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Abstract

We adapt two deterministic subgraph isomorphism algorithms for the Cray
XMT, a massively multi-threaded shared memory architecture. We expect this
architecture to be especially suited for large graph matching problems. We
compare a classical algorithm, Ullmann’s, with a more recent one, VF2, which
we adapt from the serial version.

1 Introduction

We compare deterministic algorithms for the subgraph isomorphism problem imple-
mented for the Cray XMT. The Cray XMT is a massively multithreaded shared
memory machine. The shared memory allows one to avoid having to partition the
problem into multiple memory domains, thus making it ideal for large graph prob-
lems with no obvious partition scheme. The large number of threads on each chip
allow the processor to work without stalls due to memory latency as long as enough
streams are active. For large graph matching problems, the difficulty lies in effec-
tively traversing a search space which consists of many instances which are largely
independent of each other. We expect enough independent work (active streams)
such that the processor is not stalled due to memory latency. This makes large
graph matching problems great target applications for multithreaded machines.
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In this paper we run some experiments comparing two deterministic algorithms
for the subgraph isomorphism problem. We eventually hope to find a high perform-
ing algorithm for inclusion in the MultiThreaded Graph Library (MTGL) [3]. We
compare one of the earliest algorithms for this problem, known as Ullmann’s algo-
rithm [31], to the more recent algorithm known as the VF2 algorithm [9]. We expect
Ullmann’s algorithm to be highly parallelizable as mentioned in his paper. The VF2
algorithm, while originally developed for serial runs, has a similar structure to the
Ullmann algorithm and thus we hope to adapt the algorithm to the multithreaded
environment effectively.

Applications of subgraph isomorphism include cheminformatics [31], pattern dis-
covery in databases [21], bioinformatics [28, 1], modeling social networks [30], computer-
aided design [13, 27, 23], scene analysis [2], and robot vision [33].

2 Related Work

The deterministic exact subgraph isomorphsim problem is NP-complete [8]. How-
ever, certain cases of subgraph isomorphism may be solved in polynomial time [15].
Subgraph isomorphism is a generalization of the graph isomorphism problem which
asks whether a graph G is isomorphic to a graph H [10, 29, 18, 24]. However, the
complexity of graph isomorphism remains an open question [17]. Other related prob-
lems known to be NP-complete are induced subgraph isomorphism [17], maximum
common subgraph [17, 5, 16], and graph edit distance [5, 6]. The randomize com-
plexity of subgraph isomorphism is Ω(n3/2) [20]. The online version of the problem
has also been studied [26].

The difficulty in the general case lies in the size of the search space which grows
factorially with the size of the large graph. In order to explore this search space
efficiently several techniques are used. We explore algorithms which attempt to
prune the search space using what we refer to as ”look ahead” rules which check
if a candidate subgraph of GB is consistent with GA and thus may form part of a
match [31]. For example if the candidate subgraph is made up of three nodes and
|GA| = 5 we know that none of the three nodes may have degree less than the node
of smallest degree in GA. The specific rules used in each algorithm are defined in the
next section. Since these rules can be checked in parallel, they may be particularly
suited to multithreaded parallelism.

Other classes of algorithms which attempt to make the exact problem tractable
use techniques such as partitioning the large graph [4], specialized data structures
[11, 9], or constraint satisfaction [22, 34]. Partitioning the large graph creates many
smaller problems which can be handled through brute force enumeration. This has
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shown to be effective in cloud computing, especially when the large graph has an
underlying structure which allows for convenient partitioning [4], but the monolithic
memory of multithreaded parallelism would seem to be at odds with such an ap-
proach. One of the algorithms we test uses some specialized data structures [9], and
our results show that it is less effective. Since constraint satisfaction is difficult to
implement in serial, it would only be more difficult in parallel.

Other techniques use heuristics which return sets of possible matches [32, 19, 12,
14, 25, 3]. These may return false positives [3], and thus the returned set needs to be
checked for actual consistency. This can be done using brute force or possibly one
of the algorithms we explore in this paper.

3 The Algorithms

We implemented two algorithms referred to as Ullmann [31] and VF2 [9] which we will
define here. We first describe a brute force enumeration solution and then describe
the techniques used to prune the search tree described in the brute force solution.
One defines the fully enumerated search tree as follows. Enumerate the nodes of the
small graph. Starting with the first node, we have |VB| possible matches from the
large graph. This is the first level of the search tree. On the next level we match the
second node of the small graph, vA

2 . We have |VB − 1| possibilities for each possible
matching of the second node giving us VB ∗ (VB − 1) branches at the second level.
We then match the third node of the small graph on the third level of the search
tree. The complete search tree has depth VA with VB ∗ . . .∗ (VB − (VA−1)) branches.
This factorial growth at each level is what makes the problem intractable for graphs
of nontrivial size.

We compare algorithms which attempt to prune this search tree as we explore it.
In order to understand how the search space is truncated we first note that we can
represent the search space we need to explore through a matrix we refer to as the M
matrix which has dimension |VA| × |VB|. Each row correlates with a vertex in GA

and each column with a vertex in GB. An element of the matrix mij is 1 if vertex
vA

i can be mapped to vB
j and 0 if not. For example if the degree of vA

i is larger than
the degree of vB

j , we can set mij = 0. When we enumerate the search tree as we did
in the brute force algorithm described above, at each level i which corresponds to
finding a match in GB for vertex vA

i , we only include partial candidates such that
mij = 1.

The first step in the algorithm is to set as many elements of the M matrix to
zero using a degree test. One throws away all possible mappings where a vertex of
GA is mapped to a vertex of GB with degree less than itself. After the first sweep
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through all possible mappings, the degree of the vertices in GB is updated to reflect
the number of neighbors which still have the possibility of being mapped to a vertex
in GA. For instance let vertices v, v′ ∈ VB be neighbors with degrees m and m + 1
respectively where m + 1 is the smallest degree of any vertex in GA. On the first
sweep, all mappings containing v will be thrown away but those containing v′ will be
kept. Prior to the second sweep the effective degree of v′ will be updated to at most
m as one of its neighbors v can not actually be used in the mapping. This means
that on the second sweep, all mappings using v′ will be thrown away. In addition to
checking the degree of each vertex, we check that each of the neighbors of a vertex
vA

i can be mapped to a neighbor of vB
j . If we find that a neighbor of vA

i can not be
mapped to a neighbor of vB

j because the corresponding element of the M matrix is
zero for all possible neighbors of vB

j , we set mij = 0. This is repeated until a sweep
occurs with no updates. As a matrix elements are only changed from 1 to 0, this can
be done in parallel.

The next step is to start traversing the search tree which spans the truncated
search space defined by our updated M matrix. The search space has now been
refined and the second part of the algorithm begins. In this part of the algorithm
we explore what is left of the search space. The simplest thing to do would be to
enumerate all possible mappings left and check each one. We hope to prune the
search tree however by using our look ahead rules. A partial candidate is a mapping
which has been defined at some initial levels of the search tree. We may be able to
determine that this partial candidate is not consistent with any possible solutions by
using what we refer to as look ahead rules. For example if we are at level 2 and have
assigned u1 to vm and now are looking at possible matchings for u2. We know that
any vi assigned to u2 must have degree greater than u2. We call this a zero order rule.
Let’s say u2 is a neighbor of u1. Then we have the further constraint that vi must
be a neighbor of vm. This will be called a nearest neighbor constraint as it depends
on the nearest neighbors of u2 and the neighbors of possible matching v. If we can
rule out all possible matchings which assign the pair (u1, vm), (u2, vi), then we do not
need to explore that branch of the search tree any further. These constraints allow
us to prune the search tree as we explore it. At each level, all partial candidates can
be tested in parallel.

Ullmann developed the first algorithm of this type in 1976 [31]. Later Cordella,
et al. published a similar algorithm known as VF2 [9]. Both algorithms use nearest
neighborhood look ahead rules. The main difference between the two is that the
Ullmann algorithm splits the neighbors into two types, those that have been matched
and those that haven’t. In the VF2 algorithm the group of nodes that have not
been matched are further split into two groups. Those that have a neighbor in the
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matching and those that don’t. Thus far we have defined these rules in terms of an
undirected graph, but they can be defined on a directed graph as well, which splits
the above groups into smaller ones based upon whether a node is a predecessor or
successor. In the directed version a neighbor node may be in more than one group.

The traditional implementation of the VF2 algorithm is optimized for a serial run
and does not include the use of the M matrix. The checks performed in step one,
where we sweep through the M matrix, are included in the consistency checks done
in the second step. In our parallel implementation, we follow the algorithm defined
by Ullmann and divide the VF2 algorithm into the two parts described above.

An additional difference between the algorithms should be noted. Traditionally
the Ullmann algorithm solves the subgraph isomorphism problem defined in the
introduction whereas the VF2 algorithm solves the induced subgraph isomorphism
problem. In the induced subgraph problem we say a graph GA is a subgraph only if it
meets the requirements to be a subgraph in the problem defined above and only if an
edge which exists between two vertices in GB also exists between the corresponding
vertices in GA. Thus the induced subgraph problem is more restrictive than the
traditional subgraph isomorphism problem and one expects to find less matches
in many cases. This additional restriction may increase the speed of the code by
increasing the pruning of the search tree or may slow the code by increasing the
amount of testing that needs to be done in order to declare a match consistent.
We did not explore this and instead adapted the VF2 code to solve the traditional
problem rather than the induced subgraph problem in order to compare the benefits
of using the more strenuous VF2 consistency rules over the ones defined by the
Ullmann algorithm.

4 Implementation

Our implementation is based upon the one proposed in the 1976 Ullmann paper [31].
One copy of the M matrix is stored. For a given sweep through the M matrix, each
element of the matrix is examined in parallel. The sweeps are done sequentially and
continue until one occurs where the matrix is not updated.

In order to traverse the search tree, possible candidates are stored in an array
with three indices. The first index defines the depth of the search tree at which we
are. The second index corresponds to a candidate which contains a partial matching.
The third index corresponds to a vertex in GA which has been assigned a match in
GB. The value at that index is the id of the vertex in GB. Memory is allocated at
each depth which can hold all the partial candidates to be examined at that level.
In order to keep track of the additional information needed by the VF2 algorithm
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[9], we allocate an additional block of memory which keeps track of which nodes in
GB have been matched. This block of memory has the same structure as the one
which keeps track of the partial candidates except that the third index corresponds
to a vertex of GB and the value at that index is the id of the matched vertex in GA.

In order to perform the consistency checks, the Ullmann algorithm only needs the
information contained in the partial candidate array. The VF2 algorithm needs the
information contained in the partial candidate array and the reverse look up array.
As we are doing the computation in parallel, we need to have all the candidates at
the current level and at the level prior in memory simultaneously. This makes the
memory requirements of the VF2 algorithm significantly larger than those required
by the Ullmann algorithm. The VF2 algorithm also needs to know which group
described in the algorithms section each node belongs too. We chose to recompute
this information for each partial candidate as needed rather then store it so as to
reduce memory costs. We could have done this with the reverse look up array as
well. We plan to explore the cost in computation time versus the increase in memory
requirements to do this on the fly computation in the future.

For both algorithms, all partial candidates at each level are checked for consis-
tency in parallel. The levels, each of which corresponds to including a vertex in
GA in the matching, are looped through in serial. The ability to check all partial
candidates at a given level in parallel is what gives these algorithms their power.

5 Experimental Results

Figure 1: CPU Time (secs) vs. Num Vertices. Ullmann is in blue and VF2 in red.
The left is data from RMAT graphs. The right is from mesh graphs.

We studied two algorithms, Ullmann [31] and VF2 [9] for the subgraph isomor-
phism problem. We tested the two algorithms on two types of graphs, 2D Mesh
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Table 1: Total Memory References (Billions)

RMAT Mesh
Size 32 64 128 256 49 64 100 400 900 1600 2500
Ullmann 12.3 115 139 686 1.02 0.168 4.01 200 1529 10290 29500
VF2 43.8 607 486 - 674 1.4 - - - - -

Figure 2: CPU Time (secs) vs graph size. Data was obtained from running Ullmann
on various Mesh graphs

and RMAT [7]. The 2D Mesh graphs were generated using a library written in
Python. The RMAT graphs were generated using the Multi Threaded Graph Li-
brary (MTGL). For each type of graph we created 7 graphs of various sizes. The
target subgraph is of size 4 or 5 for all problem instances. The Ullmann algorithm
outperformed the VF2 algorithm in all instances of the 2D mesh. Neither algorithm
was able to solve the larger problems on the RMAT graphs in a reasonable amount
of time. We believe this is due to the large amount of memory needed to store the
possible candidates, which are numerous due to the density of the RMAT graphs we
created. On the smaller instances which were solved, the Ullmann algorithm out-
performed the VF2 algorithm in all cases. Unreported times for the VF2 algorithm
indicates that the job was killed after exceeding the time used by Ullmann algorithm
by at least 2 hours. A graph of CPU times is contained in Figure 1. Memory refer-
ences are reported in Table 1. We also give a plot of CPU time vs. graph size for
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Ullmann’s algorithm run on a range of mesh graphs, Figure 2.

6 Discussion

The goal of this experiment was to explore whether the cost of using stricter consis-
tency criteria during the second phase of an exact subgraph isomorphism algorithm
outweighs the benefits of increased pruning of the search tree in a multithreaded
environment. Our prelimary results suggest that this greater pruning of the search
tree is not beneficial in a parallel environment even though it may be very beneficial
in a serial environment. In a parallel environment, many partial candidates can be
checked for consistency at the same time. One then might expect that the amount of
work needed to do the consistency check at each level is what will dominate the run
time rather than the number of candidates at each level. This seems to be supported
by our results.

Another benefit of the Ullmann algorithm is the amount of memory necessary to
store the partial candidates. Due to the nature of the look ahead checks employed
in the VF2 algorithm, more information about each candidate must either be stored
or computed on the fly. We took a middle ground approach in our implementation,
storing some of this information and recomputing some of it as necessary. In our
implementation, we expect this storage of extra information to double the memory
requirements. Our observations during the experiments show the VF2 algorithm to
use significantly more memory than the Ullmann algorithm consistently. This may
be of concern in the future as all candidates at a given level must be stored in memory
simultaneously.

In Figure 2 we plot CPU time versus graph size. We see that once we reach a
certain problem size, the CPU time grows close to linear with problem size. This
indicates a high level of parallelism. We do not expect to get near linear scaling in
the small graph range due to the large amount of overhead needed to run jobs on
the Cray XMT. Unfortunately we have not obtained similar results with the VF2
algorithm as we have not yet been able to solve problems of size sufficiently large.

7 Future Work

Our preliminary results suggest that strenuous look ahead checks are not beneficial in
the multi-threaded environment. In the immediate future we thus plan to implement
a stripped down version of the Ullman algorithm which uses even lighter consistency
checks. We expect this to increase the number of candidates checked at each level, but
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to decrease the amount of time necessary for each check for each partial candidate.
As all candidates at a given level can be checked in parallel and the number of levels
is bounded by the size of the target graph, we hope to see a decrease in run time.

Another possibility for increasing performance involves the coupling of front end
heuristics to our deterministic algorithm. As mentioned in the related work section,
one of these heuristics has already been implemented for the Cray XMT and is part
of the MTGL.

Other natural extensions of this work include adapting our algorithms to han-
dle attribute graphs and exploring inexact matching algorithms implemented for
the Cray XMT. These algorithms have many applications, for example, enzymatic
pathway matching in the field of Biology.

Acknowledgements

Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy under Contract No.
DE-AC04-94AL85000. C. C. Ralph thanks the DOE Computational Science Gradu-
ate Fellowship for funding.

References

[1] Peter J. Artymiuk, Helen M. Grindley, Andrew R. Poirrette, David W. Rice,
Elizabeth C. Ujah, and Peter Willett. Identification of β-sheet motifs, of ψ-loops,
and of patterns of amino acid residues in three-dimensional protein structures
using a subgraph-isomorphism. Journal of Chemical Information and Computer
Science, 34(1):51–64–62, 1994.

[2] Ricardo Baeza-Yates and Gabriel Valiente. An image similarity measure based
on graph matching. In Proc. 7th Int. Symp. on String Processing and Informa-
tion Retrieval, pages 28–38. IEEE Computer Science Press, 2000.

[3] Jonathan W. Berry, Bruce Hendrickson, Simon Kahan, and Petr Konecny. Soft-
ware and algorithms for graph queries on multithreaded architectures. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages
1–14, 2007.
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