases over large areas
= Good outdoor performance and stability = Role of surfaces and interfaces still debated
= Radiation hard = “Improvements by design” is limited

[-V of Record CIGS Cells from ZSW

(Certified by Fraunhofer ISE) Pseudobinary Phase Diagram of CIGS
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Jackson et al, Prog. Photovolt: Res. Appl. 19:894 (2011).
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Microscopy of CIGS

=  Many efforts to correlate processing-structure-property relationships
= Scanning (Auger) Electron Microscopy [e.g., Hetzer et al, Appl. Phys. Lett. 86:162105 (2005)]
= Scanning Tunneling Microscopy and Spectroscopy [e.g., Azulay et al, Phys. Rev. Lett. 108:076603 (2012)]
" (Scanning) Transmission Electron Microscopy [e.g., Abou-Ras et al, Phys. Rev. Lett. 108:075502 (2012)]
= Functional Scanning Probe Microscopies [e.g., Li et al, IEEE J. Photovolt. 2:191 (2012)]
= Depth Sensitive Spectroscopy [e.g., Bar et al, Appl. Phys. Lett. 93:244103 (2008)]

Interface Layer:

Cu-depleted ODC (B) .
Higher bandgap (1.6 eV) Open Questions

Higher e- density Depletion or inversion?

Energy level alignment?
Grain Interior:
Stoichiometric (a)
Lower bandgap (1.1 eV)
Higher h+ density

Hole/electron barrier?

Space charge region?
How do holes get out?

Nanoscale phase segregation?
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Our Approach: LEEM/PEEM

=  Photoemission / Low Energy Electron Microscopies (PEEM / LEEM)
Spatially-resolved electronic and chemical structure (PES, EELS, AES, SES, LEED, etc.)

= 5-10 nm spatial resolution
Sample  Objective = 50-100 meV spectral resolution
= Live-time imaging of:
= Surface topology and crystallography
= Electronic and chemical structure
Electron = Carrier/field distribution

Energy .
Analyzer = Fermi-level/surface

Separator . . .
(Filter) = |Interfacial band alignment

= Phonons/Plasmons

3 O E o Nl N
FILTER f
% "%7/ g
PEEM SECONDARY AUGER MIRROR LEED DARK FIELD

Veneklasen, Rev. Sci. Instrum. 63:5513 (1992).
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Principles of PEEM / LEEM

= For each pixel of the
microchannel plate...

Electron
Energy
Analyzer
(Filter)

Objective
Lens

Beam
Separator

sandia X | THE UNIVERSITY OF
ot 2 :NREL TEXAS

Laboratories AT AUSTIN

PEEM

detector

hv

Hg Lamp
Broadband

(3.4-4.9 eV)

He Lamp

He 1(21.22 eV)

He II (40.8

@)
4—
4—
4—
«—
to MCP 4—|
4—
4—

photoemitted
electrons

_1_+Vs E

empty
states

filled

eV)

7N, The Center for

Integrated
¢ Nanotechnologies

W\ PYMC

.S. DEPARTMENT OF

ENERGY

Sandia National Laboratories is a multi-prog
ged and operated by Sandia

C

ati

ram labor:
on, a wi

atory

holly



Principles of PEEM / LEEM

= For each pixel of the e
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Principles of PEEM / LEEM

= For each pixel of the
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Imaging Morphology with LEEM

= NREL Cu(In, (Ga, ,)Se, Samples’

= 3-stage vacuum-deposition on SLG/Mo, no top contacts (20% efficient with contacts).
= X-ray fluorescence: Cu(lll) =0.913, Ga(lll) = 0.39.

= PEEM / LEEM: Samples annealed in situ at 300-400 °C for 12-48 hours.

= Microcrystalline, size ~¥1-2 um
= Faceted surface

‘Repins et al, Prog. Photovolt: Res. Appl. 16:235 (2008). | Jiang et al, Appl. Phys. Lett. 84:3477 (2004).
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Surface Structure with LEED

= NREL Cu(In, ¢Ga, ,)Se, Samples
= Clean surface diffraction patterns difficult due to small grains and faceting.
= Some grains 2 5 um and relatively | | to imaging plane.
= LEED: 5 mm aperture over these grains.

:
4

\ - AN
V. =1.1 \’ ‘m{ FOV = 20 um v

= Microcrystalline, size ~1-2 um.

= Faceted surface.

Contreras et al, Thin Solid Films 361:167 (2000).
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Surface Structure with LEED

= NREL Cu(In, ¢Ga, ,)Se, Samples
= Clean LEED patterns difficult due to small grains and faceting.
= Some grains 2 5 um and relatively | | to imaging plane.
= LEED: 5 mm aperture over these grains.

Cu(In,Ga,)Se

Modeled Reciprocal-Space
Features of CIS {112} Plane

(- WSl

- : -
vs=m1GEL:

= Hexagonal pattern consistent with CIGS {112} surface termination.

FOV'=20 um v

= Quantification of the lattice parameter is a work in progress.

Contreras et al, Thin Solid Films 361:167 :2000=.
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Electronic Structure with LEEM-1V

= NREL Cu(In, ¢Ga, ,)Se, Samples
= LEEM-IV: Intensity or Current (I) vs. Start Voltage (V)
Collect a stack of images as a function of V..
Extract an IV spectrum for each pixel by tunneling through the stack.
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= Significant variations in the grain boundary potential: ¢ =0.1-1.4 V.
= GB potential difference much larger than reported with other techniques (50-100 meV).
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Why are GB Potentials Larger in LEEM?

Bar et al, Appl. Phys. Lett. 93:244103 (2008).

= Different probing depths of different techniques.

------- Scanning Probes p=0V
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Conclusion and Next Steps

=  Conclusions

PEEM / LEEM: powerful tool for concurrently characterizing physical and electronic structure.

Different contrast mechanisms highlight CIGS morphology or grain boundaries.
= Selective area LEED directly confirms {112} surface faceting of CIGS.
= Significant variations (0.1-1.4 V) in the pn junction potential at CIGS grain boundaries.

g =

LEEM-IV

‘-‘:.?"‘\ e

= Next Steps
= |nvestigate which nanoscale physicochemical properties determine magnitude of GB potential.
= |nvestigate how GB pn junction potentials impact nanoscale charge transport.

= Extend studies to more problematic materials and interfaces (e.g., higher Ga content CIGS,
alternative buffer layers and contacts, CZTS, nanocrystals).
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