
ExaCT Co-Design Center

Jacqueline Chen
Director

Sandia National Laboratories
Livermore, CA

ASCAC Meeting
American Geophysical Union, Washington D.C.

March 5-6, 2013

SAND2013-4937C

Why Combustion

• 83% of U.S. energy comes from combustion of fossil fuels

• National goals

– Reduce greenhouse gas emissions by 80% by 2050

– Reduce petroleum usage by 25% by 2020

• New generation of high-efficiency, low emission
combustion systems

– New designs for IC engines such as HCCI

– Fuel flexible turbines for power generation

• Rapidly evolving fuel streams

– Biodiesel for transportation

– Syngas from gasification processes

– Alcohols

• These factors significantly increase the design space for
new combustion technologies NOx emissions from a low

swirl injector fuels by H2

Nitrogen-diluted hydrogen jet in
crossflow

Why Exascale

• Current design methodologies are largely
phenomenological

– Combustion models based on simplified theory

– Global-step simple chemical kinetics

• Significant increase in computational capability
will dramatically reduce design cycle for new
combustion technologies and new fuels

– Simulations with higher physical fidelity, particularly
chemistry at high pressure

– More predictive science-based turbulence/
chemistry interaction models

• Address new mixed-mode regimes driven by
efficiency and emissions

• Differentiate effects of alternative fuels

• Co-design center is focusing on direct numerical
simulation methodologies

– Science base for novel fuels at realistic pressures

– Not addressing complexity of geometry in
engineering design codes

– D

ExaCT Goal

• Goal of combustion exascale co-design is to consider all aspects of
the combustion simulation process from formulation and basic
algorithms to programming environments to hardware characteristics
needed to enable combustion simulations on exascale architectures

– Interact with vendors to help define hardware requirements for
combustion simulation at the exascale

– Interact with vendors and DOE CS community (X-stack) on requirements
for programming environment and software stack needed for
combustion simulation

– Interact with applied mathematics community on mathematical issues
related to exascale combustion simulation

• Combustion is a surrogate for a much broader range of multiphysics
computational science areas

Petascale codes provide starting point for co-design process

• S3D
– Compressible formulation

– Eighth-order finite difference discretization

– Fourth-order Runge-Kutta temporal integrator

– Detailed kinetics and transport

– Hybrid parallel model with MPI + OpenMP

– OpenACC pragmas for GPU’s (Titan CAAR)

• LMC
– Low Mach Number model that exploits separation of

scales between acoustic wave speed and fluid motion

– Second-order projection formulation

– Detailed kinetics and transport

– Block-structure adaptive mesh refinement

– Hybrid parallel model with MPI + OpenMP

Expectation is that exascale will require new code
base

LMC simulation
of NOx emissions
from a low swirl
injector

S3D simulation
of HO2 ignition
marker in
lifted flame

Laboratory scale
flames

Petascale codes provide starting point for co-design process

• S3D
– Compressible formulation
– Eighth-order finite difference discretization
– Fourth-order Runge-Kutta temporal integrator
– Detailed kinetics and transport
– Hybrid parallel model with MPI + OpenMP

• LMC
– Low Mach Number model that exploits

separation of scales between acoustic wave
speed and fluid motion

– Second-order projection formulation
– Detailed kinetics and transport
– Block-structure adaptive mesh refinement
– Hybrid parallel model with MPI + OpenMP

Expectation is that exascale will require new
code base

LMC simulation
of NOx emissions
from a low swirl
injector

S3D simulation
of HO2 ignition
marker in
lifted flame

Laboratory scale
flames

Target computational capability at exascale:
• High-fidelity physics

• Detailed chemical kinetics
• Multicomponent species transport

• Supports both compressible and low Mach number formulations
• Block-structured adaptive mesh refinement
• Higher-order spatial discretizations
• Higher-order temporal integration
• Support for embedded UQ
• In situ analytics

UNIVERSITY OF WISCONSIN - ENGINE RESEARCH CENTER

PCCI/HCCI – load limitations
Requires precise charge preparation and
combustion control mechanisms
(for auto-ignition and combustion timing)

HCCI

High Efficiency
Clean Regime

Cylinder Temperature [K]

E
q
u
iv

a
le

n
ce

 R
a
tio

0.0

0.5

1.0

1.5

2.0

1400 1600 1800 2000 2200 2400

NOx

Soot

CO HCCI

Exascale Target: Advanced Engine Combustion Regimes

Spark
ignited

7

UNIVERSITY OF WISCONSIN - ENGINE RESEARCH CENTER

PCCI/HCCI – load limitations
Requires precise charge preparation and
combustion control mechanisms
(for auto-ignition and combustion timing)

HCCI

High Efficiency
Clean Regime

Cylinder Temperature [K]

E
q
u
iv

a
le

n
ce

 R
a
tio

0.0

0.5

1.0

1.5

2.0

1400 1600 1800 2000 2200 2400

NOx

Soot

CO HCCI

Exascale Target: Advanced Engine Combustion Regimes

Spark
ignited

8

• Relevant turbulence, pressure, temperature (Ret = 4300, 30-60 atm, 750-
2000K)

• Domain and grid size: 5cm3, 5 micron grid,
• Size of state: 1012 grids x 100 dof x 8 bytes/dof ~ 1 PB
• High water memory use: ~ 3 x (size of state) ~ 3 PB
• Number of time steps: 6 ms/5 ns timesteps = 1.2e6 steps
• Total run time: 1380e-06 s/time step/grids x 1.2e6 time steps x 1012 grids /

3600s/hr = 0.46e12 cpu-hrs (20 days at billion way concurrency)
• Total amount of data for analysis: 1.0 exabyte

• I/O bandwidth constraint make it infeasible to save all
raw simulation data to persistent storage
 Integrate simulation and analysis !!!!

• Challenge: co-design a workflow that supports smart
placement of analyses, visualization and UQ, tracking
large graphs, reducing checkpointing size with in situ
analytics

• Potential to reduce amount of data by 1000-fold

Petascale Workflow Model Won’t Scale

O(1B)
cores

O(1 PB)/dump every
30 min (1 min)

O(1-10
EB)/run

Synchronous
I/O

Synchronous I/O combustion
simulation

• Analysis
• Visualization

Performing the simulation is not enough – need to analyze results

Overall Workflow Captured Through Proxy Apps

ExascaleExascale MachineMachine

Compressible and Low-
Mach Reacting Flow

Solvers

Write to DiskWrite to Disk

• Reduced Checkpoints
• Reduced Data
(downstream analysis
and sharing)

Proxy Apps

Descriptive Statistics
Visualization Topological

Analysis UQ

Meta-skeletal
workflow proxy app

New UQ + topology
proxy for adjoint
solution data flow

SMC
CNS SSA

Streaming
Statistics

PVR
Parallel Volume

Rendering

RTC
Reduced
Topology

LMC
Multi-grid Chemistry

UQ

AMR

Solver Algorithmic Elements

• Stencil operations on blocks of data
– Stencils of different orders of accuracy 2nd – 8th

• Advection
– Advection stencils can include conditionals (merge)

• Diffusion
• Projection

– Special cases – not pure
• Boundary conditions
• Coarse-fine interfaces

• Single point computationally intense physics
– Thermodynamics
– Transport coefficients
– Chemical rate evaluation

• Multigrid linear solvers
– Stencil operation but on increasingly smaller grids as one moves deeper

into the V-cycle
• Diffusion is relatively easy
• Projection systems are more difficult

• Coarse-grained irregular work associated with AMR

Hardware/Software Co-Design Questions

• Computational Throughput
– What is the instruction mix, and should we utilize chip area for vector units for special functions?

• Registers
– How many registers are needed to capture scalar variables to avoid cache spills?

• Memory Bandwidth
– How sensitive is the application to the memory bandwidth?

• Cache
– To what extent can on-chip memory (cache) filter memory bandwidth?

– Can software optimizations change the memory bandwidth requirements?

• Memory Capacity
– What is the memory footprint of the application, and can NVRAM be used to increase memory capacity?

• Network Interface
– How sensitive is the application to network interface (NIC) characteristics in terms of latency and injection

bandwidth?

• Interconnect Topology
– Which interconnect topologies offer the highest performance for the lowest cost (fat-tree, dragonfly, tori)

– How does job placement affect performance?

12

Co-Design Methodology

• Measurement alone is not sufficient

– Measurement can be quirky

– Gives performance of today’s algorithms on
today’s hardware using today’s software stack

– Difficult to make precise extrapolations

– Difficult to assess algorithm variations

• Analytic performance model

– Algorithm variations

– Architectural features

– Identify critical parameters

– Predict trends

• Validate performance with hardware simulators
/ measurements

– Confirm key predictions

– Model what can’t be predicted analytically

SoftwareHardware

Algorithms

Exascale
Application

Performance

Details of the Methodology

• Developed notation for concise representation of algorithm characteristics

– Captures floating point operations, loads and stores

– Captures data dependencies across a range of granularities

– Captures communication patterns

• Provides a mechanism for a formal definition of a computational skeleton

– Computable from static code analysis (using ROSE)

– Computable from mathematical description of algorithm

• What can one do with this description

– Provides input for analytic performance model

– Can be compared to measured performance on existing systems

– Provides guidelines for identifying hardware simulation cases and interpreting
results for potential new architectures (SST micro / vendor tools)

– Provides baseline for achievable performance (Roofline model)

– Defines “language” for driving network simulator (SST macro)

• For dynamic problems (AMR) use execution trace to define control flow

• Automatically predict performance for many input codes and
software optimizations

• Predict performance under different architectural scenarios

• Much faster than hardware simulation and manual modeling

• Includes cache model to capture the working set reuse

Performance Modeling Tool Chain

http://github.com/losalamos/Byfl
http://github.com/losalamos/Byfl
http://github.com/losalamos/Byfl
http://github.com/losalamos/Byfl
http://github.com/losalamos/Byfl
http://github.com/losalamos/Byfl

Leveraging the Compiler as a Co-Design Tool

• Leveraging compiler infrastructure allows us to:

– Characterize aspects of codes in a hardware independent
and customized fashion tailored to co-design
questions/goals

– Drive modeling and architecture analysis and more
effective communication with the broad co-design team
(including vendors)

– Explore characteristics in significantly less time than
relying on architecture simulation (especially for
large/complex code) Topology Proxy

Characterization

SMC Characterization

Compiler

Algorithm Design &
Development

Vendors &
Architectures

Performance
Modeling

Optimization
details

Flops�
0%�

Integer�
57%�

(±1%)�

Memory�
Ops�
41%�

(±1%)�

Branches�
2%�

(±1%)�

RTC�

Example: Byfl – Compiler-Driven Dynamic
Software Performance Counters

• Byfl implemented as a language and architecture independent
middle-stage compiler pass

– Analyzes code and inserts targeted software-counters into code
– Supports Fortran, C, C++ (via any GNU toolchain frontend)
– Builds upon LLVM -- a common intermediate representation (IR)

• Providing answers (estimates) to some initial questions from
the vendors:

– What is the memory bandwidth/flop?
– What is the instruction mix?
– What is the read/load to write/store ratio of data?

Open source: http://github.com/losalamos/Byfl

Analysis

Code Analysis
&

Insertion

Compiler
front end Source

Code
generation

LLVM web site: http://llvm.org

Proxy Applications - Solver

• Uniform grid compressible flow proxies
– SMC – Multicomponent, reacting, compressible Navier-Stokes

• Detailed chemistry and transport
• Eighth-order in space, low storage third-order Runge Kutta in time
• Fully explicit -- Time step limited by acoustics / chemical time scales
• Hybrid implementation with MPI + OpenMP

– CNS – Same stencil operations as SMC
• SMC without species
• Acoustic time step limitation

• Low Mach number + AMR
– LMC – Exploit separation of scales between different processes when appropriate

• Projection-based discretization strategy
• Second-order in space and time
• Semi-implicit treatment of advection and diffusion
• Time step based on advection velocity
• Stiff ODE integration methodology for chemical kinetics
• Hybrid implementation with MPI + OpenMP

– Multigrid solver -- > 50% of time in LMC
– Chemical kinetics integration –14% of time in LMC

SMC

CNS

LMC

Multigrid

Chem

Proxy Machines

Hopper exaNode1 exaNode2 exaPIM

Memory BW TB/s/node (chip) 0.05 1 4 TBD (higher)

Memory Size GB/node (chip) 32 256 32 TBD (lower)

Flops TF/node (chip) 0.03 10 10 10

of Cores Cores/chip 6 ~1k ~1k TBD

of Chips Chips/node 4 1-2 1-2 TBD

Cache (last L) $/core (MB) 1 32 32 NA

Cache L1 $/core (KB) 64 16-64 16-64 NA

NIC BW GB/s 1 100 400 TBD

NIC Latency microseconds 1 0.4 ~0 TBD

Registers KB/chip

• exaNode1 and 2 are many core architectures
• exaNode1 uses commodity NIC and memory technology
• exaNode2 uses custom on-board NIC and faster memory technology
• exaPIM: Processing Near Memory or Processor In Memory

Hardware/Software Co-Design Questions

 Computational Throughput
– What is the instruction mix, and should we utilize chip area for vector units for special functions?

• Registers
– How many registers are needed to capture scalar variables to avoid cache spills?

 Memory Bandwidth
– How sensitive is the application to the memory bandwidth?

• Cache
– To what extent can on-chip memory (cache) filter memory bandwidth?

– Can software optimizations change the memory bandwidth requirements?

• Memory Capacity
– What is the memory footprint of the application, and can NVRAM be used to increase memory capacity?

• Network Interface
– How sensitive is the application to network interface (NIC) characteristics in terms of latency and injection

bandwidth?

 Interconnect Topology
– Which interconnect topologies offer the highest performance for the lowest cost (fat-tree, dragonfly, tori)

– How does job placement affect performance?

20

Basic Characterization of SMC Proxy

Even though transcendentals and division ops might be low in count,
they can dominate the CPU time21

adds,�
3620�

muls,�
4303�

divs,�
540�

trans,�
710�

Instruc on�Mix�

adds�
3%� muls�

4%�

divs�
18%�

trans�
75%�

Breakdown�of�CPU�Time�

adds,�
14509�

muls,�
16447�

divs,�
387�

sqrt,1��

Instruc on�Mix��

adds�
34%�

muls�
34%�

divs�
32%�

Breakdown�of�CPU�Time�

Chemistry Dynamics

CNS Dependency Graph

Baseline
2.8 GB/sweep

1.72 Bytes/Flop

Simple Fusion
1.5 GB/sweep (–45%)

0.93 Bytes/Flop

Aggressive
Fusion

0.5 GB/sweep (–84%)
0.28 Bytes/Flop

Estimated performance improvements

Neither software optimizations alone nor hardware optimizations alone will not

get us to the exascale, we have to apply both. 23

Impact of Data Layout on Performance

• Previous analysis assumes ideal network behavior
• Use SST macro to model contention on realistic network
• Results illustrate importance of locality on performance

– Internode data placement needs to be topology aware

Domain-Specific Languages for Co-Design

• A domain-specific language (DSL) is a language of
reduced expressiveness targeted at developers in a
specific, focused problem domain

• Perfect fit for co-design.
– Influenced and driven by both the domain and

architecture
– Contributes directly as an enabling technology that

insulates applications from the complexity of the
architecture. Specialized software that works well with
the co-designed hardware.

• Starting points:
– Team has previous experience in DSLs via ASC PSAP

(Stanford) – unstructured CFD, DSL with LLVM (LANL)
– LLVM Common IR for vendor toolchain interactions and

supporting infrastructure (not building compiler from
scratch). Using as FastForward interface for code
generation (with AMD and NVIDIA). Intel? IBM?

– Orion Stencil DSL
– Memory-hierarchy-aware programming model and

runtime (Legion – leveraging initial DARPA funding)
– Terra Language (DSL building blocks)

Common
IR

Source

DSL
Compiler

Runtime

Vendor
Code Gen

A
u

to
-t

u
n

e

Legion: Programming Locality and Independence

• Programming based on logical regions
to describe organization of data and
to explicit (first class values)

– Tasks are defined on regions, access
to regions with privileges (read-only,
read-write, reduce) and coherence
(exclusive, atomic, etc.)

– Mapping of tasks and regions onto
processors and memories.
Programmable from both domain and
architecture points of view

• Progress:
– Initial, basic AMR implementation

– CPU, GPU and cluster support

– SC12 paper, code released to center
participants

– S3D implementation coming soon!

All Cells

All Shared
Cells

All Private
Cells

Boundary
Cells

Ghost Owned

L3$

L2$

*

* * *

*

*

*

Extracting Knowledge from Simulation Requires Range of
Analysis With Different Instruction Mixes

• Visualization
– In situ multi-variate volume and particle rendering

– Lagrangian particle querying and analysis

• Topological Segmentation and Flame/Flow Geometry
– Topological segmentation:

• Contour trees

• Morse-Smale complex

• Time tracking

• Scalar field comparison

– Distance field (level set)

– Shape analysis

• Statistics
– Filtering and averaging (spatial and temporal)

– Statistical moments (conditional)

– Statistical dimensionality reduction (joint PDFS)

– Spectra (scalar, velocity, coherency)

Flame-centric
control volume
analysis

Intrusive Uncertainty Quantification - Chemistry
Models are Source of Error in DNS:

• Motivation: Inform chemical kineticists and chemical
engineers in the fuels industry (BP, Exxon) on what
chemical properties need to be pinned down more
accurately for optimal utilization of a given fuel

• Embedded chemistry model source of uncertainty

– Reaction rates

– Missing reactions

– Transport coefficients

• Combustion intermittency characterized by space-time
localized phenomena of interest, tractable for UQ

• Solve adjoint equations backward in time: need the primal
state at all times (data management opportunity for co-
design)

At exascale, the model of compute first, analyze later will
be infeasible: SDMA challenges at exascale

• The widening gap between compute power and available I/O rates
will make it infeasible to save all necessary data for post processing
– Data analysis and/or data triage must be performed on the fly

– “On-system” workflow architectures must be explored

• Analysis codes have markedly different characteristics compared to
simulation codes challenging current hardware and software stacks
– Can require data-dependent computations and global communications,

which are difficult/expensive to scale

• Understanding and modeling interaction / coordination behaviors of
end-to-end workflows will be critical to co-design
– Empirical evaluations must be used, along with analytic models to explore

the complete co-design space

Approach to Characterize SDMA Requirements

• Develop proxy / skeletal applications for a representative set
of data analyses methods and characterize machine
independent characteristics, e.g. memory access patterns,
communication patterns, etc.

• Define and characterize relevant workflow architectures and
map (formally and empirically) the machine independent
information to specific architectural choices

• Integrate analytics and simulation proxies to understand end-
to-end performance characteristics of the combustion
workflow & express this using the meta-skeleton abstraction

Initial lessons show highly heterogeneous behaviors
and requirements

Flops�
4%�

(±1.01%)�

Integer��
55%�

(±3.40%)�
�

Memory�
ops��
34%�������

(±�5.35%)�

Branches��
7%�

(±1.34%)�

PVR�

Flops�
12%�

Integer�
64%�

Memory�
Ops�
20%�

Branches�
4%�

LMC�Solver�

Flops�
37%�

Integer�
53%�

Memory�
Ops�
6%�

Branches�
4%�

SSA�

Flops�
0%�

Integer�
57%�

(±1%)�

Memory�
Ops�
41%�

(±1%)�

Branches�
2%�

(±1%)�

RTC�

Analytics instruction mixes
cover a wide range of behaviors

Algorithms range from Flop-free
to having more Flops than solver

To
ta

l C
o

m
m

u
n

ic
at

io
n

Merge stages

2-cores per node 4-cores per node 8-cores per node

8
-w

ay m
erge

b
in

ary m
erge

Mapping machine independent characterizations
onto future workflow architectures is important

Algorithms can have a cross-over in communication
costs for different workflow architectures

Rich Design Space of Workflows at Exascale

• Location of analysis compute resources
– Same cores as the simulation (in-situ)

– Dedicated cores on the same node (in-situ)

– Dedicated nodes on the same machine (in-transit)

– Dedicated nodes on external resource (in-transit)

• Synchronization and scheduling

– Execute synchronously with simulation
every nth simulation time step

– Execute asynchronously

• Data access, placement, and persistence

– Shared memory access via hand-off / copy

– Shared memory access via non-volatile near node
storage (NVRAM)

– Data transfer to dedicated nodes or external
resources

…

non-volatile
shared memory

data transfer to
dedicated nodes

shared cores

dedicated cores
on same node

dedicated separate nodes

network communication

simulation analysis

dram hand-
off/copy

timesynchronous

time

…
asynchronous

An empirical study demonstrates hybrid workflow architectures show
promise for minimizing impact to the simulation

• Primary resources: execute main simulation & in situ computations
• Secondary resources: staging area for in transit computations

16.85�

2.72�

0.73�

1.7�

1.69�

2.06� 119.81�

5.07�

0� 2� 4� 6� 8� 10� 12� 14� 16�

simula on�

hybrid�topology�

hybrid�visualiza on�

in-situ�visualiza on�

hybrid�sta s cs�

in-situ�sta s cs�

seconds�

S3D� in-situ� data�movement� in-transit��

• Simulation size: 1600x1372x430
• All measurements: per simulation time step

Profound impact
reduction for non-
scalable algorithms

• 4896 cores total: 4480 in situ /
256 in transit / 160 scheduling

}

}

Minimal
impact

Significant
impact

We are formulating a Meta-Skeleton abstraction to
explore co-design of the end-to-end workflow

• End-to-end workflow comprises heterogeneous components
– Individual proxy & skeletal apps are per component characterizations

– The Meta-Skeleton models the dynamic interaction between components

• Meta-skeleton abstraction supports cross-layer co-design
– Proxy apps, skeletal apps and kernels characterize components

– Programming models provide abstractions to couple the components

– Simulators map workflow onto future architectures

Characterize how workflow influences
hardware design choices

Characterize how hardware design
constraints influence the workflow

Intrusive UQ poses a co-design challenge:
How to effectively manage the work and data flow

Storing entire primal state is infeasible: 5ZB Recomputation reduces storage costs: 4 EB

Focusing computation to regions of interest (ROI) : 500PB/ROI

Adjoint UQ Proxy
App available to
explore trade-offs
in the adjoint
work & data flows

UQ Impact: Turbulent Combustion

• Effective, robust UQ methods for long-time, chaotic systems
open research question.

• Space/Time localized phenomena of interest more tractable for
current UQ methods(Extinction, Ignition)

• Embedded chemistry models inherent source of uncertainty
 Reaction rates
 Missing/under-modeled processes/reactions
 Species concentrations, initial profiles

• Expression/reduction of basic science/prediction goals to
mathematical UQ framework.
 Leads to tractable and relevant set of UQ problems
 Helps catalog varying sources of uncertainty

http://www.exactcodesign.org

UQ Challenges: Nodal Proxy Apps

Two Classes of Intrusive UQ Proxy Apps

1. Adjoint-based Sensitivity Proxy App
• Allows efficient sensitivity analysis for large number of parameters
• Requires solution of adjoint problem, backwards in time.
• Implementation impacts available fast-memory(need state(s),

adjoint state).
• Increases need for low-storage, high-order time integrator
• CNS Adjoint Sensitivity UQ Proxy App available now.

2. Polynomial Chaos(PC) Proxy App
• Even “S3D-like” implementation requires access to distinct

realizations of solution state.
• Increased memory access influences stencil, time-integrator, and

parallel decomposition choices.
• Proxy app allows exploration of different multirate time

integration/operator split choices at the “realization”/PC coefficient
level.

• PC Proxy App available 5/12.

UQ Challenges: Data Management

Research of UQ impact on SDMA parallels proxy app thrust

1. Adjoint-based Sensitivity Analysis

– Computation of adjoint requires solution access on all of a
space-time domain “near” the phenomena of interest.

– Leads to optimization over:

• Available fast/slow memory

• Costs of using slow(er) storage

• Forward state recomputation(checkpointing)

• Adjoint state(and resulting sensitivities) computation accuracy

2. Intrusive, Polynomial Chaos enabled UQ.

– “S3D-like” implementation can result in significant data
movement

– AMR, multi-level methods, implicit time integration lead to even
greater data challenges

Future Directions

• Develop more complete models for exascale combustion
simulation

– Architecture aware AMR algorithms

• Incorporate interconnect topology into AMR data layout

• Dynamic load-balancing that incorporates communication costs, data
movement and dynamic machine behavior

– Capture model for complete work flow

• Encapsulate all aspects of analysis into performance model

• Explore hardware tradeoffs with vendors and CS collaborators

– Refined analysis of node architectures

– Analysis of network behavior for AMR at scale

– Explore tradeoffs for machine balance

• Focused interaction with programming environment community to
ensure that future programming models will support effective
expression of methodology needed for combustion simulation

Contact

• www.exactcodesign.org

• jhchen@sandia.gov

Integrating UQ into the combustion workflow
introduces unprecedented challenges

• Goal: Evaluate sensitivities of quantities of interest with respect to

– chemistry model parameters

– modeled fields (e.g. reaction rate fields)

• The classical approach to solving this problem requires solving P+1
forward simulations, where P is the number of sensitivity evaluations

– P can be very large (>> 1000) making this classical approach infeasible

• Adjoint approach: solve one auxiliary problem, the adjoint problem

– Linearized about the primal solution

• Need the primal (forward) solution to solve the adjoint problem

– Catch: adjoint problem has reverse causality

Adjoint solutions pose a co-design challenge:
How to effectively manage the work and data flow

Storing entire primal state is infeasible: 5ZB Recomputation reduces storage costs: 4 EB

Focusing computation to regions of interest (ROI) : 500PB/ROI

Proxy apps are
being developed
to explore trade-
offs in the adjoint
work & data flows

ExperimentalBig Compute

Current big compute and high-throughput
experimental workflows are similar

Si
m

u
la

te
St

o
re

A
n

al
yz

e

Ex
p

er
im

en
t

St
o

re
A

n
al

yz
e

N
e
e
d

 to
 v

e
rify

 e
x
p

e
rim

e
n

ta
l w

o
rk

flo
w

Both big compute and high-throughput experimental
workflows face big data challenges

• Both big compute and high-throughput workflows will
generate too much data to be stored directly

• Future workflows will move analysis closer to both
simulations and experiments

– Either full analysis or data reduction performed in situ

– Secondary computational resources finish time-sensitive
computations for computational steering

– Reduced data stored for down-stream analysis

• Co-design is needed to identify the architectural designs
that result in global optimized performance

BACKUP SLIDES

Synchronous I/O at exascale is expensive

Combustion
simulation

Synchronous I/O

O(1M)
cores

1 PB/dump
every 30 minutes

• Analysis
• Visualization
• Downstream Analytics

O(400 PB)/run

Synchronous
I/O

• Storage space requirements
• 35 disks for each dump (No RAID)
• 1.5 KW/live dump

• Performance requirements
• 5% overhead, ~1M disks, >40 MW
• 10% overhead, ~500K disks, >20 MW
• 50% overhead, ~100K disks, >4 MW

Asynchronous I/O is also expensive

Combustion
simulation

Asynchronous I/O

O(1M)
cores

1 PB/dump
every 30 minutes

O(400 PB)/run

Synchronous
I/O

• Storage space requirements
• 35 disks for each dump (No RAID)
• 1.5 KW/live dump

• Performance requirements (absorb output in
30 minutes)

• ~1500 disks, 60 KW

• Analysis
• Visualization
• Downstream Analytics

UQ Impact: Turbulent Combustion

• Effective, robust UQ methods for long-time, chaotic systems
open research question.

• Space/Time localized phenomena of interest more tractable for
current UQ methods(Extinction, Ignition)

• Embedded chemistry models inherent source of uncertainty
 Reaction rates
 Missing/under-modeled processes/reactions
 Species concentrations, initial profiles

• Expression/reduction of basic science/prediction goals to
mathematical UQ framework.
 Leads to tractable and relevant set of UQ problems
 Helps catalog varying sources of uncertainty

UQ Challenges: Nodal Proxy Apps

Two Classes of Intrusive UQ Proxy Apps

1. Adjoint-based Sensitivity Proxy App
• Allows efficient sensitivity analysis for large number of parameters
• Requires solution of adjoint problem, backwards in time.
• Implementation impacts available fast-memory(need state(s),

adjoint state).
• Increases need for low-storage, high-order time integrator
• CNS Sensitivity Proxy App available now.

2. Polynomial Chaos(PC) Proxy App
• Even “S3D-like” implementation requires access to distinct

realizations of solution state.
• Increased memory access influences stencil, time-integrator, and

parallel decomposition choices.
• Proxy app allows exploration of different multirate time

integration/operator split choices at the “realization”/PC coefficient
level.

• PC Proxy App available 5/12.

UQ Challenges: Data Management

Research of UQ impact on SDMA parallels proxy app thrust

1. Adjoint-based Sensitivity Analysis

– Computation of adjoint requires solution access on all of a
space-time domain “near” the phenomena of interest.

– Leads to optimization over:

• Available fast/slow memory

• Costs of using slow(er) storage

• Forward state recomputation(checkpointing)

• Adjoint state(and resulting sensitivities) computation accuracy

2. Intrusive, Polynomial Chaos enabled UQ.

– “S3D-like” implementation can result in significant data
movement

– AMR, multi-level methods, implicit time integration lead to even
greater data challenges

extras

Register State Estimates

• These estimates are for state variables only and do not include
registers needed for arithmetic

• If there are not enough registers available, state variables spill into the
L1 cache, increasing cache traffic and possibly affecting performance

Impact of Exascale Node Characteristics on CNS Performance

• Aggressive loop fusion improves performance
• Fast memory doubles performance – but limits memory per node
• Network

– High bandwidth network not significant for slow memory
– High bandwidth network is significant with faster memory bandwidth
– Latency not that important except for very small box sizes

Adaptive Mesh Refinement

• Need for AMR

– Reduce memory

– Reduce computation

• Block-structured AMR

– Data organized into logically-
rectangular structured grids

– Amortize irregular work

– Good match for multicore
architectures

• AMR introduces extra algorithm
issues not found in static codes

– Metadata manipulation

– Regridding operations

– Dynamic communication patterns

Structured grid AMR used in a wide
range of DOE applications

• Astrophysics
• Climate
• Cosmology
• Defense science
• Materials science
• Subsurface flow

SMC Characterization using BYFL

• SMC – 8th order finite difference
– Compact 2nd derivatives
– Iterate 8th order first derivative – S3D-like
– Trades Flops for communication

• Bytes to flops – 11.4 w/o cache

• Operation breakdown
– 14% Flops
– 23% Memory ops (loads and stores)
– 60% Integer
– 3% Branch

• Bulk of loads and stores are double precision floating point
• Significant data reuse
• Exp() plays a significant role in the floating point work
• Communication characteristics

– 9.9% Iterated
– 2.8% Compact

LMC characterization using BYFL

• Bytes to flops – 11.4 w/o cache

• Operation breakdown

– 12% Flops

– 20% Memory ops (loads and stores)

– 64% Integer

– 4% Branches

• Loads and stores

– Double precision floating point still largest

– Integer and pointer/address loads are significant
(AMR feature)

• Data reuse much less than explicit codes

• Exp() plays a significant role in the floating point
work

– No other single routine carries a significant
fraction of the work

• Communication characteristics – 20-25%

Multigrid Communication Characterization

• Look at how multigrid communication patterns
are affected by network characteristics

• PFMG
– Structured algebraic multigrid method

– Preserve stencil size

– One of the options used in Boxlib

• Model communication in a PFMG cycle on 2
different networks (torus and fat tree) for a 7-
point and a 27-point stencil

– Includes latency, bandwidth and cost of additional
hops

– Results here for 27-point

– Surrogate for higher-order stencils

smooth

form residual

restrict to
level i+1

prolong to
level i-1

smooth

Methodology

1. Create proxy machine models to represent exascale node
architectures

– Configurable machine parameters (cache size, memory bw)

2. Develop proxy applications to represent exascale combustion codes

– CNS and SMC codes by J. Bell’s group

3. Design a performance modeling framework to estimate
performance of proxy apps on proxy machines

– ExaSAT framework:

• static compiler analysis + performance model

63

Networks considered

3-Level Fat tree3D-Torus

p³ cores (or end stations)

Both networks have same number of links, i.e. 3p³, but fat tree needs
longer links

Tapering will reduce number of links for fat tree, and with it cost!

Parameters used in multigrid study

• p = 483 corresponding to 110,952 nodes

• Effect of bandwidth given latency

– 400 ns latency

– 20 ns latency

• Effect of latency given bandwidth

– 100 GB / s

– 400 GB / s

• Level of tapering at top level of the fat-tree

– r = 1 (no tapering) -> 2308 links from level 0 to level 1

– r = 3 -> 768 links

– r = 9 -> 256 links

• Simple model for contention

Multigrid communication costs – 27 point stencil

400 ns
latency

20 ns
latency

400 GB / s
bandwidth

100 GB / s
bandwidth

Summary – Results in Solver Area

• Characterization of baseline methodology
– Instruction mix
– Floating point intensity
– Communication
– Breakdown of execution time

• Developed initial suite of proxy apps
– Compressible Navier Stokes without species
– Generalization to multispecies with reactions
– LMC
– Multigrid algorithm – 7 and 27 point stencils
– Chemical integration
– Coming soon

• Embedded UQ kernels
• Additional AMR proxy apps

• Methodology for co-design
– Algorithm description – code analysis or algorithm specification
– Performance measurement
– Analytic performance modeling
– Judicious application of simulator

• Initial application to co-design equations with CNS and multigrid proxies

A Toy (parameterized) abstract machine model
(the full range of design choices for a machine)

Chip Scale Node Scale System Scale

•Cores (many simple cores)
•Flat clock rate
•Multithreaded (n-threads)
•SIMD (n-slots)
•Fat+Thin cores (ratio)

•NoC
•Constrained Topology (2D)
torus, mesh, ring

•Cache Hierarchy (size, type, assoc)
•Automatic caches
•Scratchpad/software managed
•NVRAM
•Alternative coherency methods

•Non-uniform memory access
(NUMA) between cores and
memory channels

•Topology may be important
•Or perhaps just distance

•Memory
•Increased NUMA domains
•Intelligence in memory (or
not)

•Fault Model for node
•FIT rates, kinds of faults,
granularity of faults/recovery

•Interconnect
•Constrained Topology
(Torus, Tapered Dragonfly)
•Bandwidth/latency/overhead
for communication

•Primitives for data movement/sync
•Global Address Space or
messages only
•Memory fences
•Transactions / remote
atomics

Measured Performance and Lower Bounds

• Measure performance of simplest
proxy app – CNS

• Manually produced a Roofline
model for each loop nest in CNS
code

– Red is CNS running on Hopper.

– Green is lower bound for moving
data

• Loops with large cache working
set dramatically underperforms
the roofline

ctoprim() hypterm() diffterm()

0

2

4

6

8

10

12

14

16

RK L1 L2 L1 L2 L3 L1 L2 L3 L4 L5 L6 L7

T
im

e
b

y
L

o
o

p
N

e
s
t

(m
s
) Actual

Roofline Bound

Roofline (w/$Bypass)

Roofline model defines intersection
of limits to performance from
hardware elements

Optimization of Hypterm

6.5x

0x

1x

2x

3x

4x

5x

6x

7x

8x

Vector-like $Blocking,
Buffering

$Blocking,
Buffering,

Task-based

Blocked
Data Layout,

SIMDized

S
p

e
e
d

u
p

Optimization of hypterm()

Fully Optimized

Initial Optimization

Original

• Consider one particularly underperforming function: hypterm()

• Roofline bounds performance to an 8x speedup over the original version

• What optimizations can be applied?

– Vector-like semantics to

improve prefetcher

behavior

– Loop fusion

– Cache blocking

– Buffering (for $bypass

& conflict misses)

– Task-like parallelization

– Blocked data layout

(instead of flat arrays)

– SIMDization

• Overall, attained a 6.5x speedup

• Analysis needs to reflect realizable performance

