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Ferroelectric thin films
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ZnO Adhesion layers

Pb(Zr,Ti)O3 integration

BaTiO3 thin films



Ferroelectric thin films

Many commercial and emerging 
uses:

 FE-RAM

 Piezoelectric actuators and sensors

 High-k dielectrics for energy storage

 MEMS

Functional PZT-based 
multilayer capacitor 
structures

PZT-MEMs Piezo 
Cantilever Beam for 
Energy Harvesting

Brennecka, et al, J. Mat. Res., (2008)



Substrates

Most common substrate for oxide 
thin film synthesis is platinized
silicon:
• <100> or <111> Silicon wafer

• 400 – 500 nm thermal SiO2

• 20 – 40 nm adhesion layer: commonly 
Ti or TiO2

• 100 – 200 nm Pt

Platinum is an obvious choice for 
bottom electrode:
• High Schottky barrier height = low 
leakage current

• High-temperature oxidation resistant

• Inert – will not react with deposited 
film 

Si wafer

Thermal SiO2

Adhesion layer

Platinum

Oxide thin film



Substrates

The adhesion layer is typically the 
weakest link:

• Ti diffusion into Pt and oxidization

 High compressive stress in Pt > 
hillocking

Oxidize the adhesion layer?

• Reactions with silicon substrate

• Phase transitions = stress

Nam et al., Thin Solid Films , (2000)



Alternative adhesion layers

Replace Ti with more robust adhesion layer:

• Zr or ZrO2 – Al Shareef, H.N. et al J. Mat. Res. 12 (1997) 347; Zohni, O. et al. Thin 
Solid Films 516 (2008) 6052

• Ta - Klissurska, R. et al. Microelectronic Engineering 29 (1995) 297

• Al2O3 – Halder, S. et al. Appl. Phys. A 87, 705 (2007)

 Al2O3 is an excellent high temperature adhesion layer – stable to 1000 °C

Can we do better?



ZnO

Substrate Contact angle (°) Wa (J/m2)

Al2O3 133 ± 6 0.480 ± 0.142

ZnO 62 ± 5 2.012 ± 0.097

Molten Cu on Al2O3 Molten Cu on ZnO

Laughlin, B. Ph.D. thesis, NCSU 2006

Previous work has shown Cu wet ZnO very well:

• Wa is work of adhesion and defines energy required to separate materials of 
interest

• Determined experimentally from sessile drop tests

 Cu is non-wetting on Al2O3 (contact angle > 90°) and wetting on ZnO
(contact angle < 90°) 

Can we use ZnO as an adhesion layer for Pt?

• Cu and Pt both Fm-3m metals



ZnO

Pt/ZnO should provide a:

• Non reactive substrate,

• High temperature

With:

• Smoother interfaces

• No hillocking or delamination

Resulting in:

• Ferroelectric oxide films with superior dielectric properties



ZnO buffered Pt/Si

RF sputter ZnO and Pt on commercially available 400 nm thermal 
oxide wafers

Prepare Ti and TiOx buffered platinized silicon for comparison

• RF sputter 40 nm Ti metal

• Oxidize in 15 mTorr flowing O2 at 450 °C 

What happens to the substrate during thermal processing?

ZnO buffer layer

RF power 150 W

Pressure 5 mTorr

Gas 50/50 Ar/O2

Thickness 40 nm

Pt electrode

RF power 300 W

Pressure 3 mTorr

Gas Pure Ar

Thickness 100 nm



ZnO buffered Pt/Si vs temperature



ZnO buffered Pt/Si cross-section



Surface roughness of Platinized Si

RMS roughness of Pt/ZnO is 
lower for all temperatures

• Smoother interface

How do ferroelectric thin films 
perform on Pt / ZnO?



SNL IMO-based Solution Route

R.A. Assink and R.W. Schwartz; 
Chem. Mater. (1993)

G. Yi and M. Sayer;
J. Appl. Phys. (1988)

Zr(OBu)4·BuOH + Ti(OiPr)4

Blend 5 min

Acetic Acid / Methanol
Chelating agent / Solvent

Spin Coat Deposition
4000rpm/30sec

Pyrolysis

Crystallization

Acetic Acid / Methanol
Adjust Molarity

Pb(OAc)4 + La(OAc)3·H2O
Dissolve at ~90°C

multiple 
depositions

Sputter Pt Electrodes

Spin Deposition

Si

Pt

Si

Pt

Si

Pt

Si

Pt

h
e
a
ti
n
g

Deposited 
solution

Amorphous 
gel
~100-300 ºC

Intermediate 
flourite
~400-500 °C

Perovskite
~500-700 °C



PZT Texture

 PZT grows polycrystalline under 
these conditions - regardless of 
substrate



Surface topography

A flourite second phase commonly occurs in PZT on Pt/Ti that dilutes 
permittivity

PZT deposited on Pt/ZnO produces dense columnar microstructure 
with no evidence of flourite



Dielectric and Ferroelectric properties

Low field dielectric properties – 100 mV, 1kHz

• Films on Pt/ZnO substrates have higher permittivity

Polarization – field measurements – 10 Hz 



Ferroelectric properties

Pmax 

(μC/cm2)
Pr 

(μC/cm2)
Ec 

(kV/cm)

Pt/Ti 61.5 23.8 47.0

Pt/TiOx
68.2 27.0 44.1

Pt/ZnO 75.3 32.2 43.8



Pt/ZnO as a high temperature substrate

 ZnO buffered Pt/Si is robust enough to withstand process temps in excess of 1000 ºC

 Ideal candidate for materials previously best grown on single crystals:

• BaTiO3 

• (Ba,Sr)TiO3

Pt/Ti Pt/ZnO

1000 ºC



CSD BaTiO3 on Platinized Si

Ti(OiPr)4 + 2,4 pentanedione
1:2 molar ratio

Ba-acetate + propionic acid
Dissolve salt

Spin Coat Deposition
3000rpm/30sec

Dry ~ 250 ºC

Fire 900 ºC

Dilute in MeOH
0.15 M

Combine equimolar amounts
Ba and Ti solution

3 layers

Repeat 3x

Sputter Pt Electrodes



Topography and microstructure



BaTiO3 C-T by substrate

 Reduced porosity + larger grain size 
in films on Pt/ZnO = Higher 
permittivity

• Comparable to high quality - fiber 
textured BT films (Hoffman and 
Waser; J. Eur. Cer. Soc. 19, 
(1999) 1339)

• 3x comparable thickness MOCVD 
BST films (Parker et. al.; APL 81 
(2002) 340)

 Temperature of max r is lower than 
for bulk BaTiO3

• Possible ZnO doping? 

• Thickness effect? Film is only 175 
nm thick



Summary

ZnO buffered Pt/Si may be a significant upgrade to Pt/Si with 
Ti adhesion layers:

• Smoother oxide/electrode interfaces

• Higher k

• Better ferroelectric properties

Future uses:

• Fatigue resistant films

• High temperature processing of other oxide systems  


