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RESULTS
Scanning Electron Microscope (SEM) images of a silicon carbide  lateral  10th

overtone cavity with 5 layers of PnC acoustic mirrors on each side

ACKNOWLEDGEMENTS

PHONONIC CRYSTAL MODELING

• Microelectronics Development LaboratoryStaff at Sandia National Laboratories for device fabrication

• DARPA/MTO CSSA program for funding (Program Managers: Dr. Dennis Polla and Dr. Sanjay Raman)

• Rockwell Collins and Draper Labs for technical discussions

• Sandia National Laboratory is multiprogram laboratory operated by the Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

The Silicon Carbide cavities were fabricated in a CMOS-compatible surface 

micromachining process � Energy Trapping in All 3-axis
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• Highly textured Cubic 3C-SiC (111)  film was deposited using LPCVD

• SiC film has as-deposited tensile stress of <150MPa 

• SiC film was polished to a surface roughness of <1nm, 

which is critical for high Q resonators

The normalized four port transmission response is calculated by subtracting the matrix 

transmission response, where no phononic crystal is present, from the transmission 

response of the phononic crystal cavity.
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• Phononic crystal acoustic mirrors decouples  the  Fabry-Perrot  cavity 

from the piezoelectric transducers resulting in high f.Q and kt
2.Q at 

microwave and mm-wave frequencies.

• Lithographically defined frequencies and bandwidths 

� multi-bandwidth, multi-frequency cognitive radios

SiC has the lowest phonon-phonon damping

SiC has high acoustic speed, high mechanical      

and chemical strength

AlN is a piezoelectric material that efficiently 

couples the acoustic and electrical domains 

resulting in low motional impedance
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50th Overtone  Cavity 

with 5 layers of PnC

50th Overtone  Cavity 

with 3 layers of PnC

10th Overtone  Cavity 

with 5 layers of PnC

Overlapping Bragg resonances in Solid/Air Phononic Crystals 

opens a bandgap

Acoustic impedance and velocity 
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Plane Wave Expansion (PWE) simulation of a 2D simple 

cubic SiC/Air  Phononic Crystal showing a full acoustic 

bandgap around 2.7 GHz.  r/a=0.45, t/a=0.5
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Acoustic bandgap is the range of  frequencies 

where the propagation of phonons is prohibited
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Aluminum Nitride (AlN) : 

High Transduction Efficiency ���� High kt
2

Phononic Crystals (PnC) are periodic arrangements of scattering inclusions 

in a homogenous host material (matrix)
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���� Maximize band-gap width and  

depth by maximizing the acoustic 

impedance, Z, mismatch

Finite-Difference-Time-Domain (FDTD) simulation 

of a 2D simple cubic SiC/Air  Phononic Crystals 

with 7 layers, a=1.83µm, and r/a=0.35 µm

Filling Fraction (r/a) increases ���� Bandgap moves to lower frequencies, becomes 

wider and more reflective

Slab thickness increases ���� Bandgap becomes narrower and less reflective

At 3GHz, the optimum slab thickness is  0.75-1µµµµm

Future Applications:

Phononic Bandgap Circuits

Low loss acoustic filters, waveguides , mixers, modulators

Miniature “Slow Sound” delay lines

Phononic Bandgap Thermoelectric Energy Conversion

Acoustic Sensing: Chemical/Biological /Inertial Sensors

Acoustic Focusing for Ultrasound and Imaging applications

SEM and AFM of SiC polished using 

Tungsten CMP:  rms < 1nm

As the number of overtones and number of phononic crystal layers increases ����Quality Factor of Cavity Improves
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Silicon Carbide (SiC) :

Low Loss Material ����High Q
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