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ABSTRACT
We provide a new methodology for selecting the most suitable
data structure for parallel applications. Users invoke a data
structure in code known as the parent, a concurrent container
adhering to the operations provided in the C++ standard
library. Through code analysis we determine if fast, special-
ized implementations known as children can be used in the
place of a parent container. This selection allows for fast, cor-
rect, scalable implementations that do not lock the user into
a single approach. By allowing the user’s code base to evolve
without fear of implementation boundaries, we can provide
a major benefit in complex software design. Our approach is
built on the idea that change is inevitable in software design.
Selecting the best data structure implementation is a hard
problem, but should not distract programmers from their
work.

1. INTRODUCTION
Concurrent data structures are critical for performance in
modern systems [12]. While C++ is widely used for the de-
velopment of high-performance computing applications, there
is a lack of available and scalable data structures for con-
current systems. Future exascale architectures will demand
efficient utilization of intra-node parallelism. Applications
depending on significant inter-thread communication and
synchronization will benefit from light-weight concurrent
data structures.

In this paper, we describe a solution to concurrent data
structure selection using what we call data structure fam-
ilies. These data structure families contain a concurrent
data structure known as the parent. The parent container is
selected by the library’s user (e.g. queue, vector, hash-map,)
along with certain use case constraints (i.e. single writer,
multiple reader) Parent containers are deadlock-free with as
close to the full range of C++ standard library operations

as possible. Each parent data structure contains a library
of children data structures such that each child is a subset
of the parent’s operations. These children data structures
are case-specific algorithm optimizations of the parent data
structure. These algorithms can be optimized around spe-
cific correctness guarantees such as ABA-freedom or relaxed
consistency, we call these the optimization dimensions.

Motivation for our approach stems from past research that
shows data structure selection to be a hard problem [14].
Moreover, the selection of the right data structure is one of
the most important performance aspects of application devel-
opment [9]. When the selection of the best data structure in
sequential code is already difficult for expert programmers,
then choosing the best available concurrent data structure
in parallel codes poses a challenge to performance and cor-
rectness. Many one-size-fits-all lock-free solutions do not
provide performance gains, because programs often employ
specific data structure use cases. Due to the synchronization
overhead of concurrent container operations we can eliminate
expensive unused operations creating lightweight implementa-
tions suitable for a given application. Through code analysis
we can determine if a highly specialized child implementation
of a parent container could be used as a faster substitute.
The expense of reduced functionality is in the unused opera-
tions, creating the illusion of a fully implemented container.
When no child solution can meet the use criteria the parent
is always the default solution.

By removing the burden of selection from the user, we cre-
ate an environment that is less prone to errors. Errors
are negated by ensuring implementations are only called on
when conditions match their case-specific algorithm, and
that correctness is maintained as the code evolves. This is
especially helpful in environments where many users will
be contributing to the same source code — users do not
need to understand the implementation boundaries to con-
tribute. Black boxing the implementation selection allows for
scalable software solutions and reduces avenues of possible
software debt and implementation lock-in. Freeing develop-
ers to base their code around the solution and not around
an implementation.

We evaluate the effectiveness of our approach using a micro-
benchmark. We compare data structure family members
to parent data structures in a series of performance tests.
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Each test contains either a typical distribution of container
function calls, or a distribution relevant to a specialized
family member. The families selected for testing include a
family of lock-free queues and one of lock-free vectors. Our
results illustrate two things: either the overhead of the data
structure is greater than the cost of alternative solutions,
but provides an ABA and lock-free solution that is otherwise
unobtainable; or a faster (child) solution is employed. In our
results, we compare as many solutions as possible to show
how much the additional synchronization overhead affects
each data structure.

The rest of the paper is organized as follows. Section 2
provides a brief summary of atomic primitives and lock-
free data structures. Section 3 reviews some related works.
Section 4 covers the design theory of data structure families.
Section 5 shows two use case scenarios of data structure
families. Section 6 presents the experimental evaluation of
our approach. Section 7 concludes with a summary of results
and perspectives on future work.

2. BACKGROUND
In this paper, we refer to optimization techniques and cor-
rectness guarantees found in concurrent programming. This
section, provides a summary of the concepts used in our
work.

2.1 Atomic Primitives and Progress guaran-
tees

Atomic primitives are the building blocks of non-blocking pro-
gramming. Our algorithms rely on compare_and_swap and
fetch_and_add. The compare_and_swap(addr, expected_value,

new_value) instruction also known as CAS, always returns
the original value at the specified address but only writes
new_value to addr if the original value matches expected_value.
CAS is an atomic operation with an infinite consensus num-
ber [8]. The fetch_and_add(addr, added_value) instruc-
tion atomically increments the value stored in addr by the
added_value and returns the value that was held in addr

before the operation.

Lock-freedom is a progress guarantee associated with non-
blocking algorithms. An algorithm is said to be lock-free if it
guarantees that the system makes progress in a finite number
of steps, independent of the system scheduler [7]. Lock-
freedom does not guarantee starvation-freedom; although
some thread will always make progress there is no control
over which one it will be. Each CAS operation that fails,
fails because a different CAS succeeded during the same time
interval [7].

2.2 Linearizability
An objects linearization point defines the moment in time
when that operation is said to have occurred, regardless of
how long the operation takes as a whole. When reasoning
about linearization every linearizable concurrent history is
equivalent to some sequential history. A history is lineariz-
able if the sequential history produced is legal. Another
important attribute of linearization is that linearizability is
compositional [7]. This allows us to treat linearizable ob-
jects as the basic building blocks of a concurrent system, to
maintain the correctness guarantee.

So when building a concurrent library we can reason that
as long as all components of the library are linearizable, so
is any construction made from the components. Our data
structure families are built out of linearizable objects in such
a fashion.

2.3 ABA-Freedom
ABA-freedom is the result of solving the ABA problem. The
ABA problem occurs in CAS algorithms, with a false positive
execution of a CAS-based speculation on a shared location [1].
This scenario can be resolved by ensuring each item is unique,
since this is generally not possible, a popular solution includes
attaching a version tag to each object. Since a good solution
is algorithm-specific and computationally expensive, we take
advantage of the case when an ABA occurrence is impossible
to return a light weight algorithm. In the cases when an
ABA occurrence is possible we return an algorithm with
an ABA avoidance scheme. When no specialized avoidance
scheme exists for a data structure we rely on version tagging
each object with the MCAS operation as a general avoidance
solution.

2.4 MCAS
Multi-word Compare and Swap (MCAS) is a software algo-
rithm that provides a linearizable way to execute multiple
CAS operations. If one of the CAS operations fails, then the
whole operation is rolled back, in an all or nothing comple-
tion strategy. This gives the user the illusion of performing
an arbitrary number of CAS operations in one atomic step.
Data Structure Families uses MCAS to extend version tag-
ging for ABA-prevention to algorithms that do not have a
well defined ABA-prevention strategy. We use the MCAS
implementation-based on the work of Fraser et. al. [3].

2.5 Relaxed Consistency
Many concurrent data structures follow a sequential API,
creating a bottleneck for scalability. Data structures such
as queues, lists, stacks, share contention for one or two
memory locations corresponding to the head or tail. One
area of research focuses on increasing the performance of
data structures by relaxing the linearizability requirement
on the data structure. These algorithms balance scalability
and correctness. By relaxing the consistency and allowing K

enqueue and dequeue points, a data structure’s correctness
becomes K - consistent [6].

3. RELATED WORK
Our work aims to bring specific algorithmic optimizations
to data structures without losing the generality of a library.
We focus on abstracting when and where the algorithmic
optimizations are applied. We allow users to specify data
structure transitions that follow the natural phases of ex-
ecution within each program. Our contributions includes
tailoring the chosen data structure to the use case.

Hawkins et al. create a process to synthesize high level con-
current relationships, choose concrete data structures, and
select a locking strategy that is suitable for the context [5].
They tackle the problem of data structure selection in a con-
current setting, requiring programmers to use the operations
provided to build concurrent relations, instead of actual data
structures. This approach could be used to extend our current



work; universal constructions such as concurrent relations
usually lack optimization in algorithm design. Their analysis
focuses on high-level relationships between data structures,
while we focus on the best implementation of a specific data
structure.

Vechev and Yahav built Paraglider, a tool to explore large
areas of algorithms, while using a model checker to verify
the linearizability of these concurrent objects [13]. This tools
helps developers focus in on specific algorithmic implemen-
tations while rejecting ones that are not linearizable in the
given use case. Paraglider focuses on the high-level skeleton
structure of an algorithm, and attempts to optimize this
skeleton against available design choices. They also attempt
to return linearizable designs with the minimum space over-
head. The key difference in our approach is that our designs
are optimized around an extra decision space that is, defined
by the user (i.e. relaxed linearizability and ABA freedom).
Another difference is that paraglider returns a set of available
algorithms to the developer, we return a set of algorithms in
our search, and only return the most optimal data structure
in the set to the developer.

Jung et al. designed Brainy, a program analysis tool that
uses machine learning, code analysis, and memory manage-
ment features, to determine the best data structure choice
in sequential code [9]. Their work was motivated by findings
that suboptimal data structure selection can reduce perfor-
mance by up to 17% [10]. Brainy compares the frequency of
function calls in each data structure. Given the distribution
of function calls, it is possible to recommend similar data
structures, that are more performant (e.g. a vector over a
set for high iteration speed). Drawing in data from used
function calls was inspirational to our work, although Brainy
is bounded to the realm of sequential code. Our work exam-
ines function calls made in a particular phase of execution
to determine what minimal overhead algorithms are avail-
able. The motivation is that the more unique function calls
a concurrent data structure implementation maintains, the
heavier the overhead for the algorithm.

4. METHODOLOGY
Our approach to choosing the appropriate data structure
implementation in a concurrent system requires a strictly
defined notation. The notation is designed to scale with
added complexity in problem size. Our solution taxonomy
relies on data structure families that are stored in a binary
search tree (BST). We bundle our user data in a tuple, this
is formed through user-defined pragmas. With our tuple we
traverse the tree of data structure families and return the
best implementation available.

4.1 Data Structure Family Search Tree
The BST is a tree containing a collection of data structures
as shown in figure 1. Due to the size in which the tree in Fig.
1 would grow if each child data structure was represented by
a node, this total representation is not shown in our figures.
Section 5.1 and Section 5.2 will display subtrees of Fig. 1
mapped all the way down to the child as it is traced.

The root node is level zero in the tree. The first level of the
tree contains the different types of data structures that exist
within our library (i.e. vector, queue, stack). Our second

level contains the solution dimensions; dimensions refer to
the solution spaces for which each data structure family is
optimized. These dimensions include relaxed linearizability,
ABA freedom, and hardware-specific optimizations. Each
dimension is mutually exclusive. More about each dimension
can be found in the background section.

The third level of our tree contains the parent structures
for each dimension, with as close to the full range of C++
standard library calls as possible. The leftmost node on this
level is our default parent to the solution space and each
other node is equivalent to the default parent, but contains
an optimization based on use cases defined by pragmas (e.g.
single writer, many reader). These special rules given by the
user optimize a priori of the system. Tree levels underneath
the parent data structure contain all available children. If we
consider each parent node to be the root node of its family
we can consider this to be level 0 of the family tree. A family
tree has at most n levels, level one contains all of the data
structures with n-1 functions that existed within the parent
data structure. This reduction continues to the n-1 level at
most, where each data structure has one function left (Iff this
is an optimization). Levels are skipped (do not exist) if the
level provides no data structures that yield an optimization
over the parent level, this is why n-1 children levels is an
upper bound and not a constant.

Other Data Strucutes... Vector

ABA Free Relaxed Semantics...

Root

Default SW/MR

Child Tree Child Tree Child Tree Child Tree

Figure 1: Overview of the Data Structure Family
Tree



4.2 Tuple
In order to traverse our tree of data structure families we need
to collect traversal rules from our user’s code. We combine
these rules into a tuple that mirrors the structure of our
tree. The tuple’s members mirror the structure of our tree,
reading our tuple members from left to right corresponds
with a top down traversal of our tree. This relationship can
be seen in figure 1, symbols defined for members of the tuple
are mapped to levels in the tree. Our tuple consists of the
following members:

(τ, δ, {µ}, {ν})

1. A data structure, denoted as τ .

2. The dimension, that we refer to the scope of optimiza-
tion we are applying to the data structure, denoted as
δ (examples in 5.1 and 5.2).

3. User defined pragmas known as special rules, denoted
as µ.

4. Rules generated from code analysis, denoted as ν.

4.3 Tree Traversal
Each member of the tuple in Section 4.2 contains the data
required to traverse one level, or in the case of members that
are sets, one set of levels in the tree. The tuple is parsed
from left to right executing the instructions found in each
member of the tuple. Individual items such as τ and δ are
not null-able and are required to perform the tree traversal.
However, the item sets such as the set of µ rules, and the set
of ν rules, are allowed to be the empty set. If µ or ν is the
empty set our implementation will return the full parent data
structure containing no special rules from inserted pragmas.

If a member of the set is seen but there is no valid tree branch
to accommodate that rule, from our current position in the
tree, then the rule is treated as empty. When we return a
data structure to the user, the most optimal data structure
from the given rule set that exists in our library is returned.
Once the entire tuple is parsed we return the data structure
represented by the node in the tree that we end at. So if we
parse the first rule of ν and descend into our child tree to
find that there is no valid branch for the next rule in the
set then we will return the current child. We guarantee the
correctness of the user’s selection:

1. Our parent node represents the full data structure, so
each child is a subset of operations from the parent
layer.

2. We transition to child nodes as long as the child sup-
ports each of the operations that exist in ν.

3. Nodes in ν are a one-to-one mapping of real data struc-
tures in our library; if there is no valid child branches
for our current set of rules, that means the node we
are on is the most optimal valid node in the current
branch.

Tuples are parsed for each branch that exists in the tree, in
a breadth-first search. Multiple valid data structures will

Push Pop RAR RAW Bounds Checking Depth = 0

Push Pop RAR RAW Depth = 1 Pop RAR RAW Bounds Checking Depth = 1 Push RAR RAW Bounds Checking Depth = 1

Pop RAR RAW Depth = 2 Push RAR RAW Depth = 2

Push Depth = 4

Figure 2: Vector Trace Event

exist for each tuple (i.e. every data structure above a valid
child is also valid, but less optimal). To choose the best
data structure to return for a use case we track the depth
of each query into the tree, the query containing the largest
depth is returned. Since each level of the tree contains one
less function than the previous level, the deepest query will
contain the least functionality, and be the best candidate for
the use case. In the event of the tie an arbitrary branch will
be returned to the user.

5. EXAMPLES
Examples consist of Section 5.1 and Section 5.2. In Section
5.2 using data structure families results in each phase of
code execution paying the minimum algorithmic cost for
maintaining an ABA prevention scheme. While Section 5.1
shows that depending on the data structure’s use case, we
can scale the correctness in terms of linearizability to increase
performance.

5.1 Relaxed linearizable queues
In a complex system such as the operating system of a
distributed server, data structures are used at various points
to assist with the communication of data. When examining
use cases of a queue in these systems, it becomes clear that
there are two distinct points where a queue is needed:

1. When a scheduler receives tasks that requires time
using a shared system resource.

2. When individual processes pass messages to each other,
each of these messages is delivered to the recipients
receive buffer, this buffer is a queue.

The case of a scheduler receiving tasks would require a queue
that enforces strict ordering on its contents, to maintain
the fairness of the chosen scheduling algorithm [11]. This
queue should be able to quickly receive task requests, without
violating the queue’s first in first out ordering. Each runnable
process entering the queue is waiting for a turn to use shared
system resources and will block until those resources are
available.

However, in the receive buffer case, a process who is sending
a message to another process is doing so asynchronously and
does not want to block. In this instance, it is more important
that the inbox queue be able to receive a high volume of
requests without blocking the senders on insert than it is
to enforce total ordering. Many times these operations can
include single process to many process messages. Using



a queue that adheres to stricter progress guarantees can
result in longer-lasting system-wide contention as the sender
will block until all receivers have received the message [2].
Greater concurrency can be achieved with relaxed linearizble
queues [4]. With dsf, and the proper use of pragmas, it is
possible to build both the scheduler queue and the process
receive buffer queues with a single library.

5.2 Solving the ABA problem with Data Struc-
ture Families

The ABA problem is a condition that can occur in highly
concurrent CAS-based algorithms, the problem is explained
in detail in Section 2 of the paper. There are several ABA
prevention schemes available to CAS algorithms, these ap-
proaches generally require more expensive operations. Some
existing approaches include using double-word CAS with a
time stamp, or an algorithm that inserts descriptors into
the data structure. The data structure family library uses
both of these approaches. The queue relies on a software
double-word CAS known as MCAS, the vector relies on a
specialized descriptor algorithm.

These ABA prevention schemes require expensive overhead,
in the form of additional CAS operations. MCAS requires
2N+1 CAS calls where N is the number of single CAS calls
required; the descriptor approach requires 3 CAS operations
for each operation that would otherwise require a single
CAS. An approach to ABA prevention that is harder to
implement is to not use CAS algorithms in scenarios that
could lead to an ABA problem. This is not always possible,
in programs that have multiple phases of execution it might
only be possible during certain phases of execution. The
DSF library will examine function calls used in each phase of
the execution and return the fastest available data structure.
Which allows the user to always receive the fastest available
CAS algorithm that maintains an ABA-free solution, at each
step of the execution. Without such a library the user who
wants an ABA-free solution would continue to pay the cost of
the solution through the life time of the process, even when
it is not necessary.

5.3 Creating and using a process ID map at
runtime with ABA-free vectors

Process IDs are allocated in Linux on a sequential basis; they
go up to a maximum value and then roll back to the minimum.
These process IDs could be associated with a concurrent
vector. Ideally, the concurrent vector would protect against
the ABA problem to avoid data loss, while benefiting from
concurrency.

An operating system provides a great example of multi-phase
execution:

1. During the start-up phase of execution the operating
system performs necessary steps to bringing the system
online for the user. While performing the boot sequence
the operating system is not listening to input from the
user. As processes are launched and added to the
process ID list, the list is in add only mode, and there
is no fear of a possible ABA occurrence.

2. Once the boot phase is complete, the operating system

is listening for input from users. Users interact with
the operating system, launching and ending processes.
During this phase it is possible to encounter an ABA
scenario.

If the phase change is passed as a pragma to the DSF, the
ABA scenario can be avoided, without paying the price of
an ABA avoidance scheme during boot.

6. EXPERIMENT
All experiments are run on a 64 core Linux machine. For each
graph the Y axis refers to the benchmark completion time and
the X axis refers to the number of threads. All experiments
are run over 2, 4, 8, 16, 32, 64 threads. The experiments
show the execution time of parent data structures in relation
to their children in common use case scenarios. Each data
structure in the experiment is optimized to enforce ABA-
freedom.

Fig. 3 is a family of lock-free queues that enforce ABA-
freedom. The parent data structure represented by version
three supports atomic size, and version tagging by employing
MCAS. Version two is a lock-free queue with version tagging
to eliminate the ABA problem, but does atomically track
size, reducing the overhead of each operation. This version
is representative of eliminating size when the user does not
make use of the function, because it adds to each operation
cost, for unused functionality. Version one is a lock-free
queue that does not solve for the ABA-problem. When the
queue is working with all unique elements, or only performing
enqueue or dequeue, the ABA-problem does not manifest in
the data structure.

Figure 3: Displays the performance of the queue
slices over interleaved pushes and pops

Fig. 4 shows a family of lock-free vectors. This particular
experiment shows the family in the use case where 100% of
the operations are push_back(). This use case is not prone
to ABA-problems and is common in programs with multiple
phases of execution. Many vector use cases consist of a phase
for populating array values from another source. As shown
in the Figure, the optimized push only vector out performs
the vectors not specialized for this use case.



Figure 4: Shows the performance benefit of using
specialized vectors in a push only environment

Fig. 5 and Fig. 6 display a family of lock-free vectors
optimized for ABA-freedom over two normal distributions
of vector operations. In both distributions the vector that
does not implement an ABA-avoidance scheme outperforms
the ABA-free vector algorithm. The ABA-avoidance scheme
creates expensive overhead for the vector, users can avoid
paying this cost in code sections that are not ABA-prone.

Figure 5: Displays the performance of the vectors
over varied operation thresholds

Our experiments show that different algorithms can create
very large speedups over out-of-the-box solutions in Fig. 4.
With a smart library that can shift between data structure
implementations, we never pay for functionality that we do
not use. Large performance gaps between implementations
makes shifting a desirable quality, especially when the need
for a heavy implementation is in a short, but critical code
block.

7. CONCLUSIONS
Data structure Families provides a smart library to abstract
algorithm implementation details away from the user. One-
size-fits-all libraries limit concurrency, and correctly imple-
menting concurrent data structures is a hard problem. Our

Figure 6: Displays the performance of the vectors
over varied operation thresholds

smart library provides a better alternative for concurrent
programming, without requiring the developer to be an ex-
pert in concurrent data structures. Without being bound
to a single implementation, users can have the most opti-
mal data structure at each phase of execution. As well as
avoiding the cost of expensive correctness guarantees, that
otherwise would force users to continue paying the cost of
the guarantee through the life time of the process, even when
it is not necessary.

Possible future work for data structure families involves
adding static analysis and code generation. By implement-
ing code generation to create optimized data structures we
remove the code bloat of having large libraries of implemen-
tations. Static analysis allows us to optimize data structure
selection through function use frequency count. We also
remove the burden of communication of functions to our
family tree from the programmer.
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