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RESULTS
Scanning Electron Microscope (SEM) images of a silicon carbide  lateral overtone bulk 

acoustic resonator with 140 added overtones
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The Silicon Carbide LOBARs were fabricated in a CMOS-compatible surface 

micromachining process � Energy Trapping in All 3-axis
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LATERAL OVERTONE BULK 
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(a)

•Highly textured Cubic 3C-SiC (111)  film was deposited using LPCVD

•SiC film has as-deposited tensile stress of <150MPa 

•SiC film was polished to a surface roughness of <1nm, 

which is critical for high Q resonators
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(b)

(f)

The Quality Factor of a LOBAR at 

3GHz increases from <500 for one 

overtone to >100,000 for 140 overtones

fr ≈ 2.93GHz

Q ≈ 117,300

The Quality Factor has a T-4 dependence 

���� LOBAR operates in Landau-Rumer regime

���� Good on-chip temperature sensor

Temperature stability of 

uncompensated LOBAR

The wide span two port impedance response of the LOBAR from its transmission response 

in air shows the peaks corresponding to the higher order harmonics of the SiC length 

extensional resonance transduced by the piezoelectric AlN layer

Si SiCSiO2 AlAlNTi/TiN/AlW

• The LOBAR design decouples the piezoelectric transduction and energy 

storage mechanisms, resulting in high f.Q and kt
2.Q at microwave frequencies.

• Lithographically defined frequencies and bandwidths 

� multi-bandwidth, multi-frequency cognitive radios

High number of overtones stored in resonator ���� Higher Quality Factor
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Silicon Carbide (SiC) :

Low Loss Material ����High Q

SiC has the lowest phonon-phonon damping

SiC has high acoustic speed, high mechanical      

and chemical strength

Aluminum Nitride (AlN) : 

High Transduction Efficiency ���� High kt
2

AlN is a piezoelectric material that efficiently 

couples the acoustic and electrical domains 

resulting in low motional impedance

The resonance frequency of LOBAR is defined 

lithographically by the interdigitated electrodes on 

AlN (Lr =2× Al finger width); eff
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LOBAR Simulations in 

COMSOL® showing
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in the x-direction

Drive

Sense

Ground

Ground

SiC LOBAR

Bottom Electrode

L
SiC

W
SiC

t
SiC

tAlN

LAlN

Lr

Silicon Carbide

Piezoelectric Material

Bottom and

Top Electrodes

x
y

For optimum f.Q and insertion loss need to maximize energy coupling from 

the piezoelectric AlN stack to the low loss SiC  

� For  1µm SiC, tAlN=200nm, and tAl=100nm

Frequency of the composite stack  should matches that of the SiC ends to 

minimize  impedance  � SiC stack length of  12.25µm

fp

fs

Eeff and ρeff are the effective Young’s modulus and mass density of the 

composite SiC-Piezoelectric stack

At 3 GHz, Lr=7.52µm for AlN transducer with 4 fingers
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As wavelengths of SiC are addedAs wavelengths of SiC are added�������� Quality factor increases and Quality factor increases and kktt
22 decreasesdecreasesAs wavelengths of SiC are addedAs wavelengths of SiC are added�������� Quality factor increases and Quality factor increases and kktt
22 decreasesdecreases
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Measurements for LOBAR with 140 Added Overtones 
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TCF≈-15ppm/°°°°C

SEM and AFM of SiC polished using 

Tungsten CMP:  rms < 1nm

Phase Slope ≈

80rad/MHz
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