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Background/motivation ) .

* Some radiation transport problems involve charged particles
within electromagnetic fields

* Much existing work on charged particle transport without EM
field effects, or on plasma/EM modeling without certain
transport effects

* |TS Monte Carlo code can handle transport of charged
particles in materials without EM effects, or streaming in
voids with EM effects

* LDRD project to develop deterministic solvers to handle EM
effects in transport codes (e.g. Sceptre)
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Challenges ) .

= Various properties break paradigm of existing deterministic
approaches/codes
= Curved trajectories instead of straight-line path between collisions
= Continuously changing energies rather than discrete changes

= Relativistic effects — must be explicitly aware of energies, masses, etc.
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Boltzmann equation with acceleration term A i,
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Expansion of acceleration term ) faor
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Boltzmann equation with acceleration term
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(change of variables)
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Dynamics of Lorentz force
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Sandia
Components of Lorentz force ) e
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Sandia
Components of Lorentz force ) e
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Final Boltzmann-EM equation L
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Spatial and energy discretization: )
discontinuous finite elements

Laboratories

= Spatial FEM well-known, already implemented in Sceptre
= Energy FEM relatively easy to implement in multigroup code
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Sandia
Angular discretization: discrete ordinates (?) (..

" Treat the angular redistribution terms from electromagnetic
acceleration as “scattering”:

. . . . . . 0 0
Discretize the differential operators involving a—'ﬁ and % by

* Expanding angular flux in terms of spherical harmonicsin angle
* Using properties of harmonics to create expansion of derivatives
* Applying quadrature rule to evaluate the angular moments

" Allows us to leverage existing discrete ordinates codes

= Difficult to solve

= Source iteration of these “scattering” terms is unstable

= Full matrix is asymmetric
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1 1 1 1 1 ﬁgggir?al
Angular discretization: finite elements ™ &=,

= Finite element in angle is not new but doesn’t exist in any
production transport codes

= Allows us to directly treat angular derivatives
= Need to create angular mesh
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Angular meshes ) i,
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Regular mesh in u-¢ space

Mapped from pu-¢ space mesh

= Problems with meshing p-¢ space: °f
= Elements mapped to a single point %22
at the poles <1
= Non-uniform mesh £ 1
= Alternative: use sinusoidal 0'2;3 T
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projection and then mesh

Mesh of sphere mapped to planar region




Final method: fully discontinuous FEM = e
in all phase-space variables

Laboratories
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= Large number of unknowns
= N X N X N

spatial element X Nspatial basis group energy basis

= 10%4x 4 X 50 x2 X100 x 3 =0(109)
= Extremely complex elemental equations and lots of new code

= 800 new components

x N

angular element X Nangular basis

= 100,000 lines of additional C++ code — split between Sceptre code
base (“radlib”) and research code base (radlibEM)
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Results: Electron Transport in Void 5 s,
Constant Electric Field
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Results: Electron Transport in Void
Constant Magnetic Field
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Results: Electron Transport in Pure Absorber (@1,

= Unit square region, unit total cross section, incident electron beam at an

oblique angle

No electric field, no scattering Electric field, no scattering
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Result: Electron Transport with Scattering @ e,

No electric field, no scattering Electric field, with scattering
qE,:D, Gt=1 5 0‘5=0
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Order of convergence tests ) .

= Method of Manufactured Solutions (MMS)

= Convergence rate analyses for MMS test problem w.r.t. space/angle mesh
refinement

o = 10,0,=9.99, Isotropic scattering with Unit Electric Field in +X Direction

Analytic Solution

0.025

(Y, 1@, E) = x*(1+ VE 3 et qraii resah
- _ I mrg:rlgcrg:sv;gmca
2x2 16x16 0.0207081 §°-°°5 i
4x4 16x16 0.00512301 5
8x8 16x16 0.00140234 ﬁ.
16x16 6x6 0.00582827
16x16 8x8 0.00168432
@5' 16x16 14x14 0.000646928 ! ‘;‘, alshlﬂ;fié'l emanét T T TR

"’

SCEPYRE e )1
I ———————



. e . ﬁgggﬁal
Time-dependent coupling with EM solver @z,

= Time advancement in a staggered order (Operator Split)
= Fully implicit differencing for electron transport
= Newmark beta method for electromagnetics

= Limitation on time-step size

tn 1 tn tn+1
Rad, ¥, , Rad, ¥, Rad, ¥ .,
Jn-1 i Jn i
\ 4 \4
EM, E B, EM, E, B,

Y Electron Angular Flux
J Electron Current Density
E Electric Field
o\ B Magnetic Flux Densit
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Result: Capacitor charging

= 1cmx1cmsquare of void

= 10 kA/m peak current T
) . i Current Density on Left and Right Edge without Field
= 2-ns wide sine-square pulse [
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Result: Capacitor charging
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Result: Capacitor charging
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Future work ) .

= Need to “productize” the research code — packaging, refactoring,
testing

= Desire to integrate with more sophisticated EM solvers

= Finite elements in energy can improve our transport even without EM
fields, particularly for cross sections (e.g. CSD operator)

= Finite elements in angle can improve our transport for streaming-
dominated problems (mitigate ray-effects)
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Conclusions )

= We have derived a form of the Boltzmann equation that includes the
effects of electromagnetic fields on relativistic charged particle
transport

= We have developed a deterministic discretization and solution
technique to model charged particle transport with EM fields

= We have demonstrated coupled electron transport and consistent
electric field with a simple time integration scheme
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