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Sandia and Nanophotonics
Sandia Meta S&T 3D Metal MMs 3D Dielectric MMs Elect. Tunable MMs Conclusions

• Sandia (not “watermelon” national 
lab DOE): national security, energy, 

Sandia Peak

& infrastructure technologies:                
~ 8000 staff,  $2B/year, 6 locations

• Large investments in Rad -Hard• Large investments in Rad.-Hard 
CMOS and Nanofab at Sandia 

• Production R&D rigor applied to Taos Ski Valley

nanophotonics can rapidly develop 
science and applications

• Nanophotonic technologies are p g
poised to have major impacts on 
energy, sensing, information 
processing and communication
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processing, and communication
applications



Sandia Optical Metamaterials “Landscape”
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p p
• Strong links to our fundamental Nanoscience programs
• Good leverage of our Modeling/High Performance Computing, Materials, 

NanoFab, and Test capabilities
• Many hypothetical applications in Energy, Sensing, & National Security

BUTBUTBUT…..BUT…..
• Critical challenges in both tech fundamentals (theory, loss, bandwidth), and 

tech adoption (application engineering, design & manufacturing 
infrastructure)infrastructure)

• Sandia systems groups (and others) want specific & compelling application 
advantages, they don’t care what the technology is called 

• MST research program  addressing sci & tech fundamentals (not app) 
impedancp g g ( pp)

• Advice of internal and external Advisory Boards:
– develop “proxy apps” survey
– specific impact and requirements (compare to current SOA) -1
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– Flow-down to specifics , , & tunability requirements
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Metamaterial Science & Technology Program
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•<0.1 db/wave low loss
•“perfect” absorption/emission structures

loss
theory

&
modeling

fabrication
&

testing

Metamaterials

engr. modeling
•loss fundamentals
•MPP HPC design environment
•full anisotropic optimization

•DUVL, EBL, PnP, NIL
•spectroscopic phase meas.

3D
IR 
8-12 m university

partners

•volumetric energy flow, large area
•multiple directions & polarizations

• thermal IR
• limits to shorter- materials

science
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multiple di ections & pola izationsscience

•dielectrics/composites/alloys
•low-n polymer 3D matrix materials



The MST Team
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Design:
L i B ili

Materials:
•Paul Clem

Fabrication:
•Igal Brener

Mike Sinclair, PI Rick McCormick, PM

•Lori Basilio
•Larry Warne
•Dave Peters
•William Langston

Paul Clem
•Shawn Dirk
•James Carroll
•Jon Ihlefeld

Igal Brener
•Bruce Burckel
•Greg Ten-Eyck
•Joel Wendt•William Langston

•Jacques Loui
•William Johnson
•Ihab El-Kady

f
•Alex Lee •James Ginn

•Eric Shaner
•Brandon Passmorey

•Paul Davids
•Jonathon Hu

•Daniel Bender
•Rob Ellis
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Linda Wood, Administration

Mark Lee



Where do we see opportunities for MMs?Where do we see opportunities for MMs?
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• Infrared!

• Wavefront Control and engineering, dispersion managementg g, p g

• Lightweight IR optics using transformation optics (i.e., large FOV)

• Sub‐ Field Concentration (ex: lead to smaller, less noisy FPA 
pixels)

• Absorption / Emission engineering
• Thermophotovoltaic (TPV) micro‐power generationp ( ) p g

• IR projectors: scene generation & calibration

• IR DOS engineering (efficient LEDs, better PV cells)

• Passive/Active thermal control (satellite)

• Camouflage

(ex: =0 metamaterial)

• Camouflage

• Agile/tunable Metamaterials: 
• dynamic filters

• limiters
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limiters

• phase & amplitude modulators



Status of Metamaterial Applications
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RF Metamaterials are starting to appear in commercial products 
(usually in antenna applications)

Netgear RangeMax wireless routerLG Electronics Chocolate BL40 

Optical Metamaterials face significant challenges:
Optical losses must be reduced at least 100x for many applications

• dielectric resonator based metamaterials (Sandia Labs & others)dielectric resonator based metamaterials (Sandia Labs & others)
• other metamaterial groups are pursuing gain-enhanced metamaterials

Difficult to achieve unit cell sizes much smaller than the wavelength

 3D isotropic metamaterials difficult to fabricate at shorter wavelengths 3D isotropic metamaterials difficult to fabricate at shorter wavelengths
• Membrane projection lithography (Sandia Labs)

 Bandwidth must be increased (1% to 5-10%)
• researchers now pursuing non-resonant -only metamaterials for broadband transformation optics 

designs (full circle back to artificial dielectrics)
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designs (full circle back to artificial dielectrics)

 Active tuning and modulation methods must be developed
• integration of active materials in metamaterials is a hot topic 



Optical Metamaterials Demonstrations?
(more difficult at optical frequencies)
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Clever ideas, rapid progress, but demos are much less mature:
– 2D: IR “Nantennae”: FPAs, SERS substrates/sensors

(more difficult at optical frequencies)

,
• Promising  -- some commercialization

– 2.5D Negative Index Perfect / Super / Hyper Lenses
• But high loss, narrowband, anisotropic

– 2D & 3D “Carpet cloaks”
• GRIN with  “effective index” > 1

Why limited demonstrations? Need a new “Engineering Infrastructure”:  

To enable a wide application space, we need:
• Low loss (reduce from 100 dB/ to 0.1 dB/

y g g
 theory, design, simulation, materials, fab, & test

Low loss (reduce from 100 dB/ to 0.1 dB/
• Isotropic materials (metamaterials not “metafilms”)
• Wider bandwidth (1% to 5-10%)
• 3D structural integration, conformal integration
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• Tunable, dynamic metamaterials

What is Sandia doing?



Challenges Associated with LWIR Metamaterials 
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• Infrared optical properties of component materials can present 
problems

metal conductivity– metal conductivity 
• ohmic losses limit metamaterial performance
• can’t use PEC limit
• fine mesh required for convergencefine mesh required for convergence 

– IR transparent substrate materials
• GaAs, Si: high- materials, oxide layers
• BaF2: low thermal conductivity, fragile

– transparency of IR matrix materials
• absorptions can complicate & degrade performance
• processibility of IR matrix materials

• Unit cell size not <<  for metals or DRs
– significant radiation resistance for metafilms
– spatial dispersion

FBM, fbmccor@sandia.gov 9

• Lithography more forgiving than for visible metamaterials, but  …
– how do we make fully 3D structures?? 



What Applications?
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What optical  functions can metamaterials perform?

1. Wavefront Control and engineering
2. Sub-Field Concentration
3. Absorption / Emission engineering
4. Active Tunability for 1-3

Absorption / Emission 
engineering

• Thermophotovoltaic (TPV) micro-power 
generation
IR j i & PV C ll

Micro-TPV

• IR projectors: scene generation & 
calibration

• Low power IR spectroscopy
• IR DOS engineering (efficient LEDs, better 

PV ll )

1.5 m

0.75 m

0.5 m

1.5 m

0.75 m

0.5 m

PV Cell 

Heat Source 

Photonic Crystal 
Emitter (~3x effic.)
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PV cells)
• Passive/Active thermal control (satellite)
• Camouflage

MEMS Thermal Insulation 



Past Sandia Research: PARC
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• Sandia has previously developed an 
all-angle absorber based on a slot-
loop FSSloop FSS
– Gold trace above a 1.71 μm silicon nitride thin film
– Absorption occurs in the nitride layer
– Near unity absorption
– Largely angularly independent

Patterned Metal

Optically thin  lossy dielectric
Metal Incident IR radiationLargely angularly independent

• Compact nature of surface waves 
leads to efficient absorption in a 
small volume.

Metal

d

High-intensity 
surface waveMeasured 

Reflectivity
RCWA

Reflectivity

active 
material

patterned 
gold
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D. Peters, et al., Sandia Report, SAND2009-6012 (2009).

AlCu



3D MMs: Membrane Projection Lithography: MPL 3D MMs: Membrane Projection Lithography: MPL 
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Create
Cavity

Backfill/
Planarize

Directional
Evaporation

Starting
Substrate

Goal: achieve this at Cavity
Directional
Evaporationoptical frequencies

Deposit 
MembraneRemove

Membrane

Pattern 

Dissolve Out
Backfill

• Out‐of‐plane resonators
• Planar lithography
• Many patterns possible

Membrane

Directional
Evaporation

• Many patterns possible
• Cavity geometry independent
of resonator pattern

• Scalable
• Layer‐by‐layer   3‐D
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Directional
Evaporation

Directional
Evaporation

D. Bruce Burckel



Cubic 3D Metamaterials via MPLCubic 3D Metamaterials via MPL
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 i ll i i i h
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Unit Cell Dimension = 14 m pitch
SRR Dimension = 8 m
Resonance wavelength ~ 50 m

Unit Cell Dimension = 6 m pitch
SRR Dimension = 3 m
Resonance wavelength ~ 22 m



Route to Multilayer 3D Route to Multilayer 3D MaterialsMaterials
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Backfill and repeat 
the single layer 

process flow
SU‐8

SU‐8

Membrane projection lithography is a promising route for fabrication of IR 
selective absorbers and emitters.
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Another path: non‐resonant metallic inclusions. 
Avoids loss issues and only controls (with Smith, 

Duke)



3D Metamaterials via MPL
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Proof of concept demonstration

Cubic resonators --- 14 m pitch
 /A S d d b
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Ti/Au SRRs on 4 sides and bottom 
Resonance wavelength ~ 40 m



MPL enables a rich variety of 3-D metamaterials 
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3‐D Array of
2‐D SRRs

Cylindrical

2‐D SRRs

Spherical

3‐D Array of
3‐D SRRs

3‐D Array of
Planar SRRs
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Beyond Homogeneous Metamaterials:
Direct Fabrication of IR Metamaterial Devices
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Direct Fabrication of IR Metamaterial Devices

MPL Fab Route for Schurig’s cloak
•MPL is not restricted to rectangular geometries
•Multilayer devices possible

h l kSchurig’s RF Cloak

Shutter

Shutter

Patterned
MembraneRings

Side View
Shutter

Patterned
Membrane

Outer Ring
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1st Evaporation 1 Rotation
2nd Evaporation

Final Result



Cubic SRR Metamaterial Operating at 22 mm
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p g
SU8 boxes, Ti/Au resonators (10/50 nm)
Box Pitch = 6 m
Wall thickness = 1 m
SRR side length = 3 m
Resonators deposited on 1 wall, or 4 walls and bottom
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Polarized Transmission of Magnetically Excited SRR Array
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magnetic 
resonance

electric 
resonance

S-polarization
•B-field excites lowest SRR resonance --- magnetic excitation
•E field excites second order resonance electric excitation
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•E-field excites second order resonance --- electric excitation
P-polarization

•can’t couple to any SRR resonances



Predicted permeability: bulk array with SRRs on single wall
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Bulk Magnetic Permeability

Analytic Circuit Model (L. Warne)
•Inductance (Grover)
•Internal impedance 1.5

2.0

Curves use strip impedance

Model includes magnetic moment only

To achieve larger  response:
•higher Q resonators
•increase packing fraction

•Capacitance (Schelkunoff, King)
•Dielectric half space
•Substrate effects
•Magnetic excitation 
•Dipole moments (Tretyakov Schelkunoff)

1.0
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p g f

Dipole moments (Tretyakov, Schelkunoff)
•Radiation from surface (Kuester, Simovski)
•Effective media

Full Wave Models
•CST, HFSS, RCWA, EIGER
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R
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What Applications?
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What optical  functions can metamaterials perform?

1. Wavefront Control and engineering
2. Sub-Field Concentration
3. Absorption / Emission engineering
4. Active Tunability for 1-3

Wavefront Control:
•Conformal optics: air framesConformal optics: air frames, 
missile seekers

•Automobile headlights & backup 
cameras

•Computational/Compressive 
imaging 

•Novel illuminators
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www.optics-online.com/Profile/technology.asp#TailoredSecurity



Lower Loss: Dielectric Resonator Metamaterials
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i l i S h  i i

Electromagnetic scattering by arrays of high- resonators can 
lead to low loss electric and magnetic metamaterials.

Dielectric Spheres Mie scattering
• electric & magnetic dipole resonances
• occur at different frequencies

Array of resonators in a host matrix:Array of resonators in a host matrix:
• effective  and  values
• Claussius-Mossotti equation or beyond

Overall loss depends on loss tangentsOverall loss depends on loss tangents 
of resonators and host

• can be significantly lower than metal based metamaterials.

Other resonant scattering structuresOther resonant scattering structures 
can be employed

• cubes
• wires

FBM, fbmccor@sandia.gov 22

• anisotropic structures
• readily extendible to IR metamaterials



Limits to effective medium parameters with dielectric resonators
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Largest identified  in thermal IR is not as 
high as is desired

• extending effective medium theory to account for finite size effects

ff p


Nres=10

g ff y f f ff

Minimum resonator size & pitch ~ 0/Nres

res

0

N
~p  accessible

region

Effective medium wavelength must be greater 


accessible
region Nres=5

than twice the pitch

reseff
eff NN

p 00 22 





Accessible region of - space for 
propagating waves correspond to:

NN res

ff

Larger values of Nres give access to more 
- space
ENZ MNZ accessible
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2
Neff  ENZ, MNZ accessible

Neff = -1 accessible



DR Metamaterials: RF & IR
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0
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• damping is small (difficult to measure)
• electro-deposition, vapor deposition 

k



Host Materials for the thermal IR
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Passive Materials:
•polynorbornene (low loss polymer)

a)

•BaF2, YF3 (sol-gels & vapor deposited)
•IRX (vapor deposited)Polynorbornene Synthesis

BaF2 film

b)

c)

)

“Active” Materials (contribute to  behavior):
•SiC

•CVD in the MDL

•Oxide glasses

SiC film

FBM, fbmccor@sandia.gov 25

Oxide glasses
•being looked at by materials team



DR Infrared Metamaterial: Te/BaF2
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FBM, fbmccor@sandia.gov 26



DR Infrared Metamaterial: Te/BaF2
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Tailoring both  and : Dual Species Unit Cell Designs
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g  p g
Strategy: utilize two different resonators in the unit cell to separately adjust  and 

• same material different sizes
• different materials

Has been experimentally demonstrated at RF frequencies (Sandia)

Primary Drawbacks: 
• Doubling of the unit cell size

Diffi l i hi h• Difficult to stay within the 
effective medium regime 
(without extremely high ( y g
permittivity building blocks)

• Can’t achieve high index 
metamaterials due to cut-off
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metamaterials due to cut-off



Tailoring e & m: high-Q resonators in e<0 matrix
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 Simple spheres
 Small unit cell
 Sphere resonance contributes magnetic response, host material 

contributes electric response
Disadvantage

• loss in host contributes to overall loss
10
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 in m

Reducing tan( for PbTe by ~ 700 only reduces overall loss by ~2
Loss dominated by matrix loss



Optimizing the host leads to better performance
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 Keeping the resonator fixed at low loss PbTe and optimizing the 
host yields neff=-1.1+ i 0.01 for a host with =-2.82+ i 0.04.  

10
Real(neff)

 Might be achievable with a suitably doped conducting oxide.
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10.0 10.5 11.0 11.5 12.0
  in m

FOM~100  ~0.5 dB/wave



What Applications?
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What optical  functions can metamaterials perform?

1. Wavefront Control and engineering
2. Sub-Field Concentration
3. Absorption / Emission engineering
4. Active Tunability for 1-3

Tunability / Gain: 
•Loss compensation novel lasers•Loss compensation, novel lasers 
•Communication,  tunable filters, laser protection filters
• Vari-focal or “zoom” optics
• Spatial light modulators Optical phased array beamsteeringSpatial light modulators, Optical  phased array beamsteering
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Electrically Tunable THz Metamaterials
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y

Terahertz
beam Array of metal

1

an
sm

is
si
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beam split-ring 
resonators

Metal
contact LC

1ωres 

1 2 3
Frequency (THz)

Tr
a

Modulate transmission 
by depleting carriers 
in GaAs (Chen et al, 
Nature, 2006)

Semiconductor
substrate

a b

Substrate
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Performance of Metamaterial SLM
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Typical on/off transmission 
spectra of a THz-SLM pixel

Transmission image of 
THz-SLM at 0.36 THz

•~40% modulation
•Uniform across 
16 pixels

Chan et al, APL 94, 

16 mm

213511 (2009)

32x32 pixel array a Pixel32x32 pixel array a Pixel

FBM, fbmccor@sandia.gov 3333



Scaling Tunable MM’s to the Thermal IR
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g

“Blocking” filter
A semiconductor with higher plasma frequency needs to be chosen: InSb
Demonstrated tuning of resonance with doping.
Working towards MOS structure (Schotky gates are problematic for highlyWorking towards MOS structure (Schotky gates are problematic for highly 
doped InSb
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Conclusions
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• Current high interest in Metamaterials is a double-edged sword: 
the “clock is ticking” for a compelling applicationthe “clock is ticking” for a compelling application

• A critical mass of “nano-EM” expertise and Full-cycle 
(Des/Fab/Test) capabilities are coming on-line around the world

• “Application-Engineering” is becoming as important as Physics

Gartner, Inc. “Hype-Cycle”
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http://en.wikipedia.org/wiki/Technology_hype



The MST Team
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