
2

A Practical Wait-Free Multi-Word
Compare-and-Swap Operation

Steven Feldman
University of Central Florida

Feldman@knights.ucf.edu Pierre LaBorde
University of Central Florida

Damian Dechev
University of Central Florida
Sandia National Laboratories

dechev@eecs.ucf.edu

Abstract—Algorithms designed for current and fu-
ture multi-core systems, which are expected to ex-
perience an increase of the number of cores by 100x
over the next decade, must exhibit strong scaling. The
guarantee of progress provided by wait-free algorithms
and the fine-grained synchronization methods used
in their designs, make them desirable for achieving
this goal. However, the design and development of
advanced wait-free algorithms is often inhibited by the
limitations of portable atomic hardware operations.
Typically these operations can manipulate a single
address at a time, where many concurrent algorithms
need to perform a series of operations on multiple
addresses, requiring more advanced synchronization
mechanisms such as a wait-free Multi-Word-Compare-
and-Swap (MCAS).

In this paper, we present the first practical MCAS
design that is wait-free in all scenarios. This property
holds even if interrupts consistently cause a thread to
retry a portion of its operation. Our approach uses
a progress assurance scheme that allows a blocked
thread to announce that it is unable to make progress.
In this scenario, other threads would help complete
the blocked thread’s operation. To ensure that the
other threads help complete the delayed operation,
each thread incrementally checks for announcements
before beginning its own operation. This differs from
traditional lock-free helping techniques, where a thread
will only help complete an operation that is in conflict
with its operation. To support this progress assurance
scheme, we designed a novel ABA prevention mecha-
nism that ensures that when multiple threads attempt
to execute the same operation, only one thread will
be successful. Our design is practical in that it is
built from only portable atomic operations (e.g. atomic
reads, atomic writes, compare-and-swap), it is efficient
in its utilization of memory (i.e. requiring only a single
bit to be reserved from each word, not requiring use
of explicit memory barriers, and requiring only four
words per address in the operation), and has a wait-
free progress guarantee.

In a scenario with high contention, with 64 threads
executing updates on a single multi-word object, our
wait-free design performs, on average, 77.1% more
operations than other practical approaches. Over all
tested scenarios, our design performs an average 8.3%
more operations.

I. Introduction
On-chip parallelism is expected to be the primary

area of parallelism growth in future multiprocessor sys-
tems [18]. For application developers, meeting the de-
sign challenges of current and future multi-core systems
demands rethinking fundamental concepts such as how
shared data is acted upon and manipulated. Specifically,
to cope with the expected limitations of available memory
and bandwidth, new algorithms will have to exploit more
parallelism within the computation performed on a single
datum (i.e. strong scaling 1).
The development and use of effective shared memory

synchronization is pivotal for overcoming serialization bot-
tlenecks and reaching necessary degrees of strong scaling.
Concurrent algorithms that are based on mutual exclusion
suffer from performance and safety problems in multipro-
cessor systems. For example, mutual exclusion can restrict
the amount of parallelism an algorithm can achieve and
lead to hazards such as deadlock, livelock, and starvation.

Non-blocking designs avoid mutual exclusion, and in-
stead focus on increasing the work performed with a single
datum. These designs rely solely on hardware atomic prim-
itives, such as compare-and-swap, to increase the amount
of work expressed in a single operation [8]. Wait-freedom
is a property of non-blocking designs provide a guarantee
that each thread makes progress, freeing them from all
three aforementioned hazards of mutual exclusion. This
differs from lock-free algorithms which are still suitable
to thread starvation. Because of this, wait-free algorithms
promise to achieve the necessary degree of strong scaling.

Recent research has provided a number of wait-free
data structures built from portable hardware-supported
operations including hash maps [19], linked lists [21],
queues [13], and et al. These data structures often depend

1Strong scaling is the scenario when the total problem size stays
fixed while the number of processing elements are increased. The
challenge is how to synchronize the work of the processing elements
in a correct and efficient manner without “wasting” too many cycles
on parallelism overhead. In weak scaling, the problem size assigned
to each processing element remains constant while the total problem
size may increase. In this case, the main challenge is how to add new
processing elements to the existing system.

SAND2013-7759C

3

on atomic primitives, such as atomic read, atomic store,
and Compare-and-Swap (CAS)2 to achieve fine-grained
shared-memory synchronization in their design.

Unfortunately, these atomic primitives are typically
limited to operating on a single address. Advanced algo-
rithms often operate on a series of addresses at a time.
For these algorithms, a practical software Multi-Word-
Compare-and-Swap (MCAS) operation is a necessity. A
wait-free, ABA-free MCAS operations allows a developer
to express the semantics of these advanced algorithms
without the underlaying MCAS algorithm reducing the
progress or safety guarantee of the algorithm.

MCAS is a programming abstraction that allows a
thread to update a series of memory addresses in a single
step [7]. This update is successful only if the values at
these addresses have not changed between the reading of
those values and the call to MCAS. A number of recent
multiprocessor algorithms and data structures rely on the
availability of an efficient software MCAS implementation.
The use of MCAS within those algorithms varies greatly,
common uses described in literature include:
• A non-blocking hash table implementation [16], which

requires an MCAS algorithm to support the use of
multi-word length keys and values. This design ex-
hibits improved data locality compared to other de-
signs that access keys and values through references,
which can be located on different cache lines.

• A lock-free, array-based priority queue implementa-
tion [12], which requires an MCAS to swap a lower
priority value with a higher priority value. The au-
thors’ methodology ensures that as newer values are
pushed to the bottom, older values are pushed to the
top.

• A binary search tree implementation [7], that uses
MCAS to ensure that concurrent modifications main-
tain the balanced nature of the tree. Specifically, when
removing or adding an element that requires elements
to be rotated, the MCAS operation is able to perform
all steps of this rotation atomically.

• It has been proposed that for systems with hard-
ware transaction memory support (HTM), a software-
based MCAS algorithm can be used instead of the
HTM when an operation exceeds the HTM’s sup-
ported size. This is because an MCAS, can operate on
an arbitrary number of memory locations, while most
HTM proposals limit the number of locations [17].

This paper presents the first MCAS design that is wait-
free and ABA-free in all scenarios of execution. It is
built from only portable atomic operations, and performs,
on average, more operations per second than other ap-
proaches. It performs, on average, 67.8% more operations
per second in tests with 64 executing threads.

Our design implements a strategy that replaces the
value at each address in an MCAS operation with a

2An operation with infinite consensus number in the wait-
free/lock-free hierarchy

descriptor object 3 which can only be removed once the
MCAS operation is completed. A thread that reads a
descriptor object may choose to help complete the MCAS
operation in progress or perform a read-through to return
a value.

The key contributions of this work are:
• Wait-free progress: we present the first software

MCAS implementation built from portable atomic
instructions that ensures wait-free execution in all sce-
narios. This differs from other designs where helping
may result in thread starvation.

• Performance: Provides fast execution in scenarios of
high contention; in synthetic tests performed with
64 threads on a 64 core workstation, our design
completes, on average, 71.8% more 2-word MCAS op-
erations and 82.1% more 32-word MCAS operations
then other designs. On average, over all tested scenar-
ios our design provides 8.6% improved performance
compared with other designs.

• Our MCAS operation incorporates a progress as-
surance scheme that guarantees a thread will make
progress.

• Correctness and ABA-freedom: our association be-
tween descriptors and MCAS operations allows us
to detect when ABA occurs and to prevent it from
causing undefined behavior.

• Composable with algorithms that require one of the
two least significant bits of the memory word. In
contrast, Harris et al. and similar designs that require
two bits to be reserved, our design requires a single
bit.

A. Road Map
The remainder of this paper is structured as follows:

Section II describes other MCAS implementations. Sec-
tion III and IV provide detailed descriptions of how the
algorithm is implemented. Section V provides an informal
proof that our model behaves properly in all cases and
that of our approach meets all claims made. In Section VI
we present experimental data that show how different
implementations compare in different use case scenarios.
We conclude in Section VIII.

II. Related Work
Israeli et al. present a lock-free and disjoint-access paral-

lel MCAS algorithm [10]. This algorithm requires a thread
identifier to be stored alongside the value of a memory
address, limiting the number of bits available to the value.
This thread identifier is used to access a set of global
variables that contain information about the operations
that are currently executing in the system. This design
does not support the ability to perform a read through
to get the current value for that address, but rather
requires a thread to help complete any pending operations

3An object that allows an interrupting thread to help an inter-
rupted thread to complete successfully [4].

4

before proceeding with its own operation. This algorithm
is dependent on the LL/VL/SC primitive4, which is not
provided by any contemporary system.

Anderson et al. demonstrate a wait-free MCAS algo-
rithm that is disjoint-access parallel and supports read
through parallelism [2]. In contrast to [10], their design
requires that each memory word that contains a value is
followed by an additional memory word containing auxil-
iary information about any pending concurrent operations.
This information includes the identification of the thread
performing a concurrent operation at the address and
the information needed to help complete the operation.
Using a non-redundant helping scheme, this design chooses
not to perform recursion to help complete a conflicting
operation, but rather it causes the conflicting operation to
be restarted. Like [10] this design requires the LL/VL/SC
primitive. A simplified lock-free version of this algorithm
was presented by Moir [15]. Attiya et al. [3] have also
presented improvements upon this design.

Harris et al. [6] present a lock-free MCAS algorithm
that is disjoint-access parallel, supports read through par-
allelism, and does not depend on LL/VL/SC. Rather this
design uses a CAS operation to replace the expected value
at an address with a reference to a descriptor object. This
design reserves the two lowermost bits of each address to
distinguish between values and descriptor objects. To en-
sure correct behavior of the MCAS algorithm and prevent
the ABA problem, Harris et al. designed a “double com-
pare single swap” algorithm. Compared with [10] and [2]
their design shows a significant increase in performance
and portability.

Sundell [20] proposes a wait-free MCAS algorithm based
on a greedy helping scheme. Like [6], his design is disjoint-
access parallel, supports read through parallelism, and
does not depend on LL/VL/SC. In the first phase of the
greedy helping scheme, the thread attempts to place a
reference to its MCAS operation’s descriptor object at as
many of the addresses in its operation as it can. In the next
phase, if another MCAS operation holds some of these
addresses needed for this operation, then one of the two
operations will steal addresses from the other. Unlike [6],
Sundell makes no claim that his algorithm is ABA-free,
and when examined his algorithm can exhibit undefined
behaviors in certain cases caused by the ABA-problem5.
In Sundell’s algorithm the value returned by a failed

CAS operation could lead to the thread reattempting the
CAS operation. It is possible for a CAS operation to
consistently return a value indicating that a thread should
reattempt the CAS operation, in this case the algorithm
is lock-free and not wait-free.

III. Structures
This section describes the global variables, thread local

variables, and descriptor objects we use in our MCAS

4Load-link, Validate, Store Conditional; used to ensure the value
at an address has not been unknowingly modified.

5 See Sec. V-C for more details.

algorithm. The descriptor objects contain the information
necessary to allow a thread operating on an address held
by an MCAS operation to determine the logical value of
that address and, if necessary, help complete the MCAS
operation.
• CasRow or Compare-and-Swap Row, is a structure

that holds the following word-length values in the
following order: address to be operated on (address),
the expected value at the address (expectedValue),
the value to replace the expected value if the MCAS
operation succeeds (newValue), and a pointer used to
hold a reference to an MCasHelper object that was
placed at this address (mch). Each value is constant
except for mch, which can only transition from null
to a non-null value, after which the it is constant.

struct { address , expectedValue ,
newValue , MCasHelper ∗mch }CasRow

• MCasDescriptor: a block of memory used to describe
an MCAS operation, it is composed of an arbitrary
number of CasRows followed by the constant 0x1.

struct { CasRow [] , 0x1 }MCasDescriptor

• MCasHelper is an object used to hold the value
at an address constant until the MCAS operation
referenced by it is completed. It contains a single
word, cr, that holds a reference to a CasRow in
an MCasDescriptor. This CasRow is its associated
CasRow only if the mch word in it holds a reference
to that MCasHelper.

struct {CasRow ∗ cr }MCasHelper

• nThreads is a global constant representing the num-
ber of threads executing in the system.

• maxFail is a global constant representing the maxi-
mum number of times a thread will retry an operation
before making an announcement.

• pendingOpTable a global array of length nThreads
where each thread has a specific position to write an
announcement.

• threadID is a thread-local value used to identify
the position in the pendingOpTable that the thread
writes a global announcements into.

• checkID is a thread-local value used to identify
the position in the pendingOpTable that the thread
checks for a global announcement. Before each check,
this value is incremented by one.

IV. Algorithms
This section describes in detail the two phases of ex-

ecution of our MCAS design. The first phase consists of
placing MCasHelper objects at each address, if the value at
the address matches the expected value. The first phase is
complete when the MCasHelper pointer of the last CasRow
holds a non-null reference. The second phase consists
of replacing each MCasHelper with its logical value. For
brevity, the bit masking operations are omitted. If a value

5

read holds an MCasHelper bitmark, then the next step
would be to unbitmark the local copy before dereferencing
it.

Figure 1, presents visual representation of a successful
MCAS operation and the relation between a MCasHelper
and the CasRow it references.

A. Algorithm 1 - Begin MCAS operation
This function takes an MCasDescriptor object and

the address of the last CasRow in the object and re-
turns whether or not the MCAS operation was successful.
Before a thread commences its own operation, it calls
helpIfNeeded (Alg. 4) which examines one other thread
to determine if that thread is being repeatedly preempted
and, if necessary, helps complete that thread’s operation.

This function then calls placeMCasHelper (L.6) until
either all addresses have been acquired, or it has failed to
acquire an address. It fails to acquire an address when the
current value is not equal to the expected value.

Unlike other approaches, this design does not use a
state variable. Rather, the MCasHelper pointer of the last
CasRow determines whether or not the operation is in
progress, successful, or failed. If it holds null, then the
operation is in progress if it holds ~0x0, then the operation
has failed otherwise, it is successful. This optimization
reduces the number of CAS operations needed by one.

After the result of the operation has been determined, it
calls removeMCasHelper (L.13), which iterates over each
CasRow and replaces the MCasHelper at each address with
its logical value.

Algorithm 1 invokeMCAS CasRow ∗mcasp, CasRow ∗
lastRow
1: helpIfNeeded()
2: __thread tl_mcas=mcasp
3: placeMCasHelper(tl_mcas++, lastRow, true, 0)
4: repeat
5: if lastRow->mch == 0x0 then
6: placeMCasHelper(tl_mcas++, lastRow, false, 0)
7: else
8: break
9: end if
10: until tl_mcas == lastRow
11: pendingOpTable[threadID]=null
12: res= (lastRow->mch != ~0x0)
13: removeMCasHelper(res,mcasp, lastRow)
14: safeFree(mcasp)

return res

B. Algorithm 2 - Acquire an address.
This function tries to acquire an address for an

MCAS operation by attempting to place a reference to

Fig. 1: Example of a Successful MCAS operation

Algorithm 2 void placeMCasHelper CasRow ∗
cr, CasRow ∗ lastRow, boolfirstT ime, intrDepth
1: address=cr->address
2: eValue=cr->expectedValue
3: mch= allocateMCasHelper(cr)
4: cValue= *address
5: tries=0
6: while true do
7: if tries++ == maxFail then
8: if firstTime then
9: cr->mch = null
10: firstTime = false
11: end if
12: pendingOpTable[threadID]= tl_mcas
13: if rDepth > 0 then
14: recursive return
15: end if
16: end if
17: if !isMCasHelper(cValue) then
18: if firstTime then
19: cr->mch=mch
20: end if
21: cValue = CAS(address, eValue, mch)
22: if cValue == eValue then
23: if !firstTime then
24: cValue = CAS(&cr->mch, null, mch)
25: if cValue != null && cValue != mch then CAS(address,

mch, eValue)
26: safeFree(mch)
27: end if
28: end ifreturn
29: else
30: continue
31: end if
32: else
33: if cr==cValue->cr then
34: free(mch)
35: cValue2 = CAS(&cr->mch, null, cValue)
36: if cValue2 != null && cValue2 != cValue then

CAS(address, cValue, eValue)
37: end ifreturn
38: else if shouldReplace(eValue, cValue, rDepth then
39: if firstTime then
40: cr->mch=mch
41: end if
42: cValue2 = CAS(address, cValue, mch)
43: if cValue2 == cValue then
44: if !firstTime then
45: cValue = CAS(&cr->mch, null, mch)
46: if cValue != null && cValue != mch then

CAS(address, mch, eValue)
47: safeFree(mch)
48: end if
49: end if
50: break
51: else
52: continue
53: end if
54: end if
55: end if
56: res=CAS(&cr->mch, null, ~0x0)
57: if res==null then
58: CAS(&lastRow->mch, null, ~0x0)
59: end if
60: break
61: end while

an MCasHelper, if the expectedValue for the address
matches the logical value currently at the address.
• If the logical value of the address is not equal to the

expectedValue, then the thread will attempt to set
the MCasHelper pointers of cr and lastRow to failed
(~0x0) before returning(L. 58).

• If the address holds a reference to an MCasHelper
object that references cr (L. 33), the thread will
attempt to set the MCasHelper pointer of cr to that
MCasHelper before returning(L. 35).

• Otherwise, if the logical value at the address is equal
to the expectedValue (L. 21, L. 38), the thread
attempts to replace the value with an MCasHelper,
mch, that references cr (L. 21, L. 42).

If the thread failed to place mch it will use the returned
result of the CAS operation to re-evaluate the current
value at the address.

6

If a thread successfully places mch (L. 21, L. 42), it will
then attempt to associate cr with mch(L. 24, L. 35). If cr
is already associated with an MCasHelper, this indicates
that some other thread completed this MCAS operation,
and that mch should be removed (L. 25, L. 36, L. 46).
For example in Fig. 1, the MCasHelper at address Aj

does not match the value of the mch pointer in the
CasRow it references; this situation is examined in detail
in Section V-C.

If the number of times a thread has retried its operation
is equal to maxFail, then it will write its own MCAS
operation into a global array(L. 12). Other executing
threads are guaranteed to eventually see this operation,
and attempt to help complete it. Our association between
a CasRow and an MCasHelper ensures that an operation or
portion of an operation will not be repeated when multiple
threads attempt to complete it.

In the event a thread is delayed while helping a con-
flicting MCAS operation, then the thread will return to
its own operation. This addresses the scenario where the
dependecy between the current MCAS operation and the
thread’s own operation no longer exists.

We optimize the first time a thread calls
placeMCasHelper for an MCAS operation (L. 19)
to allow an MCasHelper to be associated with a CasRow
before placing the MCasHelper at an address. This
optimization is available only for the first CasRow when
the MCasDescriptor is not visible to other threads. This
further reduces the number of CAS operations needed by
one.

C. Algorithm 3 - Should Replace MCasHelper
This algorithm determines whether the logical value

of mch matches ev. First, it checks if either the
expectedValue or newValue of the CasRow referenced by
mch matches ev (L.2), if not it returns false. A thread
examining mch0 from Fig. 1 would compare ev to Ev0 and
Nv0.

Next, it calls helpComplete to ensure that the refer-
enced MCAS operation is no longer in progress and to
determine the result of the operation.

If the MCAS operation was successful and mch is asso-
ciated with its CasRow, then newValue is the logical value
of mch. Otherwise, expectedValue is the logical value of
mch. For example in Fig. 1, the logical value of mchi would
be Nvi and the logical value of mchz would be Evj .
A boolean is returned indicating if the logical value

matches ev (L.6,L.10).

D. Algorithm 4 - Help delayed thread
Before a thread attempts an operation, it checks one

other thread to see if that thread needs help completing
its operation. This check is performed by examining the
checkId position of the pendingOpTable (L. 2). Before
each check the thread will increment checkId by one. This
ensures that all positions in the table will be examined
after numThread calls to this function. This scheme is

Algorithm 3 shouldReplace void ∗ ev,MCasHelper ∗
mch, intrDepth
1: cr = mch->cr
2: if cr->expectedValue != ev && cr->newValue != ev then return

false
3: else
4: res=helpComplete(cr, rDepth+1)
5: if res && (cr->mch == mch) then
6: if (cr->newValue == ev) then return true
7: elsereturn false
8: end if
9: else
10: if cr->expectedValue == ev then return true
11: elsereturn false
12: end if
13: end if
14: end if

derived from the helping approach presented by Kogan et
al. in [11]. If a delayed operation is found, then the thread
invokes helpComplete before returning.

Algorithm 4 helpIfNeeded intrDepth
1: checkId=(checkId+1)%nThreads
2: cr=pendingOpTable[checkId]
3: if cr != null then
4: helpComplete(cr, 0)
5: end if

E. Algorithm 5 - Help another thread
This function allows a thread to help complete another

thread’s delayed MCAS operation.
In the event the recursive calls to helpComplete is

greater then the number of threads, then there must be
no dependency between this threads operation and the
operation it is currently helping. The thread will then
return back to its own operation, increment its failCount,
and attempt to acquire the address again.

The thread will first search for the last CasRow, lastRow,
of the MCasDescriptor, allowing it determine if the op-
eration has been completed or if it is still in progress.
This is done by iterating through each CasRow until an
end marker is reached, in our implementation it is a
CasRow with an address of 0x1. The thread repeatedly
calls placeMCasHelper until the operation is complete,
indicated by the lastRow holding a non-null value. Finally
it returns whether the operation was successful or if it
failed.
Algorithm 5 helpComplete CasRow ∗mcas, intrDepth
1: if rDepth > nThreads then
2: recursive return
3: end if
4: lastRow=cr
5: while lastRow->address != 0x1 do
6: lastRow++
7: end while
8: lastRow–
9: repeat
10: if lastRow->mch == 0x0 then
11: placeMCasHelper(mcas++, lastRow, false, rDepth)
12: if mcas->mch == ~0x0 then
13: break
14: end if
15: else
16: break
17: end if
18: until mcas == lastRow

return (lastRow->mch != ~0x0)

F. Algorithm 6- Remove MCasHelpers
This function removes the MCasHelper descriptors that

were placed during this MCAS operation. For each CasRow

7

in the MCasDescriptor, it attempts to replace the associ-
ated MCasHelper with its logical value. If the MCAS oper-
ation was successful, then each MCasHelper is replaced by
the newValue from its CasRow. Otherwise, it is replaced
by the expectedValue.

V. Correctness
A. Semantics

An MCAS operation is successful and subsequently
replaces the value at each address with a new value, if each
address matches the respective expected value. To provide
correctness, this must appear to happen atomically, such
that overlapping operations cannot read a new value at one
address and then read an old value at another address.
To guarantee this behavior we use linearizability as our
main correctness guarantee. Linearizability is a correctness
property that requires for each operation call to “appear
to take effect instantaneously at some moment between its
invocation and response” [9, p. 54]. If a class is composed of
linearizable functions, then a legal sequential history of ex-
ecutions can be derived from every concurrent execution.
In the derived sequential history, operations are ordered
according to the moment of time of their invocation
and response. Operations with overlapping invocation and
response events, are ordered according to their lineariza-
tion points. We show that concurrently executing MCAS
operations are linearizable.

Another property our algorithm provides is wait-
freedom, which is a progress condition that guarantees
that each operation completes in a finite number of steps.
This differs from lock-freedom, which guarantees that at
least one operation completes. Providing wait-free execu-
tion is important for systems where concurrency and real-
time response are critical. We show that our algorithm is
wait-free by determining the maximum number of steps it
takes for a function call to return. This upper bound is
derived from the known total number of threads and can
be fine-tuned by a user-defined threshold value.

Below we present a set of lemmas in support of our
hypothesis that our MCAS algorithm is linearizable, ABA-
free, and wait-free. We argue that in no case does our
design deviate from its intended behavior, each step of the
MCAS operation completes in a finite number of steps, and
that cases of ABA are avoided.

B. Linearizability
This section introduces a set of lemmas and theorems

that show our design is linearizable.

Lemma 1. After initialization an MCasDescriptor object
remains constant, except for the MCasHelper pointer in
each CasRow.

Lemma 2. Once an MCasHelper object is placed at an
address, its internal pointer is constant.

Lemma 3. The MCasHelper pointer word of a CasRow can
only transition from null to a non-null value.

Lemma 4. The first CasRow of an MCasDescriptor has
its MCasHelper pointer set before any other CasRow in the
MCasDescriptor and for i > 1, if the ith CasRow has its
MCasHelper pointer set, then the ith − 1 CasRow has its
MCasHelper pointer set.

These lemmas provide insight into how shared objects
are modified, by specifying the fields which are subject
to change and the operations performed on those fields.
Lemmas 1, 2, and 3 are supported by the semantics of the
algorithms presented in Sec. IV.

Each object is initialized6 while the object is thread-
local7 and modifications made after the object is no longer
thread-local are done through a CAS operation. The point
when an MCasDescriptor is no longer thread-local is when
the first MCasHelper for it has been placed at an address
or it is placed into the pendingOpTable. Specifically, lines
12, 21 and 42 from Alg. 2, are the updates used to
modify shared objects; the expected values of these CAS
operations are constant, such that after the first successful
CAS update, any further CAS operations will fail.

Lemma 5. The CasRow referenced by an MCasHelper
holds the value replaced by the MCasHelper,
expectedValue, and the value to replace the MCasHelper,
newValue, if the MCAS operation has succeeded.

Lemma 6. A thread can correctly determine whether to
use the expectedValue or newValue from a CasRow for
the logical value at an address holding an MCasHelper.

Theorem 1. Our MCAS algorithm is linearizable.

Lemma 5 is supported by Alg. 2 and Lemmas 1, 2.
Together they ensure that the MCasHelper has its ref-
erence set before being placed at the address, the refer-
ence does not change, and that the expectedValue and
newValue word of the CasRow remain constant. Addition-
ally, the CAS used to place the MCasHelper uses the
expectedValue word from that CasRow as the expected
value parameter, which guarantees that if the MCAS
operation failed, the MCasHelper can be replaced by the
value that it replaced.

To support Lemma 6, consider Alg. 3, where a thread
will identify from an MCasHelper, the CasRow it references
and the last CasRow of the operation. The MCAS opera-
tion is in progress until the last MCasHelper pointer of the
CasRow holds a non-null value.
To support Lemma 4, consider Alg. 1 and Alg. 5,

which iteratively call Alg. 2 on each CasRow in the
MCasDescriptor, with no method by which a CasRow can
be bypassed. If a thread encounters an MCasHelper, mch,
then to complete the MCAS operation it must iterate from
the CasRow referenced by the mch to the last CasRow of
the MCasDescriptor.

To support Theorem 1, we identify the linearization

6This requires a sequential consistent memory model
7An object is considered thread-local if only one thread holds a

reference to that object.

8

point of an MCAS operation, which is the CAS operation
that sets the MCasHelper pointer of the last CasRow. If the
MCasHelper pointer of the last CasRow is set then either, a
thread has set it to a failed marker (~0x0) or it references
an MCasHelper.
Lemma 4 shows that if the MCasHelper pointer of the

last CasRow references an MCasHelper then each CasRow in
the MCasDescriptor has acquired an address, meeting the
criteria for a successful MCAS. Lemmas 5 and 6 support
our claim of linearizability by showing that if an address
holds an MCasHelper then the determined logical value of
that object is linearizable.
Any thread that determined a logical value of an

MCasHelper, can be ordered before or after the MCAS
operation based on the value read from the last CasRow.
Additionally, if two MCAS operations have overlapping
addresses, then they are ordered based on which opera-
tion acquires the lowest common address first. The other
operation will be forced to help complete this operation
before it retries to acquire the address.
If a thread is accessing an address that has been ac-

quired by an MCAS operation, then the logical value at
the address is determined as follows:
• If the operation is in progress , then expected value

is the logical value of the address.
• If the operation successfully completed, then the new

value of the CasRow is the logical value only if the
CasRow is associated with that MCasHelper.

• Otherwise, the operation failed or the CasRow is asso-
ciated with a different MCasHelper8, and the expected
value of the CasRow is the logical value.

C. The ABA Problem
This section presents an informal reasoning about the

ABA problem and how it applies to MCAS algorithms in
general. Here, we argue that if a thread helps to complete
another thread’s MCAS operation, then this does not
introduce undesired behavior as a result of thread delay
or the ABA problem. In contrast to the designs presented
by Harris et al. and Sundell, our design places references
to MCasHelper objects at addresses instead of references
directly to a CasRow or MCasDescriptor. In the aforemen-
tioned designs, there must be a mechanism to distinguish
between a referenced placed during the operation and one
placed after the operation has been completed.
Fig. 2 and 3 presents an example of the ABA problem

occurring when a thread helps bring another thread’s
MCAS operation to completion without a mechanism to
prevent ABA. Fig. 3 presents the expected history of
values and the history of values when ABA occurs on
address ai.
In this example the calling application intended for the

value at the address to transition from Evi to Nvi, and
back to Evi. The execution history of an ABA prone
MCAS algorithm, changes the intended behavior of the
calling application by introducing a second transition

8See Section V-C for details

Fig. 2: Example of ABA

T: 0 1 2 ... t t+1 t+2
Expected: Evi mcas Nvi ... Evi Evi Evi
ABA: Evi mcas Nvi ... Evi mcas Nvi

Fig. 3: History of values at ai

from Evi to Nvi. This incorrect transition can introduce
hard to detect bugs in the application, underscoring the
importance of ABA freedom.

The approach presented by Harris et al. describes a
“double compare, single swap” algorithm that prevents the
ABA problem, but requires explicit memory barriers and
additional memory management. Sundell made no claims
of ABA freedom, and using the presented example, it can
be shown his design is prone to ABA. Our design avoids
this issue by placing a references MCasHelper objects in-
stead of MCasDescriptor objects. To distinguish between
an MCasHelper placed during the operation and one place
after, an association is made between a CasRow and an
MCasHelper.

Theorem 2. The presented algorithm is ABA free.

If a thread determines it must help complete another
thread’s MCAS operation in order to make progress with
its own, then it will attempt to acquire the rest of the
addresses for that MCAS operation. From Lemma 4, the
thread is aware that all previous addresses have been
acquired and from Lemma 3, if an address has already
been acquired, it cannot be re-acquired after the operation
has been completed. If a thread places an MCasHelper at
an address for a CasRow that is already associated with
an MCasHelper, then, by Lemma 3, it will fail to associate
the CasRow with its MCasHelper. This failure will cause the
MCasHelper to be replaced by the expectedValue word of
the CasRow.
The ABA problem can also occur if shared objects are

incorrectly reused; to prevent this, a memory management
scheme, such as hazard points [14] or reference-counting [5]
must be used.

In testing, we used a reference-counting scheme to en-
sure that objects are not referenced by another thread
before they are reused. When a thread reads a reference to
an object, it will increment that object’s reference count
and then perform a second read to ensure that the contents
of the address read have not changed. If they have, then
the reference count is decremented, and the process is
repeated until it is successful. In our implementation, if

9

the value of the address changes, then this causes the
failCount to be incremented and the new value of the
address is examined. This does not effect the wait-free
progress guarantee our algorithm provides.

D. Progress Guarantee

This section supports our claim that the presented
algorithm is wait-free by describing the maximum number
of steps our design takes to complete an MCAS operation.
We start by showing our design is lock-free, then examine
the case where a thread must retry its operation, and
derive an upper bound on the number of steps to complete
an operation.

Lemma 7. Addresses in an MCAS operation are finite
and sorted in a descending order.

Theorem 3. Our design is lock-free

To prove our algorithm is lock-free we start with the
following observations: From Lemma 7, if each address
could be acquired in a finite number of steps, then the
MCAS operation completes in a finite number of steps.
Addresses are sorted in a descending order, which prevents
possibility of cyclical dependency of MCAS operations and
places a physical bound on length of recursive helping.
Further the depth of recursive helping can be limited to
the number of threads, as this implies that the dependency
between the threads own operation the ones it is helping
have changed.

If a thread successfully acquires an address, then that
thread has made progress toward completing its operation.
If A is the number of acquired addresses and M the
number of addresses in the operation, then there are M
- A addresses left to acquire.

If the thread failed to acquire an address, then this
implies another thread may have made progress toward
completing its operation. If the result of the failed CAS
returned another thread’s MCasHelper, then that other
thread made progress. If the value was not an MCasHelper,
progress is determined by the result of the next CAS
operation. Suppose that this subsequent CAS also failed
and returned a non-MCasHelper, then there must have
been some intermediate MCasHelper at the address; the
thread that placed the intermediate MCasHelper made
progress.

If an address holds an MCasHelper whose MCAS oper-
ation is in progress, than from Alg. 5, the thread will be
able to complete that operation, allowing it to attempt to
acquire the address. Failing to acquire an address, implies
that another thread has made progress in its operation
and that no value can prevent a thread from attempting
to acquire an address, which supports our claim of lock-
freedom 3. To show our algorithm is wait-free, we examine
the case where a thread fails to acquire an address. If the
result of a failed CAS matches the expected value, then
the thread must retry. Otherwise, the MCAS operation
can be allowed to return false.

Lemma 8. The helping scheme ensures a thread cannot
be indefinitely being prevented from acquiring an address.

Lemma 9. The maximum number of attempts to acquire
an address is equal to maxFail + nThreads2.

Theorem 4. The presented algorithm is wait-free.

To limit the number of times a thread must re-attempt
to acquire an address, we use an announcement scheme [8],
to indicate that a thread has been delayed. If the number
of attempts to acquire and address is equal to maxFail,
a user defined constant, then then thread will make an
announcement indicating that it is delayed. From Alg. 4,
before beginning an MCAS operation, each thread checks
another thread for such an announcement, helping com-
plete an operation if necessary. In the worst case, each
other thread will have just checked the delayed thread
and found that it did not need help. Allowing each of
them to complete nThreads more MCAS operations before
checking that thread again, Lemma 9.

Together, Lemma 9 and Theorem 3 shows that a thread
can acquire all addresses in an MCAS operation, thus
completing it, in a finite number of steps by ensuring
that if a thread is continually prevented from acquiring an
address, then the threads that are preventing it will help
that thread complete its operation when they observe a
delayed thread, Theorem 4.

VI. Performance Evaluation
In this section, we evaluate the scalability and perfor-

mance of our algorithm and compare it with the the lock-
free MCAS (LFMCAS) presented by Harris et al. Unfor-
tunately, when tested, Sundell’s wait-free MCAS exhib-
ited behavior that produced inconsistencies in the testing
methodology, invalidating the test results. All implemen-
tations were provided by their respective authors [20],
[7]. In our experimental evaluation, we employ a micro-
benchmark to simulate the effect that high contention
has on scalability and performance. This micro-benchmark
consisted of a tight loop in which the value of each word in
a multi-word object is read, then using MCAS atomically
incremented by a constant. To explore the case where
there is a high degree of parallelism but a low degree
of contention in the system, we implemented an MCAS-
based sorted double-linked list. The design uses a four
word long MCAS operation to atomically insert or remove
values. The performance evaluation of both benchmarks
are presented below. All tests are conducted on a 64-core
ThinkMate RAX QS5-4410 server running Ubuntu 12.04
LTS. It is a NUMA system with four AMD Opteron 6272
CPUs (16 cores per chip @2.1 GHz) and 314 GB of shared
memory. All executables were compiled with GCC 4.7
(with the option -std=c++0x to enable C++ 11 support).

A. Testing Methodology
For each benchmark and MCAS algorithm tested, a

separate executable file was generated. In each benchmark,
a main thread initialized all global values and created a

10

set of worker threads. When each worker thread is ready,
the main thread signals them to begin execution. After
sleeping for a specified amount of time, the main thread
signals the end of execution. The sum of the total number
of operations completed by each thread was logged and
the average of fifteen runs is used in the following graphs.

B. Benchmark: Multi-word object
In the multi-word object benchmark each thread repeat-

edly tries to increment the value of each word in the object
by 169. This is accomplished by performing an MCAS
read operation 10 on each word of the object, then calling
MCAS to replace the values read with the new values cal-
culated. Our performance metric for this test was the total
number of MCAS operations completed by all threads
during execution. Our evaluation includes measuring the
effect that the number of executing threads and the size
of of the multi-word object has on performance.

Fig. 4 presents a set of representative graphs based on
our first benchmark. Graphs 4a, 4b, and 4c depict the
effects of increasing the number of threads updating a
shared multi-word object. The performance results show
that, in this scenario, on average the WFMCAS performs
10% more operations per second when compared to the
LFMCAS. When the number of threads is 16, on average
the WFMCAS performs 35.4% more operations per sec-
ond. Increasing the number of threads to 32 and 64, we
perform 50.3% and 77.1%, respectively, more operations
than the LFMCAS.

Not only does our design achieve a higher throughput
of operations than the LFMCAS, but it also provides a
stronger guarantee of progress, wait-freedom. We attribute
the difference in performance to how we manage the ABA
problem; where the LFMCAS uses auxiliary data struc-
tures and memory barriers, our design uses an association.
This association allows us to reduce the number of CAS
operations required by our algorithm to 3M-1, while the
LFMCAS requires 3M+1 CAS operations in addition to
depending on memory barriers for correctness.

Graph 4d presents the effect on performance of in-
creasing the number of words in the object while keeping
the number of executing threads at 64. In this graph,
WFMCAS performs on average 67.8% more operations
than the LFMCAS, indicating our design scales better
than the LFMCAS, as the size of the MCAS operation
increases.

For MCAS operations on a large number of addresses,
the LFMCAS helping scheme requires a thread to load
each address in the operation to determine if it holds
a reference to the operation. Depending on where these
addresses are located, this may generate a large number of
cache misses. Our WFMCAS design’s association between
CasRow and MCASHelper objects enables a thread to iterate

9Incrementing by 16 ensures that the two least significant bits are
always 0.

10An MCAS read function is designed to return the logical value
of a descriptor object that may be at an address.

through the MCAS operation instead of loading each
address, to determine if an address has been acquired or
not.

These graphs revealed that as the number of threads
grows, the number of completed MCAS operations per-
formed by both algorithms decreases. This decrease in
performance is a result of the CAS operation that these
algorithms are built on. Unlike atomic reads and writes,
the CAS operation provides an infinite consensus number
[8]. This allows effective interprocess coordination and
enables a developer to correctly reason about the value
of an address before and after the operation is applied.

The CAS operation is often implemented in hardware
using techniques that lock the memory bus, creating a
bottleneck when threads access or modify memory.

The following benchmark explores the case where the
contention on each memory word is lower and the amount
of work done outside of the MCAS algorithm is higher
than in the previous benchmark.

C. Sorted-Double Linked List
In the sorted double-linked list (SDLL) benchmark, each

thread repeatedly tries to insert and delete elements from
the data structure. The probability of a thread performing
an insert operation was varied between 25% and 100%.
Each thread randomly generates two integers; the first
is used to select whether to perform an insert or delete
operation, and the second is used as the operand of the
selected operation.

To perform an insert or delete operation, a thread will
linearly search the queue for a value that is greater than
or equal to the specified value. Then using a four-word-
long MCAS operation attempt to apply its operation. For
example, when inserting node between parent and child,
an MCAS operation will be invoked to change the parent-
>next to node, child->previous to node, node->previous to
parent, and node->previous to child.
This design uses a four word long MCAS operation

along with the announcement scheme described earlier to
provide a wait-free progress guarantee, if the underlying
MCAS operation is also wait-free.

In contrast to the first benchmark, which performed
minimal work between calls to the MCAS operation, this
benchmark generates two random values and then per-
forms a linear search on the data structure. This reduces
the impact that the MCAS algorithm has on performance.
Additionally, this benchmark distributes the synchroniza-
tion across various regions of memory, as opposed to the
first benchmark where synchronization is performed on a
single region of memory.

Our experiments revealed that varying the ratio of
insert to remove operations had minimal effect on the
overall scalability of the SDLL; graphs 5a and 5b are
representative of our experiments. The graphs show that
as the number of threads increases, both implementations
scale equally well and on average, over all tests, the
WFMCAS performs 2% more operations per second than

11

(a)
MWORDS:
2

(b)
MWORDS:
8

(c)
MWORDS:
32

(d)
Threads:
64

Fig. 4: Multi-word Test Results (log scale)

(a)
50%
In-
ser-
tion,
50%
Dele-
tion

(b)
100%
In-
ser-
tion,
0%
Dele-
tion

Fig. 5: Sorted-Double Linked List

the LFMCAS. An explanation for the lack of significant
speedup in SDLL, can be found by examining the run
time of the application with respect to Amdahl’s law [1].
The cost of performing the MCAS operation is eclipsed by
both the random number generation and the O(n) search
performed on the list. When the list is even moderately
long, 84% of the execution time is spent searching it. These
benchmarks revealed that when implemented in a practical
data structure, not only does our design allow the data
structure designer to use MCAS a wait-free approach, but
they can do so without having to sacrifice performance.

VII. Acknowledgements
Sandia National Laboratories is a multiprogram labora-

tory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s
National Nuclear Security Administration under contract
DE-AC04- 94AL85000.

VIII. Conclusion and Future Work
In conclusion, we presented the first multi-word

compare-and-swap algorithm that is ABA-free and wait-
free in all scenarios of execution. It provides 77.1% im-
proved performance in scenarios of high contention and
comparable performance to other approaches all other
scenarios of execution. We presented an MCAS based
sorted double linked list algorithm, that behaves in a
wait-free manner with the presented MCAS algorithm,
and degrades to lock-free when using other approaches. In
contrast to other practical designs which requires two bits

to be reserved from each word, our design requires a single
bit, making it practical for a wider range of applications.
We supported these claims of wait-freedom, ABA-freedom,
and improved performance, with an informal proof and a
series of benchmark tests.

References

[1] G. M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of
the April 18-20, 1967, spring joint computer conference, AFIPS
’67 (Spring), pages 483–485, New York, NY, 1967. ACM.

[2] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time
computing with lock-free shared objects. ACM Trans. Comput.
Syst., 15(2):134–165, May 1997.

[3] H. Attiya and E. Hillel. Highly concurrent multi-word syn-
chronization. Theor. Comput. Sci., 412(12-14):1243–1262, Mar.
2011.

[4] G. Barnes. A method for implementing lock-free shared-data
structures. In Proceedings of the fifth annual ACM symposium
on Parallel algorithms and architectures, SPAA ’93, pages 261–
270, New York, NY, USA, 1993. ACM.

[5] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele, Jr. Lock-
free reference counting. In Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing, PODC
’01, pages 190–199, New York, NY, USA, 2001. ACM.

[6] K. Fraser and T. Harris. Concurrent programming without
locks. ACM Trans. Comput. Syst., 25(2), 2007.

[7] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-
word compare-and-swap operation. In Proceedings of the 16th
International Conference on Distributed Computing, DISC ’02,
pages 265–279, London, UK, UK, 2002. Springer-Verlag.

[8] M. Herlihy. A methodology for implementing highly concurrent
data objects. ACM Trans. Program. Lang. Syst., 15(5):745–770,
Nov. 1993.

[9] M. Herlihy. The art of multiprocessor programming. Elsevier/-
Morgan Kaufmann, Amsterdam London, 2008.

[10] A. Israeli and L. Rappoport. Disjoint-access-parallel implemen-
tations of strong shared memory primitives. In Proceedings
of the thirteenth annual ACM symposium on Principles of
distributed computing, PODC ’94, pages 151–160, New York,
NY. ACM.

[11] A. Kogan and E. Petrank. A methodology for creating fast wait-
free data structures. SIGPLAN Not., 47(8):141–150, Feb. 2012.

[12] Y. Liu and M. Spear. A lock-free, array-based priority queue.
SIGPLAN Not., 47(8):323–324, Feb. 2012.

[13] F. Meawad, M. Schoeberl, K. Iyer, and J. Vitek. Real-time
wait-free queues using micro-transactions. In Proceedings of the
9th International Workshop on Java Technologies for Real-Time
and Embedded Systems, JTRES ’11, pages 1–10, New York, NY,
USA, 2011. ACM.

[14] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Trans. Parallel Distrib. Syst.,
15(6):491–504, June 2004.

[15] M. Moir. Transparent support for wait-free transactions. In
Proceedings of the 11th International Workshop on Distributed
Algorithms, WDAG ’97, pages 305–319, London, UK, UK, 1997.
Springer-Verlag.

12

[16] C. Purcell and T. Harris. Non-blocking hashtables with open
addressing. In Proceedings of the 19th international conference
on Distributed Computing, DISC’05, pages 108–121, Berlin,
Heidelberg, 2005. Springer-Verlag.

[17] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. Mcrt-stm: a high performance software transac-
tional memory system for a multi-core runtime. In Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’06, pages 187–197,
New York, NY, USA, 2006. ACM.

[18] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing
technology challenges. In Proceedings of the 9th international
conference on High performance computing for computational
science, VECPAR’10, pages 1–25, Berlin, Heidelberg, 2011.
Springer-Verlag.

[19] D. D. Steven Feldman, Pierre LaBorde. Concurrent multi-level
arrays: Wait-free extensible hash maps. In International Confer-
ence on Embedded Computer Systems: Architectures, Modeling
and Simulation, pages 155 – 163, July 2013.

[20] H. Sundell. Wait-free multi-word compare-and-swap using
greedy helping and grabbing. International Journal of Parallel
Programming, 39:694–716, 2011. 10.1007/s10766-011-0167-4.

[21] S. Timnat, A. Braginsky, A. Kogan, and E. Petrank. Wait-free
linked-lists. SIGPLAN Not., 47(8):309–310, Feb. 2012.

