
Detection and Correction of Silent Data Corruption for
Large-Scale High-Performance Computing ∗

David Fiala, Frank Mueller
North Carolina State University
{dfiala|fmuelle}@ncsu.edu

Christian Engelmann
Oak Ridge National Laboratory

engelmannc@ornl.gov

Rolf Riesen, Kurt Ferreira
Sandia National Laboratory†

{rolf|kbferre}@sandia.gov

ABSTRACT
Faults have become the norm rather than the exception for
high-end computing on clusters with 10s/100s of thousands
of cores, and this situation will only become more dire as
we reach exascale computing. Exacerbating this situation,
some of these faults will not be detected, manifesting them-
selves as silent errors that will corrupt memory while ap-
plications continue to operate but report incorrect results.
This paper introduces RedMPI, an MPI library residing in
the profiling layer of any standards-compliant MPI imple-
mentation. RedMPI is capable of both online detection and
correction of soft errors that occur in MPI applications with-
out requiring any code changes to application source code.
By providing redundancy, RedMPI is capable of transpar-
ently detecting corrupt messages from MPI processes that
become faulted during execution. Furthermore, with triple
redundancy RedMPI additionally “votes” out MPI messages
of a faulted process by discarding and replacing corrupted
results with corrected results from unfaulted processes. We
present an experimental evaluation of RedMPI on an assort-
ment of applications to demonstrate the effectiveness and
assess overheads associated with this approach.

RedMPI experimental results reveal overheads between
13% and 62% depending on the desired level of redundancy
and MPI application communication patterns. Fault injec-
tion experiments establish that RedMPI is not only capable
of successfully detecting injected faults, but can also cor-

∗This work was supported in part by NSF grants CNS-
1058779, CNS-0958311, DOE grant DE-FG02-08ER25837
and a subcontract from Sandia National Laboratory. Re-
search sponsored in part by the Laboratory Directed Re-
search and Development Program of Oak Ridge National
Laboratory (ORNL), managed by UT-Battelle, LLC for the
U. S. Department of Energy under Contract No. De-AC05-
00OR22725.
†Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-
94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

rect these faults while carrying a corrupted application to
successful completion without propagating invalid data. To
our knowledge this is the first design, implementation and
evaluation of a runtime system to detect and correct silent
data corruption for high-end computing systems.

1. INTRODUCTION
In High-End Computing (HEC), faults have become the

norm rather than the exception for parallel computation on
clusters with 10s/100s of thousands of cores. Past reports
attribute the causes to hardware (I/O, memory, processor,
power supply, switch failure etc.) as well as software (oper-
ating system, runtime, unscheduled maintenance interrup-
tion). In fact, recent work indicates that (i) servers tend
to crash twice a year (2-4% failure rate) [32], (ii) 1-5% of
disk drives die per year [26] and (iii) DRAM errors occur in
2% of all DIMMs per year [32], which is more frequent than
commonly believed.

Table 1: Reliability of HPC Clusters [17]

System # CPUs MTBF/I

ASCI Q 8,192 6.5 hrs
ASCI White 8,192 5/40 hrs (’01/’03)

PSC Lemieux 3,016 9.7 hrs
Google 15,000 20 reboots/day

ASC BG/L 212,992 6.9 hrs (LLNL est.)

Even for small systems, such causes result in fairly
low mean-time-between-failures/interrupts (MTBF/I) as
depicted in Figure 1, and the 6.9 hours estimated by Liv-
ermore National Lab for its BlueGene confirms this. In re-
sponse, long-running applications on HEC installations are
required to support the checkpoint/restart (C/R) paradigm
to react to faults. This is particularly critical for large-scale
jobs; as the core count increases, so does the overhead for
C/R, and it does so at an exponential rate. This does not
come as a surprise as any single component failure suffices
to interrupt a job. As we add system components (such as
cores, memory and disks), the probability of failure combi-
natorially explodes.

For example, a study from 2005 by Los Alamos National
Laboratory estimates the MTBF, extrapolating from cur-
rent system performance [25], to be 1.25 hours on a petaflop
machine. The wall-clock time of a 100-hour job in such as
system was estimated to increase to 251 hours due to the

SAND2011-0533C

C/R overhead implying that 60% of cycles are spent on C/R
alone, as reported in the same study. More recent investiga-
tions [5, 6] revealed that checkpoint/restart efficiency, i.e.,
the ratio of useful vs. scheduled machine time, can be as
high as 85% and as low as 55% on current-generation HEC
systems.

Table 2: 168-hour Job, 5 year MTBF

Nodes work checkpt recomp. restart

100 96% 1% 3% 0%
1,000 92% 7% 1% 0%

10,000 75% 15% 6% 4%
100,000 35% 20% 10% 35%

A study by Sandia National Lab from 2009 [12] shows
rapidly decaying useful work for increasing node counts (see
Table 2). Only 35% of the work is due to computation for a
168 hour job on 100k nodes with a MTBF of 5 years while
the remainder is spent on checkpointing, restarting and then
partial recomputation of the work lost since the last check-
point. Figure 3 shows that for longer-running jobs or shorter
MTBF (closer to the ones reported above), useful work be-
comes insignificant as most of the time is spent on restarts.

Table 3: 100k Node Job, varied MTBF

job work MTBF work checkpt recomp. restart

168 hrs. 5 yrs 35% 20% 10% 35%
700 hrs. 5 yrs 38% 18% 9% 43%

5,000 hrs, 1 yr 5% 5% 5% 85%

The most important finding of the Sandia study is that re-
dundancy in computing can significantly revert this
picture. By doubling up the compute nodes so that every
node N has a replica node N’, a failure of primary node N
no longer stalls progress as the replica node N’ can take over
its responsibilities. Their prototype, rMPI, provides dual re-
dundancy [12]. And redundancy scales: As more nodes are
added to the system, the probability for simultaneous fail-
ure of a primary N and its replica rapidly decreases. Of the
above overheads, the recompute and restart overheads can
be nearly eliminated (to about 1%) with only the checkpoint-
ing overhead remaining — at the cost of having to deploy
twice the number of nodes (200,000 nodes in Figure 3) and
four times the number of messages [12]. But once restart
and rework overheads exceed 50%, redundancy is actually
cheaper than traditional C/R at large core counts.

The failure scenarios above only cover a subset of actual
faults, namely those due to fail-stop behavior or at least
detectable by monitoring of hardware and software. Silent
data corruption (SDC) is yet a different class of faults. It
materializes as bit flips in storage (both volatile memory and
non-volatile disk) or even within processing cores. A single
bit flip in memory can be detected (with CRC) and even
mitigated with error correction control (ECC). Double bit
flips, however, will force an instant reboot after detection
since such faults cannot be corrected by ECC. While double
bit flips were deemed unlikely, the density of DIMMs at Oak

Ridge National Lab’s Cray XT5 causes them to occur on a
daily basis (at a rate of 1-2 per day for 100,000+ DIMMs)
[19].

Meanwhile, even single bit flips in the processor core re-
main undetected as only caches feature ECC while register
files or even ALUs typically do not. Significant SDC rates
were also reported for BG/L’s unprotected L1 cache [18],
which explains why BG/P provides ECC in L1. Nvidia
is making a similar experience with its shift to ECC in
their Fermi GPUs. Yet, hardware redundancy, such as Tan-
dem/HP’s NonStop architecture remains extremely costly
[23, 1, 37, 38, 35, 2, 14, 21, 28, 29, 30, 31, 36].

Today, the frequency of bit flips is no longer believed to
be dominated by single-event upsets due to radiation from
space [27] but is increasingly attributed to fabrication minia-
turization and aging of silicon given the increasing likelihood
of repeated failures in DRAM after a first failure has been
observed [32]. With SDCs occurring at significant rates, not
every bit flip will result in faults. Flips in stale data or code
remain without impact, but those in active data/code may
have profound effects and potentially render computational
results invalid without ever being detected. This creates
a severe problem for today’s science that relies increasingly
on large-scale simulations. Redundant computing can detect
SDCs where relevant, i.e., when results are impacted. While
detection requires dual redundancy, correction is only feasi-
ble with triple redundancy. Such high levels of redundancy
appear costly, yet may be preferable to flawed scientific re-
sults. Triple redundancy is also cheaper than comparing the
results of two dual redundant jobs, which would be the al-
ternative at scale given the amount of useful work without
redundancy for large systems from Table 3.

Overall, the state of HEC requires urgent investigation to
level the path to exascale computing — or exascale HEC
may be doomed as a failure (with very short mean times,
ironically).

Contributions: The main contribution of this work is
the design and implementation of efficient and transparent
mechanisms for fault tolerance (FT) in large-scale HPC en-
vironments for SDC detection and correction. The key to
success is to not only to rely on techniques to react to fail-
ures imposing restart overheads but to also sustain failures
such that computation progresses seamlessly without a need
to restart.

In this context, our work is addressing the following re-
search questions:

1. What are the protocols best suited to realize SDC de-
tection and correction at the communication layer?

2. What is the cost of different levels of redundancy with
respect to application runtime overhead?

Answering these questions, our work makes the following
major contributions:

(1) We contribute the design and implementation of proto-
cols for SDC detection and correction at the communication
layer.

(2) We demonstrate the capabilities and assess the cost
of redundancy to (a) detect silent data corruption (SDC)
and (b) recover from such corruption in experiments on a
real system. As SDCs are being observed for 10k+ cores
and also due to smaller fabrication sizes, C/R techniques
fail to uncover SDCs, which can render the output of sci-
entific computations incorrect without knowledge of appli-
cation scientists. While dual redundancy can detect SDCs,

triple redundancy can actually correct them through vot-
ing. We study the benefits and limitations of the spectrum
ranging from no redundancy over dual to triple redundancy
in terms of overhead and computing/interconnect resource
costs. A key challenge is to limit the overhead for SDC de-
tection by reducing the relevant footprint of computational
results, which we will explore.

(3) We assess the resilience of HEC jobs to faults through
injection. Hardware and software failures can be studied
through injection, which is in a native environment on an
actual cluster.

In summary, this work contributes to fault detection and
recovery in significantly advancing existing techniques by
controlling levels of redundancy intervals in the presence of
hardware and software faults.

2. DESIGN
In this paper we present RedMPI, an MPI library that

is capable of both detecting and correcting SDC faults.
RedMPI creates “replica” MPI tasks for each “primary” task
and performs online MPI message verification intrinsic to ex-
isting MPI communication. The replicas compare received
messages, or hashes, from multiple senders and can thus de-
tect if a process’s communication data has been corrupted.

RedMPI can run in double redundant mode and detect
corrupt messages, or run in triple redundant mode and also
correct faulty messages. RedMPI supports additional lev-
els of redundancy for environments where multiple near-
simultaneous faults can occur during data transmission. A
voting algorithm is used to determine which of the received
messages are correct and should be used by all receivers.

It is important to note where and how SDC faults are
detected. RedMPI solely analyzes the content of MPI mes-
sages for any possibility of divergence between replicas dur-
ing communication. When a divergence is detected, the re-
sult deemed to be invalid will be thrown out on the receiver
side and transparently replaced with a known “good” value
from another replica.

A different SDC detection approach would be to con-
stantly compare the memory space of replicas’ processes
and compare results. Such an approach suffers from ex-
cessive overhead due to constant traversals of large memory
chunks, overhead due to global synchronization to ensure
that each process is paused at the exact same spot during a
memory scan, and the communication required for replicas
to compare their copy of each memory scan while looking for
differences. In this case, if corruption is detected, it is not
feasible to correct the memory while the application is run-
ning as this could interfere with application-side writes to
the same memory region. This, in turn, could necessitate a
rollback of all tasks to the last “good” checkpoint (assuming
that checkpointing was also enabled).

By instead focusing on the MPI messages themselves, we
have cut our search area down to only data that is most
critical for correctness of an MPI application; i.e., we ar-
gue communication correctness is a necessary (but not suf-
ficient) condition for output correctness. Moreover, should
an SDC occur in memory that is not immediately commu-
nicated over MPI, the fault will eventually be detected as
the corrupted memory may later be accessed, operated on,
and finally transmitted. The same principle holds true for
data that became corrupted while residing in a buffer or any
other place in memory. If the SDC is determined to even-

tually alter messages, then RedMPI will detect it when the
transmission occurs, independent of when or how the SDC
originated.

2.1 Point-to-Point Message Verification
The core of the RedMPI’s error detection capabilities are

designed around a reliable, verifiable point-to-point commu-
nication protocol. Specifically, one needs to verify that a
point-to-point message (e.g., MPI_Isend) sent from an MPI
process is identical to the message sent by other replica pro-
cesses for any given rank. Upon successful receipt of a mes-
sage, the MPI application is assured that the message is
valid (not corrupted).

Internally, a verification message may take the form of a
complete message duplicate that is compared byte by byte.
Alternatively, since MPI messages may be large, it is in
many cases more efficient to create a unique hash of the mes-
sage data and use the hash itself for message verification to
reduce network bandwidth usage. Message data verification
can be performed at either the sender or the receiver.

Let us first consider the case of sender-side verification. To
perform verification at the sender, all of the replicas need to
send a message to communicate with each other and verify
their content (through some means) before sending the ver-
ified data to the receiving replicas. However, this approach
incurs added latency and overhead for each message sent
due to the time taken to transmit between replicas and to
perform internal verification messages. Additionally, it is
best to optimize for the critical path; i.e., assuming that a
sent message tends to not be corrupted and that all senders
have matching data. A sender-side approach is subject to
additional overhead for every message sent at both sending
and receiving nodes. Specifically, while every sent message is
treated as suspect, the time required for the senders to agree
that each of their own buffered messages is correct presents
the time lost on the receiver side before the application can
proceed. For this reason, RedMPI’s protocols use a receiver-
side verification method resulting in faster message delivery
with considerably reduced message latency.

2.2 Assumptions
RedMPI does not protect messages over a transport layer

such as TCP or InfiniBand, and assumes the transport it uti-
lizes to be reliable. Due to this assumption, RedMPI does
not handle corruption due to transport failure. An unreli-
able network could cause undefined behavior and deadlock
RedMPI.

Many SDCs that occur will affect the data sections of run-
ning applications, but there remains a chance that corrup-
tion could change the code section instead. While RedMPI
makes every attempt to continue uninterrupted execution
when corruption occurs, if the thread of execution for a pro-
cess diverges from the other replicas then it may not be
possible to maintain identical MPI communication patterns,
which would lead RedMPI to fault.

3. IMPLEMENTATION
RedMPI provides the capability of soft error detection for

MPI applications by online comparison of results of nearly
identical replica MPI processes. To an MPI developer, the
execution of replica processes of their original code is trans-
parent as it is handled through MPI introspection within
the RedMPI library. This introspection is realized through

the MPI profiling layer, which intercepts MPI function calls
and directs them to RedMPI. The profiling layer provides a
standard API that allows libraries to wrap all MPI calls and
add additional or replacement logic in place of the original
functionality.

To understand how RedMPI functions internally, it is first
important to understand how redundancy is achieved within
RedMPI. When launching an MPI job with RedMPI, some
multiple of the original number of desired processes will need
to be launched. For example, to launch an MPI job that
normally requires 128 processes will instead require 256 or
384 processes for dual or triple redundancy, respectively.
RedMPI handles redundancy internally and provides an en-
vironment to the application that appears to only have the
originally required 128 processes.

The primary difference between replica MPI processes is
a replica rank that distinguishes redundant processes. For
example, for an application to run with three replicas (triple
redundancy), it would be started with three times as many
MPI ranks as usual. Internally, the number of ranks visible
to the MPI application would be divided by three where
each redundant rank carries an internal replica rank of 0,
1, or 2. Figure 1 shows how triple redundancy may appear
within an MPI application expecting a size of three.

Virtual Rank: 0 Native Rank: 0 Replica Rank: 0

Virtual Rank: 0 Native Rank: 1 Replica Rank: 1

Virtual Rank: 0 Native Rank: 2 Replica Rank: 2

Virtual Rank: 1 Native Rank: 3 Replica Rank: 0

Virtual Rank: 1 Native Rank: 4 Replica Rank: 1

Virtual Rank: 1 Native Rank: 5 Replica Rank: 2

Virtual Rank: 2 Native Rank: 6 Replica Rank: 0

Virtual Rank: 2 Native Rank: 7 Replica Rank: 1

Virtual Rank: 2 Native Rank: 8 Replica Rank: 2

Figure 1: Internal Ranks of a 3 Process MPI Appli-
cation with Triple Redundancy

The actual rank assigned to a process by mpirun/mpiexec

is referred to as the native rank. The rank that is visi-
ble to an MPI process via the MPI_Comm_rank API is re-
ferred to as the virtual rank. Likewise, the size returned by
MPI_Comm_size is referred to as the virtual size. The num-
ber of replicas running per virtual rank describes the redun-
dancy of the application and is referred to as the replication
degree. Within RedMPI, a mapping structure is stored in
each process that allows the forward and reverse lookup of
any processes’ native rank, virtual rank, or replica rank.

3.1 Rank Mapping
When launching an MPI job, the mapping of native ranks

may be specified on the command line with either a custom
map file or by specifying a flag to indicate the desired vir-
tual size. When a virtual size is specified on the command
line, RedMPI automatically generates a structure that maps
native ranks to a virtual rank of [0 . . . virtual size− 1] and
assigns replica ranks of [0 . . . (native size/virtual size)−1].
Additionally, for each communicator or group created within
the MPI application another map will be created to track
ranks within the new group.

Native to virtual mappings:

virtual rank = native rank mod virtual size
replica rank = native rank/virtual size
Virtual to native mapping:

native rank =
virtual rank + (replica rank × virtual size)

Figure 2: Rank Mapping Formulas

Internally, mappings can be translated using a formula
(Figure 2) or by storing the data in a lookup structure. The
formula given provides a simple, deterministic method with
low memory requirements, but it is not capable of provid-
ing fine-tuned control of rank mapping. By using a custom
rank map file and passing it to RedMPI during startup, the
user has the capability to specifically designate which virtual
ranks are mapped to a native rank. This is advantageous in
particular when the user desires to put replica processes on
the same physical host or on neighboring hosts with low net-
work latency. If a custom map file is omitted, the mapping
formula is used to build the initial structure upon startup.

3.2 Message Corruption Detection and Cor-
rection

3.2.1 Method 1: All-to-all
RedMPI’s first receiver-side protocol, All-to-all, supports

both message verification and message voting to ensure that
the receiver discards corrupted messages. The All-to-all
method requires that each MPI message sent is transmitted
from all sender replicas to each and every receiver replica.
Thus, for a redundancy degree of three, each sender would
send three messages where one message goes to each replica
receiver as demonstrated by Figure 3. This means that for
a degree of 2 or 3 the number of messages actually sent for
a single MPI_Isend would be 4 or 9, respectively. On the
receiving side, each receiver would listen for a message from
each sender replica and place such messages in separate re-
ceive buffers.

Receiver
Replica: 0

Sender
Replica: 0 Send Buffer

Recv Buffer 0

Recv Buffer 1

Recv Buffer 2

Receiver
Replica: 1

Recv Buffer 0

Recv Buffer 1

Recv Buffer 2

Receiver
Replica: 2

Recv Buffer 0

Recv Buffer 1

Recv Buffer 2

Sender
Replica: 1 Send Buffer

Sender
Replica: 2 Send Buffer

Figure 3: All-to-all Method Overview

Such message verification requires each sender to send
degree messages for each MPI send encountered. This is

realized by interposing MPI_Isend via RedMPI using the
MPI profiling layer. The new MPI_Isend routine determines
all replicas for the virtual rank of a message’s destination.
For each such replica, RedMPI performs a non-blocking
send with a payload of the entire message and records the
MPI_Request for each pending send. Upon completion, the
overridden MPI_Isend returns back to the MPI application
a single MPI_Request that can later be used by MPI_Test

or MPI_Wait. In a similar manner, MPI_Irecv is interposed
by RedMPI to look up all replicas of the source’s virtual
rank and internally posts a non-blocking receive for a mes-
sage from each replica. Every receive is stored into a differ-
ent, temporary buffer entry. Again, all MPI_Request handles
originating from non-blocking receives are recorded inter-
nally, but only a single MPI_Request is returned to the MPI
application. Figure 4 visualizes this process.

MPI_Test

MPI Application

Match
MPI_Request

to internal
requests array

RedMPI Internals

Test/wait each
MPI_Request
within internal
request array

(Optional)
For receives:

Perform message
verification

MPI_Isend

Several
MPI_Isend(s)/
MPI_Irecv(s)

One for each
destination/

source replica

Array of
MPI_Requests

(Internal to
RedMPI)

Reduced to a
single

MPI_Request
visible to MPI

application

MPI Application RedMPI Internals

MPI_Irecv

MPI_Wait

Figure 4: All-to-all Function Overrides

Following an MPI_Isend or MPI_Irecv, an MPI applica-
tion will usually complete these requests with an MPI_Test

or MPI_Wait. RedMPI interposes these functions as it needs
to test not just the single MPI_Request, but rather im-
poses a test for each array element of internal MPI re-
quests corresponding to sends/receives from all replicas.
The MPI_Request is looked up and the test or wait is per-
formed on all outstanding requests. If the test or wait was
performed on a request from an MPI_Isend then no further
action from RedMPI is required once the requests complete.
Alternatively, a request from an MPI_Irecv requires extra
steps in order to verify the messages received from each
replica.

One point of interest is how the replica receive buffers
are allocated. To reduce storage overheads, the first receive
buffer is always a pointer to the MPI application’s actual
receive buffer. Any additional buffers required in response
to an increase in the degree of replication is internally allo-
cated by RedMPI. This approach not only saves buffer space,
but it also avoids the need to ever copy a message from a
RedMPI buffer to the application’s buffer. An exception
to this is made if RedMPI detects that the first replica re-
ceive buffer was determined to be corrupted, in which case
a memory copy is necessary to provide a corrected copy of
the message to the MPI application.

When an MPI application receives a message, RedMPI
internally waits for all replica MPI receive requests to finish
during an MPI_Test or MPI_Wait before verifying the data.
The actual verification occurs before MPI_Test or MPI_Wait

return to the MPI application, but after all replica receives
arrive. Verification is performed by computing a SHA1 hash
of each replica receive buffer and then comparing the hashes
themselves. Using a hash ensures that message data is not
read multiple times, which would incur excessive overhead
for large messages. Under normal conditions, when no cor-
ruption is detected, the extra buffers are freed and control
is returned to the MPI application.

If, during message verification, a buffer mismatch is de-
tected, RedMPI will mitigate in a manner dependent on the
degree of replication. With replication degree of two, it is
impossible to determine which of the two buffers is corrupt.
Hence, an error is logged noting corruption detection, but no
corrective action may proceed since the source of corruption
is indeterminate. With a replication degree exceeding two,
buffers are compared and corrupted messages are voted out
upon mismatch with the simple majority (of matching mes-
sages). In this event, RedMPI ensures that the MPI appli-
cation’s receive buffer contains the correct data by copying
one of the verified buffers if necessary. If the first buffer was
verified as correct but a later buffer was not, then it is not
necessary to initiate a copy as the MPI application will only
access the first buffer.

3.2.2 Method 2: Message Plus Hash (Msg-
PlusHash)

The MsgPlusHash (message plus hash) corruption detec-
tion and correction method provides a key performance en-
hancement over the All-to-all method by vastly reducing the
total data transfer overhead per message and the number
of messages in the general case. Similar to the All-to-all
method, MsgPlusHash performs message verification solely
on the receiver end. The critical difference is that Msg-
PlusHash sends one copy of a message originating from an
MPI_Isend in addition to a very small hash message. This
change in protocol allows each sending replica to transmit
their message only once, while the additional hash message
will later be used to verify each receiver’s message.

Internally, the MsgPlusHash method interposes
MPI_Isend, MPI_Irecv, MPI_Test, and MPI_Wait simi-
larly to the All-to-all method previously discussed. The
following logical overview of MsgPlusHash outlines how
the MsgPlusHash implementation differs, while the same
level of transparency is provided to MPI applications as
for All-to-all. For example, MsgPlusHash will internally
utilize multiple send and receive MPI_Request handles,
but the MPI application will only ever receive one such
MPI_Request handle.

To check for message corruption, the minimum require-
ment is a comparison between two different sources. Addi-
tionally, the most likely scenario (critical path) is for cor-
ruption to not exist. The MsgPlusHash method takes full
advantage of these facts by only receiving a single copy of
any message transmitted as well as a hash from an alternate
replica. From an efficiency standpoint, it is not necessary to
send two full messages since a hash provides sufficient means
to verify data correctness without imposing overheads of full
message retransmission. Once the full message is received,
a hash of the message is generated at the receiver and is
compared with a hash from a different replica. In the likely
event that these hashes match, the receiver can be assured
that its message is correct, i.e., no corrective action needs
to be taken.

Sender
Replica: 0

Send Buffer
Receiver
Replica: 0

Recv Buffer

Hash Buffer

Receiver
Replica: 1

Recv Buffer

Hash Buffer

Receiver
Replica: 2

Recv Buffer

Hash Buffer
Full Message (Solid)
Hash Only (Dashed)

Sender
Replica: 1

Send Buffer

Sender
Replica: 2

Send Buffer

Figure 5: MsgPlusHash Method Overview

As shown in Figure 5, each sender replica must calculate
where to send its message and where to send a hash of its
message. The actual message’s destination is simply cal-
culated by finding the receiver with the same replica rank
as the sender. The hash message’s destination is calculated
by taking the sender’s replica rank and adding one. In the
event that the destination replica rank exceeds the replica-
tion degree, the destination will wrap around to replica rank
0. This pattern provides a simple and elegant solution to en-
sure each receiver always gets a copy of the full message plus
a hash of the message from a different sender replica over a
ring of replicas.

In the event that the message’s hash does not match the
received hash, it is necessary to determine if either the mes-
sage is corrupt or if the received hash was produced from
a corrupt sender. In any case, if a sender becomes corrupt,
it will transmit both the corrupted message and a hash of
the corrupted message to adjacent receiving replicas. It is
important to realize that a single corrupt sender will affect
both receivers. For example, with a replication degree of
three where the middle sender (replica 1) transmits a cor-
rupted message, we can see from Figure 5 that both receiver
replicas 1 and 2 will be affected. In this particular case, re-
ceiver replica 1 will have received a corrupt message, but a
good hash since sender replica 0 was not corrupted. Con-
versely, receiver replica 2 will have received a valid message,
but a hash of a corrupted message. In this scenario, both
receiver replicas 1 and 2 cannot yet determine if their mes-
sage is corrupt, but they are both aware that one of their
senders was in fact corrupted. Additionally, receiver replica
0 is unaware of any corruption since both message and hash
matched on arrival. If the replication degree had only been
two, a corrupt error would be logged at this point, but no
corrective action would be available. With larger replication
degrees, in contrast, a corrupted message can be corrected.

MsgPlusHash message correction is a multi-step process
that takes place on the receiver replicas that have been
flagged with potential corruption. In this event, there will al-
ways be two adjacent receiver replicas that are aware of cor-
ruption since both are affected by the same corrupt sender
replica. Yet, these receivers cannot easily identify whether
their message or the hash was corrupted. By analyzing the
communication pattern, it is obvious that the replica which
has a higher replica rank will always have the corrupt mes-
sage with a bad hash. Therefore, the two adjacent repli-

cas communicate with one another to to determine which
of them holds a correct message. For this reason, after this
handshake, the higher replica rank transmits a correction
message to the lower ranked replica to complete the correc-
tion.1

Corrupted Adjacent Replica Discovery.
After a process encounters a message and hash mismatch,

it will initiate a protocol to discover which of its adjacent
replicas are also in this state. For each adjacent rank also
actively trying to discover a potentially corrupted process,
the other rank will engage in the discovery protocol since its
message and hash did match. Such another rank is entirely
unaware of the corruption elsewhere. In order for the two
searching processes to find each other, they both attempt to
send a probe to the rank below them (replica rank - 1) while
simultaneously issuing a receive probe from the rank above
them (replica rank + 1). After one of the processes receives
a probe, an acknowledgment is returned. Figure 6 depicts
this process.

Receiver
Replica: X

(c) Send probe to X-1

(b) Listen for ACK from X-1

(a) Listen for probe from X+1

(d) Send ACK to X+1

Figure 6: MsgPlusHash Correction Protocol

In part (a) of Figure 6, the process posts a non-blocking
receive to listen for a probe from above. Next, in part (b),
the process posts a non-blocking receive to listen for an ac-
knowledgment from the process below. With the receives
in place, part (c) posts a non-blocking send as a probe to
the rank below. The probe contains a copy of the received
message’s hash as a means to match this particular probe
on the other end. At this point, the process waits for either
the probe or acknowledgment requests to complete as they
both result in different outcomes. If a probe message is re-
ceived then the process can immediately assume that it is
the lower-ranked replica and, as such, has a copy of the cor-
rupted message due to the communication patterns. This
lower rank then sends an acknowledgment (see part (d)) to
signal that the discovery is complete. Meanwhile, if a pro-
cess receives an acknowledgment instead of a probe message
then that rank immediately assumes that it is the higher
ranked process with a valid copy of the original message. In
both cases, once discovery has completed, any outstanding
sends and receives that were posted but left incomplete are
now canceled through MPI within the RedMPI interposition
layer.

The nature of the discovery process creates a problem in
that two unique SDCs detected by adjacent replicas at sepa-
rate times may in fact send probe messages that are received

1Replica rank 0 wraps around to the adjacent replica of the
highest degree.

in a later discovery. RedMPI accounts for this possibility by
using hashes to identify whether a probe pertains to the SDC
at hand. Probes that are unrelated to the current discovery
process will be safely discarded until an expected probe hash
arrives.

With discovery complete, the higher ranked replica sends
a full copy of the original, validated message to the lower
rank. The lower rank receives a copy of this message within
the application’s buffer while overwriting the copy that orig-
inally was received in a corrupted state. Once this transfer
completes, all replicas hold a validated copy of the message
in their buffers and the MPI application may proceed.

3.3 MPI Operations

Deterministic Results.
RedMPI relies on keeping replica processes running with

approximately equal progress in execution. As replicas exe-
cute in a deterministic manner, we guarantee that all MPI
messages will be sent in exactly the same frequency, order,
and message content. There are, however, a few factors that
might derail the replicas leading to non-deterministic results
that would leave RedMPI inoperable, which has to be pre-
cluded. In particular, care was taken to ensure any MPI
routine with the potential to diverge in execution progress
of replicas is instead replaced with logic that provides the
same results across all replicas.

One notable MPI routine with the potential to induce
divergence is MPI_Wtime function. Not only is MPI_Wtime

extremely likely to return a different value between separate
processes and separate hosts, but its usage may guarantee
different outcomes across processes especially if used as a
random number seed. The divergence problem is solved by
allowing only the replica with rank zero to actually per-
form a real MPI_Wtime call. Since all replica ranks will call
MPI_Wtime at about the same time, the first replica sim-
ply sends a copy of its result to the others, which is then
returned to the MPI application.

Another MPI routine with similar potential is the
MPI_IProbe. Unlike MPI_Wtime, a probe may result in incon-
sistent results amongst replicas due to networking delays.
It is possible that all but one replica received a message.
To prevent results of MPI_IProbe from diverging, the lowest
ranking replica performs a real MPI_IProbe for the requested
message. Following the non-blocking probe, the lowest rank
then sends a copy of the results to all higher ranking repli-
cas. If MPI_IProbe returned no message, then every replica
simply reports that no message was found. Otherwise, if
the lowest rank did report probing a message then each
higher rank enters a blocking MPI_Probe to wait until their
copy of the message arrives. As every replica has the same
communication pattern, they are guaranteed to return from
MPI_Probe quickly if the probed message had not, in fact,
already arrived.

Collectives.
Collective operations in MPI pose a unique challenge for

corruption detection and correction. The first issue is the
lack of non-blocking collectives in the MPI standard as of
now. (While this short-coming is being addressed in the
forthcoming MPI 3 standard by adding non-blocking collec-
tives, our effect extends to detection and correction within
the current state of collectives in MPI 2.) Without non-

blocking collectives, it is impossible to overlap collective op-
erations. Thus, it is possible to sustain a faulty process
in a collective that does not participate or encounter other
unforeseen problems. These issues may cause other partic-
ipants to become non-responsive (“hang”) or fail (“crash”).
A second critical issue with native MPI collectives is the in-
ability to detect and correct messages at the granularity of
individual processes. RedMPI’s solution to both issues is to
map all collectives onto point-to-point operations. Via an
implementation of collectives as point-to-point messages, all
of the corruption detection benefits are realized by reusing
the existing methods presented previously. RedMPI’s goal
is not to directly create the most efficient implementation
of collectives over point-to-point messages, as this would
replicate existing functionality of any MPI runtime without
adding to the research contributions. Besides, such an effort
would be nontrivial without the knowledge of the underly-
ing communication transports. Instead, RedMPI provides
a reliable and effective implementation of the original MPI
collectives in a fashion that allows existing codes to enjoy
the benefits of the RedMPI corruption detection methods.

4. FAULT INJECTION FRAMEWORK
To experimentally determine the effect of corruption and

verify corrective actions, a fault injector needs to be de-
vised that can reliably produce data corruption in a man-
ner resembling naturally occurring faults. Namely, single
bit flips undetected by ECC are of interest (e.g., within an
arithmetic-logic unit of a processor) when their effects even-
tually propagate into a message transmission over MPI. The
fault injector designed to co-exist with RedMPI specifically
targets MPI message send buffers to ensure that each in-
jection actually impacts the MPI application while simulta-
neously reaching message recipients. When activated, the
fault injector is given a frequency of 1/x during launch,
which is the probability that any single message may be-
come corrupted. By using a random number generator with
a state internal to RedMPI (as to not affect the MPI applica-
tion itself), the injector randomly picks messages to corrupt.
Once targeted for corruption, RedMPI selects a random bit
within the message and flips it prior to sending it out. No-
tably, RedMPI is agnostic to the data type of the message.
This allows the injector to calculate the total number of bits
within the entire message regardless of type or count before
picking a random bit to flip.

Note that not only does the fault injector flip a bit in
the send buffer, but it actually modifies the application’s
memory directly. If the MPI application accesses the same
memory again, further calculations based on that data will
be invalid with a high probability of causing further diver-
gence from non-corrupted replicas.

5. EXPERIMENTAL FRAMEWORK
This section describes the experiments we conducted

and the computing environment on which they were per-
formed. For benchmarking and testing purposes we deployed
RedMPI on a medium sized cluster at North Carolina State
University and utilized up to 24 nodes for the purposes
of benchmarking. Each compute node consists of a 2-way
SMPs with AMD Opteron 6182 (Magny Core) processors of
8 cores per socket (16 cores per node). Each node contains
32 gigabytes of memory. To provide networking support,

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00
180.00
200.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

(a) CG

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00
180.00
200.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

(b) FT

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00
180.00
200.00

16 32 64

R
u
n
ti
m
e
 in

 S
e
co
n
d
s

Benchmark MPI Size

OpenMPI RedMPI‐1 RedMPI‐2 RedMPI‐3

(c) LU

Figure 7: Comparison of OpenMPI with various RedMPI configurations on NAS Parallel Benchmarks

each node is connected via 1000Mbps Ethernet for user in-
teractions and management. MPI transport is provided by
40Gb/s InfiniBand. To maximize the compute capacity of
each node, we ran up to 16 processes per node.

To benchmark the overheads associated with RedMPI’s
various communication changes, the NAS Parallel Bench-
marks (NPB) is evaluated for various RedMPI configura-
tions and varying number of processes. Of the two SDC
methods proposed, we solely report benchmark results for
the MsgPlusHash method as it provides a more efficient com-
munication protocol by design. To provide meaningful met-
rics, each experiment assesses the run time for regular, unal-
tered OpenMPI, RedMPI without any redundancy or SDC
(RedMPI-1), RedMPI with dual redundancy (RedMPI-2),
and RedMPI with triple redundancy (RedMPI-3). Each ex-
periment is run 8 times with the average presented in our
results.

Note that RedMPI-1 is not a typical scenario we would
expect for normal operation, but the experimental results
are of interest in order to demonstrate the performance ef-
fect of null interpositioning and the overhead imposed by
RedMPI’s linear collectives on our benchmarks. For this
reason, RedMPI-1 bridges the gap between regular Open-
MPI and RedMPI-2/3 results.

To gauge SDC sustainability when RedMPI is active with
redundancy, we randomly inject faults into the running
benchmarks to determine if the faults are detected and if cor-
rection succeeds. Additionally, we experimentally determine
if the fault corrections allow the benchmarks to complete
their self-verification process successfully following compu-
tation.

6. RESULTS
We will first analyze the runtime results of our various

RedMPI configurations as shown in Figure 7. The results are
broken down by benchmark with three different Benchmark
MPI sizes (number of processors) shown. In all cases, we
assessed the performance for each benchmark under “class
C” problem sizes (inputs). We report the wall-clock time for
each benchmark execution averaged over 8 iterations but
also provide minimum and maximum runtimes depicted as
error bars, which illustrate the effect of background services
and other OS activity.

The CG benchmark (Figure 7(a)) ran with the highest
overhead of the benchmarks considered with an average

overhead of 45% for dual redundancy and 62% for triple
redundancy relative to a plain, unaltered OpenMPI applica-
tion run. FT (Figure 7(b)) incurred a 39% average overhead
for dual redundancy and 40% for triple redundancy. Finally,
LU (Figure 7(c)) had the least overhead with a 13% average
for dual and 21% for for triple redundancy.

An interesting point to note is the slight performance
increase in RedMPI-1 compared to plain OpenMPI. As
RedMPI-1 provides no redundancy, we believe that our per-
formance of collectives is responsible for this slight perfor-
mance jump. By using a simple linear point-to-point map-
ping of collectives, we avoid the overhead associated with
using a more advanced communication pattern (e.g., trees)
employed by OpenMPI to improve performance on larger-
scale jobs. Since our job sizes did not span large numbers of
nodes or specialized communication topologies, we believe
that our circumstances allowed for improved performance
given our cluster and job sizes. On large-scale systems with
thousands of nodes we expect that the opposite will occur as
RedMPI does not (yet) support advanced collective trans-
mission topologies or transport-specific optimizations.

Next, we analyze the effectiveness of the SDC detection
and correction protocols. We ran the fault injector with
two different corruption frequencies: 1/5, 000, 000 messages
and 1/2, 500, 000 messages to provide a relatively high like-
lihood that we would encounter an injection while running
the CG benchmark with 64 processes (virtual ranks) and
a replication degree of three. During ten experiments with
a frequency of 1/5, 000, 000, we encountered one occasion
with two injections, four occasions with a single injection,
and five occasions with no injections. In every run except
one, the corruption resulted in a single bad message that was
successfully detected and corrected by the receiving replicas.
In one event, however, a single injection cascaded resulting
in 6,242 bad messages originating from the corrupted sender.
Nevertheless, the receiving replicas were able to correct the
messages as they arrived. Eventually, the corrupted node(s)
ceased to send corrupted messages as the application fin-
ished traversing data structures until the fault was no longer
touched. In these experiments, the applications progressed
until completion and successfully passed their built-in veri-
fication at the end of processing.

Following that experiment, we performed injections with
a frequency of 1/2, 500, 000 in another ten runs. By doubling
the odds for an injection, we observed much more dramatic
events. On average, we received 2.5 injections per run with

about 3,377 invalid messages per run as a result. Neverthe-
less, RedMPI carried all but two runs to a successful com-
pletion with verification. Of the two runs that failed, they
likely fell subject to:
(a) a simultaneous SDC in two messages between replicas
or
(b) an SDC that subsequently caused changes in data-
dependent control paths resulting in differing MPI calls.
(RedMPI depends on non-divergent control flow between
replicas of the same virtual rank.)
In our experiment, we believe that case (a) occurred with
two nodes becoming corrupt and sending differing messages.
The receiving replicas would receive 3 unique messages con-
tents (2 unique corrupt messages and 1 correct). Unable to
distinguish which node is corrupt, RedMPI would be forced
to fail. In this type of situation when each run incurs several
thousand bad messages, the chance for recovery decreases as
more senders encounter faults of type (a) or (b) above.

Performance of the SDC correction method has proved
to be quite efficient. During SDC correction overhead ex-
periments, we discovered that with as few three injections
we were able to produce nearly 100,000 invalid messages
from corrupted senders. The receiving replicas were able to
successfully detect and correct each invalid message while
effectively generating no perceived overhead. In fact, while
running 20 experimental iterations to gauge the protocol
overhead of correcting MsgPlusHash messages during injec-
tion, our experimental runtime average was 0.31 seconds less
than the original experiment runtime average that lacked
fault injection.

Realistically, we do not expect to encounter such a high
number of naturally occurring SDCs for a small environment
such as our benchmarking cluster. The actual overhead in-
curred due to SDC correction is a function of the number of
invalid messages sent and the distribution of such messages
over nodes. The number of invalid messages sent is highly
dependent on the data reuse patterns of an MPI application.
For example, an application that never reuses data from a
send buffer will only incur a single invalid message in the
event that a buffer is corrupt. On the other handle, if an
entire application depends on reuse of data being stored in
a buffer, then it is possible that the number of invalid mes-
sages would quickly exceed the valid messages in this type
of program design.

7. RELATED WORK
Since the early 1990s [7], fault tolerance in large-scale

HPC systems is primarily assured through application-level
checkpoint/restart (C/R) to/from a parallel file system.
Support for C/R at the system software layer exists, such
as through the Berkeley Lab Checkpoint Restart (BLCR)
[15] solution, but it is only employed at a few HPC cen-
ters. Diskless C/R, i.e., using compute-node memory for
distributed checkpoint storage, exists as well, like the Scal-
able C/R (SCR) library [4], but is rarely used in practice.
Message logging, algorithm-based fault tolerance, proactive
fault tolerance, and Byzantine fault tolerance have all been
researched in the past and are also not available in produc-
tion HPC systems. Redundancy in HPC, as showcased in
this paper, has only been recently explored (see below).

Historically, the primary defense against silent data cor-
ruption (SDC) has been error correcting code (ECC) in dy-
namic random access memory (DRAM). Only very recently,

ECC has been deployed in server-market processors, such
as in the AMD Opteron, to protect cache and registers as
well. Single event upsets (SEUs) [11], i.e., bit flips caused
by natural high-energy radiation, are the dominant source
of SDC. In today’s memory modules and processors, single-
error correction (SEC) double-error detection (DED) ECC
protects against SEU as well as single event multiple upset
(SEMU) scenarios. Chipkill [8] offers additional protection
against wear-out and complete failure of a memory mod-
ule chip by spanning ECC across chips. Manufacturers will
continue exploring mitigation strategies and will be able to
continue to deliver products with certain soft error resilience.
However, high reliability for the latest-generation processors
and memories comes at a price in terms of chip space and
power consumption, and still may not be as good as to-
day’s [16]. Redundancy may provide more extensive SCD
protection, especially considering the expected increase in
SECDED ECC double-error rates.

Studies primarily done at Los Alamos National Labora-
tory (LANL) focused on analyzing the probability and im-
pact of silent data corruption in HPC environments. One
investigation [22] showed that a Cray XD1 system with an
equivalent number of processors as the ASCI Q system,
i.e., ∼18,000 field-programmable gate arrays (FPGAs) with
16.5 TB SECDED-ECC memory, would experience one SDC
event within 1.5 hours due to the high vulnerability of the
FPGAs. Ongoing work at LANL focuses on radiating new-
generation processors, flash, and memory with neutrons at
the Los Alamos Neutron Science Center (LANSCE) to mea-
sure vulnerability and efficiency of protection mechanisms.
Another study [3] at Lawrence Livermore National Labo-
ratory (LLNL) investigated the behavior of iterative linear
algebra methods when confronted with SDC in their data
structures. Results show that linear algebra solvers may
take longer to converge, not converge at all, or converge to
a wrong result. These investigations not only point out a
high SDC rate when scaling up HPC systems, but also the
severe impact SDC has. More extensive SDC protection is
needed to assure application correctness at extreme-scale.

In general, modular redundancy (MR) transparently
masks any errors without the need for rollback recovery. In
case of SDC, detection is achieved through comparison and
recovery is performed by majority voting. MR has been used
in information technology, aerospace and command & con-
trol [34]. Recent software-only approaches [13, 33] focused
on thread-level, process-level and state-machine replication
to eliminate the need for expensive hardware. The sphere of
replication [24] concept describes the logical boundary of re-
dundancy for a replicated system. Components within such
a sphere are protected; those outside are not. Data entering
it (input) is replicated, while data leaving (output) is com-
pared. The work in this paper relies on this concept directly
in the all-to-all and indirectly in the MsgPlusHash protocol.

A recent analysis [10] studied the impact of deploying re-
dundancy in HPC systems. System availability is a standard
metric used in the information technology industry and is
based on mean-time to failure (MTTF) and mean-time to
recovery (MTTR): A = MTTF / (MTTF + MTTR). Re-
dundancy can significantly increase system availability and
correspondingly lower the needed component reliability, i.e.,
the component rating by the number of nines in the com-
ponent’s availability rating (e.g. 99.9% as 3-nine rating).
Redundancy applied to a single computer allows to decrease

the MTTF of each replica by a factor of 100-1,000 for dual
redundancy and by 1,000-10,000 for triple redundancy with-
out lowering overall system MTTF. If a failed replica is re-
covered through rebooting or replacing with a hot spare,
replica node MTTF can be lowered by a factor of 1,000-
10,000 for dual and by 10,000-100,000 for triple redundancy.
Redundancy applied to each compute node in a HPC system
with 1 million nodes allows lowering the node rating from
7 to 3 nines with 2 million dual-redundant nodes and to 2
nines with 3 million triple-redundant nodes. Redundancy
essentially offers a trade-off between component quality and
quantity. The work presented in this paper permits this
trade-off.

An even more compelling study [12] uses an empirical as-
sessment of how redundant computing improves time to so-
lution. The simulation-driven study looked at a realistic sce-
nario with a weak-scaling application that needs 168 hours
to complete, a per-node MTTF of five years, a fixed five
minutes to write out a checkpoint, and a fixed ten-minute
time to restart. Checkpointing is performed at an optimal
interval. The results show that at 200,000 nodes, an appli-
cation will spend eight times the amount of time required
to perform the work, reducing the throughput of such a ma-
chine to just over 10% compared to a fault-free environment.
In contrast, using 400,000 nodes and dual-redundancy, the
elapsed wall clock time is 1/8 of than for the 200,000-node
non-redundant case. The throughput of the 400,000-node
system is four times better with redundant computing than
the non-redundant 200,000-node system. The prototype de-
tailed in this paper is a step toward achieving this capability.

rMPI [12] is a prototype for redundant execution of MPI
applications. It is a library that gets inserted during link
time between an application and the MPI library using
MPI’s profiling interface (PMPI). Using rMPI, an MPI
application is started on up to 2n nodes and sees ranks
0 . . . n − 1. rMPI transparently provides redundancy using
the remaining nodes. It maintains each redundant node and
duplicates the work of its active partner. In case of a node
failure, the redundant node continues without interruption.
The application fails only when two corresponding replicas
fail. The synchronization protocols and the additional mes-
sages incur overhead that is significant in low-level, point-
to-point benchmarks. The reported impact on actual ap-
plications is for the most part negligible. The overhead for
LAMMPS is less than 4%, for SAGE less than 10%, for
CTH less than 20% at 2,048 nodes, and for HPCCG less
than 5%. RedMPI leverages rMPI technology, such as the
PMPI method and the all-to-all message replication, as a
follow-on project. RedMPI differentiates itself from rMPI
by offering SDC protection and a new low-overhead replica-
tion protocol.

The modular-redundant Message Passing Interface (MR-
MPI) [9] is a similar solution for transparently executing
HPC applications in a redundant fashion. It also utilizes
the PMPI to transparently intercept MPI calls from an ap-
plication and to hide all redundancy-related mechanisms. In
MR-MPI, a redundantly executed application runs with r∗m
native MPI processes, where r is the number of MPI ranks
visible to the application and m is the replication degree.
Messages are replicated between redundant nodes. Partial
replication, such as 50%, for tunable resilience is supported.
The results show the negative impact of the O(m2) messages
between replicas. For low-level, point-to-point benchmarks,

the impact can be as high as the replication degree. In re-
alistic scenarios, the overhead can be 0% for embarrassingly
parallel or up to 70-90% for communication-intensive appli-
cations in a dual-redundant configuration. RedMPI lever-
ages MR-MPI technology, such as its redundant collectives,
as a follow-on project. RedMPI extends beyond the capa-
bilities of MR-MPI by protecting against SDC and lowering
the replication overhead.

In contrast to rMPI and MR-MPI, VolpexMPI [20] is an
MPI library implemented from scratch that offers redun-
dancy internally. It supports around 40 MPI functions and
uses a polling mechanism by the receiver of point-to-point
messages to avoid message replication. If a polled sender (of
a replicated sender-receiver pair) fails to respond, a differ-
ent sender (replica of the original sender) is chosen until the
receive is successful. Messages are matched with a logical
timestamp to allow for late message retrieval. VolpexMPI
achieves close to 80% of Open MPI’s point-to-point message
bandwidth, while the small message latency increases from
0.5ms to 1.8ms. Using the NAS Parallel Benchmark suite,
there is no noticeable overhead for BT and EP for 8 and
16 processes. SP shows a significant overhead of 45% for
16 processes. The overhead for CG, FT and IS is consider-
ably higher as these benchmarks are communication heavy.
VolpexMPI does not provide SDC protection, however, it
offers better performance as replication protocols are part
of the low-level communication inside the MPI library.

8. CONCLUSION
Redundant computing is one approach to detect SDC. In

this paper, we evaluate the feasibility of implementing SDC
detection and correction at the MPI layer and report the
runtime overhead imposed by this level of protection. We
present two consistency protocols and measure their abil-
ity to detect injected faults and their impact on application
runtimes.

We find that for the second, more efficient, protocol, Ms-
gPlusHash, result in an average overhead ranging between
20% and 60% for triple redundancy and 13% to 45% for dual
redundancy depending on the number of messages sent by
the application and do not change significantly as the num-
ber of processes is varied. These modest overhead ranges
indicate the potential of RedMPI to protect against SDC for
large-scale runs. Overheads for applications under RedMPI
dependent heavily on communication patterns. An appli-
cation only requiring SDC detection will be sufficient with
dual redundancy overhead while the additional correction
support requires triple redundancy.

Our protocol detected and corrected injected faults for
processes that continued to completion even when these
faults resulted in many thousands of corrupted messages
from a sender that experienced one or more SDC faults. In
our experiments, we encountered two events that RedMPI
was not able to correct. It is important to note that we
have stress-tested RedMPI beyond realistic rates in order to
generate extreme SDC rates for presentation of RedMPI’s
capabilities. Both of the uncorrectable events lead to a
deadlock and did not allow the application to proceed with
corrupt data but prevented corrupted results from being re-
ported without knowledge of application scientists. Future
would can address this by incorporating deadlock detection
between sets of replicas, which is feasible for just three repli-
cations under triple redundancy. In summary, RedMPI was

successful in preventing invalid data from propagating or be-
ing transmitted without detection in even the most extreme
scenarios, which could yield invalid application results for
an unprotected application.

While the cost of double and triple redundancy is high in
terms of power and price, implementing redundancy is not.
Detecting and correcting silent data errors may be worth the
cost for mission-critical and high-consequence applications
such as many large-scale simulations of grand-challenge ap-
plications.

9. REFERENCES
[1] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama,

T. Asakawa, K. Morita, T. Muta, T. Motokurumada,
S. Okada, H. Yamashita, Y. Satsukawa, A. Konmoto,
R. Yamashita, and H. Sugiyama. A 1.3ghz fifth
generation sparc64 microprocessor. In Design
Automation Conference, pages 702–705, New York,
NY, USA, 2003. ACM Press.

[2] T. M. Austin. DIVA: A reliable substrate for deep
submicron microarchitecture design. In International
Symposium on Microarchitecture, pages 196–207, 1999.

[3] G. Bronevetsky and B. R. de Supinski. Soft error
vulnerability of iterative linear algebra methods. In
Proceedings of the 21st ACM International Conference
on Supercomputing (ICS) 2008, Island of Kos, Greece,
June 7-12, 2007. ACM Press, New York, NY, USA.

[4] G. Bronevetsky and A. Moody. Scalable I/O systems
via node-local storage: Approaching 1 TB/sec file I/O.
Technical Report TR-JLPC-09-01, Lawrence
Livermore National Laboratory, Livermore, CA, USA,
Aug. 2009.

[5] J. T. Daly. ADTSC nuclear weapons highlights:
Facilitating high-throughput ASC calculations.
Technical Report LALP-07-041, Los Alamos National
Laboratory, Los Alamos, NM, USA, June 2007.

[6] J. T. Daly, L. A. Pritchett-Sheats, and S. E. Michalak.
Application MTTFE vs. platform MTTF: A fresh
perspective on system reliability and application
throughput for computations at scale. In Proceedings
of the Workshop on Resiliency in High Performance
Computing (Resilience) 2008, pages 19–22, May 2008.

[7] N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott,
C. Engelmann, and B. Harrod. High-end computing
resilience: Analysis of issues facing the HEC
community and path-forward for research and
development. Whitepaper, Dec. 2009.

[8] T. J. Dell. A white paper on the benefits of
chipkill-correct ECC for PC server main memory. IBM
Microelectronics Division, 1997.

[9] C. Engelmann and S. Böhm. Redundant execution of
hpc applications with mr-mpi. In Proceedings of the
10th IASTED International Conference on Parallel
and Distributed Computing and Networks (PDCN)
2011, Innsbruck, Austria, Feb. 15-17, 2011. ACTA
Press, Calgary, AB, Canada.

[10] C. Engelmann, H. H. Ong, and S. L. Scott. The case
for modular redundancy in large-scale high
performance computing systems. In Proceedings of the
8th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN) 2009,
pages 189–194, Innsbruck, Austria, Feb. 16-18, 2009.

ACTA Press, Calgary, AB, Canada.

[11] J. Fabula, J. Moore, and A. Ware. Understanding
neutron single-event phenomena in FPGAs. Military
Embedded Systems, 3(2), 2007.

[12] K. B. Ferreira, R. Riesen, R. Oldfield, J. Stearley,
J. Laros, K. Pedretty, T. Kordenbrock, and
R. Brightwell. Increasing fault resiliency in a
message-passing environment. TR SAND2009-6753,
Sandia National Lab, Oct. 2009.

[13] A. Golander, S. Weiss, and R. Ronen. DDMR:
Dynamic and scalable dual modular redundancy with
short validation intervals. IEEE Computer
Architecture Letters, 7(2):65–68, 2008.

[14] M. Gomaa, C. Scarbrough, T. N. Vijayjumar, and
I. Pomeranz. Transient-fault recovery for chip
multiprocessors. In International Symposium on
Computer Architecture, pages 98–109, May 2003.

[15] P. H. Hargrove and J. C. Duell. Berkeley Lab
Checkpoint/Restart (BLCR) for Linux clusters. In
Journal of Physics: Proceedings of the Scientific
Discovery through Advanced Computing Program
(SciDAC) Conference 2006, volume 46, pages
494–499, Denver, CO, USA, June 25-29, 2006.
Institute of Physics Publishing, Bristol, UK.

[16] T. Heijmen, P. Roche, G. Gasiot, K. R. Forbes, and
D. Giot. A comprehensive study on the soft-error rate
of flip-flops from 90-nm production libraries. IEEE
Transactions on Device and Materials Reliability
(TDMR), 7(1):84–96, 2007.

[17] C.-H. Hsu and W.-C. Feng. A power-aware run-time
system for high-performance computing. In
Supercomputing, 2005.

[18] L. L. N. Laboratory. Personal communications. 2007.

[19] O. R. N. Laboratory. Personal communications. 2010.

[20] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok.
Volpexmpi: An MPI library for execution of parallel
applications on volatile nodes. In Lecture Notes in
Computer Science: Proceedings of the 16th European
PVM/MPI Users‘ Group Meeting (EuroPVM/MPI)
2009, volume 5759, pages 124–133, Espoo, Finland,
Sept. 7-10, 2009. Springer Verlag, Berlin, Germany.

[21] A. Mahmood and E. J. McKluskey. Concurrent error
detection using watchdog processors - A survey. IEEE
Transactions on Computers, 37(2):160–174, 1988.

[22] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E.
Takala, and S. A. Wender. Predicting the number of
fatal soft errors in Los Alamos National Laboratory’s
ASC Q supercomputer. IEEE Transactions on Device
and Materials Reliability (TDMR), 5(3):329–335, 2005.

[23] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim.
Robust system design with built-in soft-error
resilience. Computer, 38(2):43–52, 2005.

[24] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt.
Detailed design and evaluation of redundant
multithreading alternatives. In Proceedings of the 29th

Annual International Symposium on Computer
Architecture (ISCA) 2002, pages 99–110, Anchorage,
AK, USA, May 25-29, 2002. IEEE Computer Society.

[25] I. Philp. Software failures and the road to a petaflop
machine. In HPCRI: 1st Workshop on High
Performance Computing Reliability Issues, in
Proceedings of the 11th International Symposium on

High Performance Computer Architecture (HPCA-11).
IEEE Computer Society, 2005.

[26] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
trends in a large disk drive population. In USENIX
Conference on File and Storage Technologies, 2007.

[27] H. Quinn and P. Graham. Terrestrial-based radiation
upsets: A cautionary tale. In Symposium on
Field-Programmable Custom Computing Machines
(FCCM) 2005, pages 193–202, Apr. 18-20, 2005.

[28] J. Ray, J. C. Hoe, and B. Falsafi. Dual use of
superscalar datapath for transient-fault detection and
recovery. In International Symposium on
Microarchitecture, pages 214–224, 2001.

[29] S. K. Reinhardt and S. S. Mukherjee. Transient fault
detection via simultaneous multithreading. In
International Symposium on Computer Architecture,
pages 25–36, 2000.

[30] E. Rotenberg. AR-SMT: A microarchitectural
approach to fault tolerance in microprocessors. In
International Symposium on Fault Tolerant
Computing, pages 84–91, 1999.

[31] N. Saxena and E. McCluskey. Dependable adaptive
computing systems – the roar project. In Intl. Conf.
on Systems, Man, and Cybernetics, pages 2172–2177,
Oct. 1998.

[32] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram
errors in the wild: a large-scale field study. In
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 193–204, 2009.

[33] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and
D. A. Connors. PLR: A software approach to transient
fault tolerance for multicore architectures. IEEE
Transactions on Dependable and Secure Computing
(TDSC), 6(2):135–148, 2009.

[34] D. P. Siemwiorek. Architecture of fault-tolerant
computers: An historical perspective. Proceedings of
the IEEE, 79(12):1710–1734, 1991.

[35] J. R. Sklaroff. Redundancy management technique for
space shuttle computers. IBM Journal of Research and
Development, 20(1):20–28, 1976.

[36] T. N. Vijaykumar, I. Pomeranz, and K. Cheng.
Transient-fault recovery using simultaneous
multithreading. In International Symposium on
Computer Architecture, pages 87–98, 2002.

[37] Y. Yeh. Triple-triple redundant 777 primary flight
computer. In 1996 IEEE Aerospace Applications
Conference. Proceedings, volume 1, pages 293–307,
1996.

[38] Y. C. B. Yeh. Design considerations in boeing 777
fly-by-wire computers. In IEEE International
High-Assurance Systems Engineering Symposium,
page 64, 1998.

