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PHONONIC CRYSTAL CAVITY RESONATOR FABRICATION PROCESS

« Phononic crystal acoustic mirrors decouples the Fabry-Perrot cavity The Silicon Carbide cavities were fabricated in a CMOS-compatible surface
from the piezoelectric transducers resulting in high . Q and k2. Q at micromachining process > Energy Trapping in All 3-axis __
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-> multi-bandwidth, multi-frequency cognitive radios ___ _ _.[___
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Top Electrodes * Highly textured Cubic 3C-SiC (111) film was deposited using LPCVD [
M silicon * SiC film has as-deposited tensile stress of <150MPa 3
Substrate Aluminum Nitr * SiC film was polished to a surface roughness of <lnm, e NN,
ranscucer f g o : SEM and AFM of SiC polished using
Queson) VL Crystaloy which is critical for high Q resonators Timgeten CMP: 1o < Tam
Bragg Acoustic Mirrors RESULTS
Silicon Carbide (SiC) : Aluminum Nitride (AIN) : Scanning Electron Microscope (SEM) images of a silicon carbide lateral 10"
Low Loss Material >High Q High Transduction Efficiency - High k2 overtone cavity with 5 layers of PnC acoustic mirrors on each side
S?C has @e lowest Phonon—ph(?non dampipg AIN is a piezoelectric material that efficiently [ SiC Acoustic Cavity
SiC has high acoustic speed, high mechanical ~ couples the acoustic and electrical domains {
and chemical strength resulting in low motional impedance am
E ( Transducer
PHONONIC CRYSTAL MODELING " E
Phononic Crystals (PnC) are periodic arrangements of scattering inclusions Sense+ ; 7
in a homogenous host material (matrix) .
Acoustic bandgap is the range of frequencies
where the propagation o onons is prohibite e normalized four port transmission response is calculate: subtracting the matrix
here the propagation of ph is prohibited Th lized four port tr P Iculated by subtracting th tri
transmission response, where no phononic crystal is present, from the transmission
Overlapping Bragg resonances in Solid/Air Phononic Crystals P . P . y p
opens a bandgap response of the phononic crystal cavity.
Inclusion f(Bragg)x = ﬁ f(Bragg )ry, = (2;)\:/5 10t Overtone Cavity 50 Overtone Cavity 50 Overtone Cavity
r\? )2 with 5 layers of PnC with 3 layers of PnC with 5 layers of PnC
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. N TZ CIOpUIMUNTS ) 10 iSS ISERS2 M As the number of overtones and number of phononic crystal layersincreases - Quality Factor of Cavity Improves
E“‘: EW %m Future Applications:
i g E ! Phononic Bandgap Circuits (X X X ] (XX X )
g o E j: ] : Low loss acoustic filters, waveguides , mixers, modulators [ ] 0000
5 S £ Miniature “Slow Sound” delay lines [} [ ] 0000
[ £ ;i | Phononic Bandgap Thermoelectric Energy Conversion [} [ ) 0000
g"’.. I wa. reucer i B Acoustic Sensing: Chemical/Biological /Inertial Sensors [ ] [ ] 0000
- requency ( X ) . requency (GHz) = Frequency (GHz) . Acoustic Focusing for Ultrasound and Imaging applications [ ] [} 0000
Filling Fraction (r/a) increases > Bandgap moves to lower frequencies, becomes :‘
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