SAND2011-0399C

Noname manuscript No.
(will be inserted by the editor)

Fault Oblivious High Performance Computing with Dynamic Task

Replication and Substitution

Yevgeniy Vorobeychik - Jackson R. Mayo -
Ronald G. Minnich - Don W. Rudish

Abstract Traditional parallel programming techniques will
suffer rapid deterioration of performance scaling with grow-
ing platform size, as the work of coping with increasingly
frequent failures dominates over useful computation. To ad-
dress this challenge, we introduce and simulate a novel soft-
ware architecture that combines a task dependency graph
with a substitution graph. The role of the dependency graph
is to limit communication and checkpointing and enhance
fault tolerance by allowing graph neighbors to exchange data,
while the substitution graph promotes fault oblivious com-
puting by allowing a failed task to be substituted on-the-fly
by another task, incurring a quantifiable error. We present
optimization formulations for trading off substitution errors
and other factors such as available system capacity and low-
overlap task partitioning among processors, and demonstrate
that these can be approximately solved in real time after
some simplifications. Simulation studies of our proposed ap-
proach indicate that a substitution network adds consider-
able resilience and simple enhancements can limit the ag-
gregate substitution errors.

1 Introduction

Traditional parallel programming techniques have been de-
veloped at platform scales small enough that the various
causes of component failure (including hardware, operating
system, and application faults) can be neglected to a first ap-
proximation. Thus the emphasis has been on optimizing ap-
plication performance under a rare-failure assumption, and
separately on ensuring sufficient levels of component reli-
ability to comply with this assumption. In common paral-

Yevgeniy Vorobeychik - Jackson R. Mayo - Robert C. Armstrong -
Ronald G. Minnich - Don W. Rudish

Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-
0969, USA

E-mail: yvorobe @sandia.gov

Robert C. Armstrong -

lel programming models such as MPI, an entire parallel job
halts if a single component contributing to the job fails, and
so an add-on mechanism is required to deal with failures
if one or more of them are likely to occur during a job. The
“checkpoint-restart” solution, where a snapshot of the global
state of the application is periodically saved to disk and used
to resume the job in the event of failure, enables long jobs to
run to completion at a manageable cost in additional com-
puting time, but only when failures are sufficiently rare —
more precisely, when the system-wide mean time between
failures (MTBF) is large compared to the time required to
save a checkpoint [4].

Continuing large increases in system size, without corre-
sponding increases in MTBF for individual components, are
reducing the system-wide MTBF for leading HPC platforms
to levels where checkpoint-restart will not remain practical.
As the system-wide MTBF becomes smaller than the check-
pointing time, forward progress of traditionally designed ap-
plications will slow dramatically and their useful completion
will become effectively impossible; thus the benefits of ex-
ascale computing will not be fully realized in such a frame-
work. Various enhancements, such as predictive monitoring
to checkpoint selectively when failure is more likely [2], can
extend the feasibility of checkpoint-restart to a degree, but
by themselves are expected to be insufficient for exascale
computing.

We introduce a software architecture, based on a largely
decentralized use of dependency and substitution graphs,
that promotes a high degree of fault tolerance and even fault
obliviousness. The architecture is general, but allows con-
siderable flexibility in responding to failures of computation
nodes if a job has appropriate structure. Specifically, we take
advantage of two kinds of structure: (a) sparse dependen-
cies among tasks and (b) similarity of computation products
of different tasks. The former is encoded in a dependency
graph, while the latter motivates the substitution graph. The
key idea is that if a task fails and a close substitute is still

Yevgeniy Vorobeychik et al.

available, we can dynamically remap the dependency with-
out having to restart the entire job or even the failed task.
Furthermore, we can quantify how much error in results is
introduced by substitutions, allowing a principled tradeoff
between substitutions and task restarts. We implement our
architecture in simulation and demonstrate its efficacy and
resilience, showing in addition that we can limit substitution
errors as well as developer burden by using simple empirical
techniques to derive substitution weights.

2 Example Application

Before presenting our architecture for fault oblivious com-
puting, it will be useful to keep in mind a specific applica-
tion. Our application of choice is distributed asynchronous
value iteration, which we subsequently use to test our ap-
proach in simulation. Value iteration is one of the algorithms
for computing the values of states of a discounted Markov
decision process (MDP) [7]. An MDP evolves over a se-
quence of discrete time steps, proceeding through a series of
states belonging to a set S. At a fixed time step ¢, the decision
maker finds himself in some state s, € S, and must choose
some action a; € A(s;), where A(s,) is the set of feasible
actions in state s;. Upon taking action a; in state s;, he re-
ceives a probabilistic reward r; and probabilistically transi-
tions to the next state s+ ;. The Markovian property ensures
that both the distribution over rewards and the distribution
over next states depend only on the current state and action.
We consider a slightly simplified model in which rewards
are a deterministic function of current state; thus, r, = r(s,).
We denote the distribution over next states by P, with Py,
meaning the probability of transitioning from state s to s if
action a is taken in state s.

A solution to an MDP is a policy m, which determines
the sequence of action choices as a function of state, denoted
7(s). An optimal policy ©* is the policy that maximizes the
expected reward with a discount factor 9, that is,

Tt = argmax Z §'E

=0

[r(s,)|7]. (D

The corresponding expected reward (value) of any state s €
S is V*(s), which can be alternatively expressed by the Bell-
man equation [7]:

V*(s) =r(s) + & max ZP“/V s'). (2)

acA(s

Value iteration [1,7] is a natural algorithm for iteratively
computing optimal state values V* that stems directly from
the Bellman equation. At iteration n, the value V4 (s) is
computed as

Vat1(s) = r(s) + 0 max ZP Vi (3)

acA(s

This algorithm is provably convergent to the true vector of
valuations V*.

Moving from a serial to a parallel implementation of the
value iteration algorithm is rather natural. For simplicity,
suppose that a processor is tasked with computing a value
for a single state s € S (thereby eschewing any state par-
titioning issues for the moment). The internal data on the
processor will be 7(s), 8, and the part of P¢, with s as the
initial state, which can be represented as a matrix with a as
rows, s’ as columns, and corresponding transition probabil-
ities as entries. At each iteration, the entire vector V,, must
be broadcast to all processors in order to compute V11 [1].
There are three problems with this approach:

1. it requires synchronization, with the concomitant perfor-
mance cost;

2. it requires broadcast transmission of the entire vector V,,
in every iteration n; and

3. it requires internally storing data of size |S||A(s)].

The most important issue is the second, since message pass-
ing is likely the performance bottleneck and, with large state
spaces, the parallel algorithm will become entirely impracti-
cal as a consequence (message passing will dominate com-
putation). Synchronization is the easiest issue to overcome
in a natural way: Rather than requiring all states to broadcast
their values V,, synchronously, let them do so every time a
new value is computed. In this way, each state has the lat-
est vector of values, but the process no longer requires any
synchronization. It turns out that asynchrony does not pre-
clude convergence, as long as processors do not stall (i.e.,
values of all states keep being updated) [6]. The other two
issues are resolved by the decentralized dependency graph,
described below.

3 Dependency and Substitution (DAS) Architecture for
Dynamic Task Replication and Substitution

The goal of this section is to introduce a general architecture
that allows effective failure management and, under some
conditions, fault obliviousness in exascale computing sce-
narios. Here, we envision jobs that are divided into a very
large number of interdependent tasks. Consequently, a fail-
ure of one processor running a certain task can potentially
bring down the entire job due to the intricate interdependen-
cies. Our goal is to manage such interdependencies in order
to dynamically restart tasks or replace them with other tasks
that generate similar data. To this end, we introduce two
graphical data structures: a dependency graph and a substi-
tution graph. The former keeps track of data dependencies
between tasks, while the latter is a representation of sub-
stitution relationships between tasks (that is, whether data
from one task can substitute for the data from another, pos-
sibly failed, task). The former structure primarily manages

Fault Oblivious High Performance Computing with Dynamic Task Replication and Substitution 3

I D
Fig. 1 Example of a simple dependency graph involving four tasks.

failures, while the latter is a means of fault obliviousness,
insofar as it can be achieved. As the architecture depends on
these two graphical structures, we term it the DAS (depen-
dency and substitution) architecture.

3.1 Dependency Graph

A dependency graph is a directed graph representation of
data dependencies between tasks, with each node represent-
ing a computational task (e.g., computing the value of a state
s), while a directed edge from i to j means that task i de-
pends on task j (for example, a non-zero probability tran-
sition from s to s"). Figure 1 shows a simple example. In
parallel computing, we wish to decentralize information as
much as possible, and so it would be greatly undesirable
(if not entirely impractical) to maintain a completely cen-
tralized dependency graph. Instead, each node maintains the
dependency subgraph immediately relevant to it. In our sim-
ulated implementation, a node merely maintains the list of
all nodes that it depends on, as well as those nodes that de-
pend on it, although a more robust implementation would
allow it also to maintain dependencies of its inputs (i.e., of
the nodes it depends on), etc. The first thing that a decen-
tralized dependency graph gains us is a simple resolution of
the scalability issues outlined in our discussion of value it-
eration in Section 2 (but applicable broadly). In our case,
rather than broadcast messages being sent to all nodes, a
node queries all its dependencies for their values via mes-
sage passing, limiting communication to a potentially small
fraction of the tasks at any given time. Observe that a depen-
dency graph is completely general, since it allows all tasks
to be interdependent, but its benefits arise only if it is sparse.

Focusing now on our stated main task of fault tolerance
and obliviousness, the dependency graph provides our main
mechanism for fault tolerance. Suppose that a task i detects
that one of its dependencies j has failed (perhaps because j
did not respond to some query within a timeout period, or i
was notified of this failure either by the failing node or by
the operating system). If i already has the requisite data from
J» it needs to do nothing. If not, it can notify the system of
the failure. If there is a provision in the running job to restart
specified tasks, or if there is a checkpoint that we can refer
back to, the failed task can again be placed on the run queue
to be restarted so as to provide the needed data to i. Note
that we do not require that the dependency graph be speci-

fied at the time that the main job is started; it can be gener-
ated dynamically, as tasks are spawned by the main process.
An important aspect is the decentralization of the graph, so
that tasks themselves may determine whether any failed de-
pendency actually needs restarting. Consider, for example,
a situation in which a task that fails is not depended upon
by any other task. Its failure will then go essentially unno-
ticed, except, perhaps, by the system, and so the job may
well continue running, entirely oblivious to any failure hav-
ing occurred. This ensures that progress can be made even
in the presence of frequent node failures.

Another utility of the dependency graph is that it can
be a means of restoring state without frequent checkpoint-
ing. Checkpointing is known to be extremely expensive, of-
ten dominating performance, and reducing the frequency of
checkpointing can account for dramatic performance im-
provement. Now, suppose that computation of a task pro-
duces incremental results, which also provide a starting point
at the time of restart. If these incremental (intermediate) re-
sults of a computation are multicast to those tasks that de-
pend on it, then in the event of a task failure and restart, the
task can receive these intermediate results from its depen-
dencies without requiring any checkpointing (except, per-
haps, the checkpoint required to start up the task at all). As
a result, checkpointing can be infrequent. While such “hot-
starts” are not yet a part of our implementation, they could
provide an important part of the proposed architecture with-
out very much added effort.

The dependency graph is a key data structure that allows
us to implement decentralized fault tolerance and, to some
degree, fault obliviousness. The key data structure that tar-
gets specifically fault obliviousness (to the extent it is possi-
ble) is the substitution graph, which we turn to next.

3.2 Substitution Graph

A substitution graph specifies, for node i, a collection of
nodes that generate data that can substitute for the data gen-
erated by i, as well as weights for each representing the up-
per bound on loss (error) incurred due to substitution. As
an example, consider a pair of states in value iteration that
transition to each other with high probability for some ac-
tions, and suppose that the discount factor is not too low.
The values at these two states are natural substitutes, since
each state can be reached from the other in a single step.
While it is not necessary that substitution relationships are
reciprocal, it is quite natural that they are, and we therefore
assume that the substitution graph is undirected. An exam-
ple of a substitution graph is shown in Figure 2.

Note that while it seems also natural that the substitu-
tion relationships are transitive, they need not be. To see
why transitivity may fail, note that it is only meaningful to

Yevgeniy Vorobeychik et al.

Fig. 2 An example of a simple substitution graph involving four tasks.
Numbers above edges represent weights on substitutions, that is, errors
incurred due to these substitutions.

include edges between tasks that can substitute at some rela-
tively small loss, i.e., loss below some fixed threshold. Thus,
it could be that a sequence of tasks can substitute for each
other with relatively small error, but once the length of that
sequence is long enough, the substitution error between its
endpoints may accumulate to exceed the threshold, and the
endpoints would thus be missing an edge even though they
are connected by a path. Transitivity would obtain, however,
if substitution errors are zero along such a path.

The substitution graph mediates fault obliviousness as
follows. Suppose that a processor (and a corresponding task)
fails, but there is a good substitute for this task (in terms of
generated data). The tasks that depend on it may then use
the best substitute, rather than requiring the failed task to be
restarted.

In many domains, the closeness of two tasks would de-
pend on who is using the results. If we implement the substi-
tution graph in a decentralized fashion, as we do in our sim-
ulations, allowing for this is a trivial generalization, since
each node then simply stores internally its private set of sub-
stitution weights together with the sets of substitutes for the
tasks it depends on.

3.3 Trading Off Replication and Substitution

The main operation of the DAS architecture is to trade off
replication and substitution by attempting to substitute for
tasks as long as it is efficacious to do so. Specifically, sup-
pose that we set an upper bound € on the acceptable error
for the job. Let us first consider a simplification where, when
failures occur, we take a myopic point of view that no fur-
ther failures will occur before the conclusion of the entire
job. We now introduce some formal notation that will allow
us to pose the tradeoff we wish to address as a mixed inte-
ger program. First, suppose that all errors are additive (e.g.,
using the /; norm). Let w;j; be the error incurred when task
Jj is substituted for task i as input to a task k that depends
on i. Let I be the set of tasks that have failed and D; denote
the set of tasks that depend on a task i € I. We denote by v;
a decision variable that is 1 if task i is to be substituted for
(rather than replicated), and let z; x denote a decision to sub-
stitute task j for i for a dependent task k (thereby replacing
k’s dependence on i with j). We then obtain the following

mixed integer program (MIP):

max) v; subject to:)
V2 el

Error budget: ZZ Z WiikZijk < €, (5)
i€l jgl keD;

Single substitute for i, j: ZZUk =v;Viel,keD;, (6)
Jjgl

No failed tasks: wjk=0Vi,jel,keD;, (7)

Binary variables: viziji € {0,1}. (8)

Note that constraint (7) is actually unnecessary to specify in
practice, since we can simply ignore the corresponding en-
tries of z in implementing the optimal policy; constraint (6)
already ensures that there is exactly one substitute from only
the functioning tasks for any task dependency pair if and
only if the corresponding v; = 1.

While the number of variables and constraints is poly-
nomial, solving this integer program is likely infeasible in
many realistic cases. To allow us to make the tradeoff in real
time, consider the following simpler program. Denote by N;
the number of tasks that depend on i (and that will be using
the substitute). Restrict attention to w;; without reference to
k (or maximal over all k); then focus only on best substitutes
for any failed i, letting w; = N,-minjgg w;j, and allow only a
single substitute for any task. This results in the following
MIP:

max) v; subject to:)
Vel
error budget: ZWiVi <g, (10)
icl
binary variables: v; € {0,1}. (11)

Observe that the resulting MIP represents a classic knap-
sack problem, which, while NP-hard, can be approximated
by a greedy algorithm that adds tasks to be substituted in in-
creasing order of w;, until the error budget is saturated. This
greedy heuristic would be fast enough to be run in real time
and is, in fact, what we implemented in our simulations.

3.4 Empirical Substitution Weights

The central as yet unanswered question relating to the sub-
stitution graph is how to obtain the substitution weights. One
possibility is that they are given (as upper bounds, perhaps,
or some crude approximation) by the job developer himself,
who knows something about the relationship between tasks.
That may be reasonable in some scenarios, but would usu-
ally place a high burden upon the programmer. A simple
alternative is to derive them empirically.

Suppose that each task generates data over time that can
be represented as a sequence of real vectors. Given such se-
quences for two tasks that are meant to substitute for each

Fault Oblivious High Performance Computing with Dynamic Task Replication and Substitution 5

other, we can create an empirical measure of the substitution
weight as the observed distance between the generated data
streams according to some predefined distance metric. For
example, if the error between the entire data streams is im-
portant, we could use Hausdorff distance between the two
sequences, while if only the latest updates are significant, it
would suffice to measure, say, /; distance between the lat-
est data generated (as is the case in our grid world example
below). We may still wish for the programmer to specify
the actual substitution weights, as well as initial weights,
but neither is strictly speaking necessary: We can measure
weights between pairs of tasks, and add a substitution edge
if the empirical weight is below some threshold (or, instead,
place a threshold on the number of edges, and only add those
with the lowest empirical weight). If the programmer does
not specify initial weights, we can take them to be infinite by
default, forcing replication until sufficient data about tasks is
obtained to make substitutions useful.

3.5 Allocating Tasks to Processors

In the discussion above, we have implicitly assumed that a
single task is allocated to a processor. This is also a very
explicit assumption in the simulations below. Although we
have not lost much generality by this assumption in our dis-
cussion, we now wish to address explicitly the situation in
which multiple tasks are allocated to a single processor. The
question of interest in our framework becomes two-fold: (a)
how to allocate tasks to processors so that there is minimal
interdependence between processors and (b) how to substi-
tute in a way that preserves this initially low interdepen-
dence.

To begin, let us assume that no substitution is allowed.
In this case, our problem is an instance of graph partition-
ing [5]. In a graph partitioning, the goal is to partition a set
of nodes in a graph such that the weighted sum of nodes in
each partition is bounded by some positive integer K and
the weighted sum of edges between partitions is bounded
by another positive integer J. This problem is known to be
NP-complete, although fast algorithms to solve it exist, in-
cluding in the Zoltan library [3]. In our case, all weights
would be 1. To incorporate information about substitutes,
we can superimpose the two graphs and choose weights on
substitute edges to be lower than those on dependency edges
(to reflect that we may not need to substitute at all). Addi-
tionally, weights may decay as the substitution weights w; jx
increase.

To preserve low processor interdependence during task
substitution decisions, we can add a graph partitioning con-
straint on substitutions when tasks fail, requiring that, upon
substitution, no more than J dependencies cross processor
boundaries. Formally, letting pj; = 1 if and only if tasks j

and k run on different processors, we constrain that

Y Y ppzip<g viel (12)
j¢1 keD;

in the first MIP above. In the second, simplified, MIP, let
pix = 1 if and only if the best substitutes for tasks i and k lie
on different processors. We then constrain that

Y pavi<J viel (13)
keD;

Note, however, that adding the latter constraint means that
we can no longer apply the simple greedy algorithm as de-
scribed above, and alternative, custom heuristics would need
to be developed.

3.6 Running Tasks with a Limited Number of Processors

One important subproblem when resources are severely con-
strained is to determine whether it is possible to run a subset
of tasks on available processors, given a specified depen-
dency graph. Specifically, suppose that there are not enough
processors to run the entire job. In principle, if all tasks are
interdependent, it may be impossible to make any progress
until all tasks can be allocated concurrently. However, if
dependencies are sparse, it may still be feasible to make
progress on the problem by running a subset of tasks that
is independent of any others. It turns out that this problem
can be solved in polynomial time by the following algorithm
(assuming that each task is mapped to a single processor):

1. Let T be the set of all tasks, K the number of available
processors
2. Foreachtaskie T,
— Let D=D;
— Foreach je€ D,
- setD«DUD;
- untilD; CDVjeD
- If |D| <K, return D
3. return 0

The running time of this algorithm is O(n*), where n is the
number of tasks, and it will either return a set of tasks D with
no internal dependencies satisfying |D| < K, or 0 if such a
set cannot be constructed. Furthermore, the asymptotic run-
ning time falls to O(n?) if the number of dependencies be-
tween tasks is bounded by a constant.

Since we follow the dependency links from all possi-
ble starting points (all tasks), this algorithm is complete.
The problem is that even though it runs in quadratic time
if the maximum number of dependencies is bounded by a
constant, this is still too slow to do in real time in an exas-
cale computing system. A possible solution is to perform the
procedure only until we run out of search time (perhaps on
a random permutation of tasks) in the outer loop, and only
for a small number of iterations of the inner loop.

Yevgeniy Vorobeychik et al.

Fig. 3 Example of a 3 x 3 grid world with the corresponding state
reward structure.

4 Simulation and Results

We use simulations to provide a limited evaluation of our
DAS architecture, implemented in Java. These are centered
on the application to distributed asynchronous implementa-
tion of value iteration in the domain of a “grid world”, which
we now describe.

4.1 The Grid World

The grid world is a simple geographical representation of an
agent walking in two dimensions. In our even simpler rep-
resentation, an agent is allowed at most four actions in each
cell: left, right, up, and down (corresponding essentially to
the directions of a walk). The catch is that a walk to the right
does not necessarily result in the agent ending up in the cell
immediately to the right. Rather, he moves in the direction
of his action with probability p (0.8 in our implementation),
while the remaining probability is divided evenly among all
the remaining physically adjacent cells, as well as the cur-
rent cell. The rewards of states are generated independently
following a distribution with Pr{r(s) < r} = r'/3. Figure 3
shows an example 3 x 3 grid world, where the number in
each cell indicates the reward received by an agent for visit-
ing it.

In our implementation, we set the discount rate o to be
0.95, and let the number of states vary, while maintaining
the square shape of the grid. To prevent computation from
proceeding indefinitely, we also set a stopping criterion to
be convergence within 0.001.

Based on the grid world model, we generate the depen-
dency graph by adding links in both directions between any
two neighboring cells. Since neighboring cells also provide
good substitutes for each other, we add links between all
neighbors in the substitution graph. Initial or default weights
are generated as upper bounds on the difference between fi-
nal state valuations. These differences can be bounded by
observing that, if s and s" are neighbors, then

V(s) > 5PLV(s) (14)
or

V(s)=V(s) <V(s)(1—-6P%) (15)

ss’

Pp

1-pb @ ! -pf

Fig. 4 The 2-state Markov chain model of the processor failure and
repair process.

by

for any action a, and, simultaneously,

V(s') > 8PSV (s) (16)
or
V(s)=V(s) <V(s)(1—8P5) (17)

for any «’. Taking a and a’ to maximize the right-hand side in
Equations (14) and (16), we get the tightest bounds. This is
the case when the action in the grid world is toward s’ and s
respectively, which achieves the fixed transition probability
p that an agent ends up in the direction he tried to follow.
Further, if 0 is the discount factor, then V(s) < 1/(1 —9)
for any state s. Combining, we get

’ 1-6p
Vi -vi < =2

: (18)
Note that if p is large, the difference between values of neigh-
bor cells is tightly bounded, while with a small p, this bound
is loose. In any case, this provides either the actual or initial
substitution weights in our simulations (actual if we turn off
empirical tuning of substitution weights, and initial if we
turn it on).

4.2 Simulation Setup

To perform a first-order analysis of the proposed architec-
ture, we developed simulation software that generates sam-
ple grid worlds and performs asynchronous distributed value
iteration, with the architecture governing how tasks are al-
located computing time on a simulated cluster. Time in the
simulator is discrete, and we run it for 100 iterations (time
units). Given the high discount rate, this ensures that tasks
rarely complete in the allotted time, even if no processor
failures occur. We assume, furthermore, that processors fail
independently with probability p,, and a broken processor
is fixed with probability p;. Figure 4 shows the resulting
Markov chain process that models transitions between fixed
and broken states for each processor. Given these parameters
of a Markov chain, which is clearly ergodic and aperiodic,

Fault Oblivious High Performance Computing with Dynamic Task Replication and Substitution 7

a natural question is what characterizes its steady state. Let-
ting 7y and 7, be the steady state probabilities of being in
the fixed and broken states respectively, it turns out that

T
T _Pr. (19)

T Db

As a consequence, we observe that the main parameter that
governs the fraction of time each processor spends in a fixed
and broken state (and, thus, the expected number of fixed
and broken processors) is & = py/pp. For example, setting
o = 1 ensures that 1 /2 of all processors are functional on av-
erage in the steady state. In the simulation, we let the number
of processors be twice the number of tasks, and set @ = 1,
thereby focusing primarily on the variance due to a specified
failure probability (since, on average, there are enough pro-
cessors to run all the tasks, but often in reality there will not
be). Furthermore, we initialize the processors to be in a bro-
ken and fixed state precisely according to the correspond-
ing steady state fractions. Our choice that the steady state
fraction of available processors matches exactly the number
of tasks that need solving may seem idiosyncratic, since it
is easy to ensure that we have enough tasks such that they
are not prone to processor failures (and, thus, at most we
only require replication, but not substitution of tasks). Note,
however, that we in general wish to utilize all the available
resources: for example, if we choose to discretize a prob-
lem more coarsely purely due to system considerations, we
would be wasting available system capacity, which is cer-
tainly undesirable. Furthermore, such simplifications intro-
duce error into our problem, which we can potentially avoid
by fully utilizing available processing capacity. Thus, we
would actually expect that the system capacity is (nearly)
fully utilized, at least at peak time.

4.3 Performance Measures

In our simulations, we evaluate two extreme policies; the
first allows no substitutions at all, whereas the second allows
unlimited substitution. Thus, neither policy actually involves
solving the optimization problems described above, and our
results are in a sense unfavorable, since it is quite likely that
in fact a mix of replication and substitution is necessary for
good performance.

The first performance measure is the probability that the
tasks make any progress in a given iteration (note that since
all the tasks in the grid world example are initially interde-
pendent, either all or none can make progress, depending on
processor availability). The second performance measure is
the /i error (relative to failure-free runs) of the computed
state values.

“=#=No substitutions *#* Unlimited substitutions

Pr{progress}

0 < < <
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Pr{failure}

Fig. 5 Probability that tasks are making progress on a 10 x 10 grid

world as a function of failure probability (keeping o = 1 fixed).

=#=No substitutions *“H* Unlimited substitutions

0.8

o
o

Pr{progress}

e
=

0.2

2 g g < 2 g
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pr{failure}

Fig. 6 Probability that tasks are making progress on a 50 x 50 grid
world as a function of failure probability (keeping @ = 1 fixed).

4.4 Simulation Results

We ran simulations with two problem instances, one with
100 tasks, the other with 2500. While both are a far cry from
the exascale environment that we target, they allow us to fo-
cus on the primary issues that concern us: resilience in the
face of frequent failures and scalability, at least to a limited
degree. The results we present are averaged over 150 ran-
dom realizations of the grid world model.

Our initial inquiry concerns the first performance mea-
sure: probability that any progress is made in a given iter-
ation. Figures 5 and 6 plot the probability of making any
progress on a 10 x 10 and 50 x 50 grid, comparing a case
where no substitutions are allowed with one that allows un-
limited substitutions. These figures strongly demonstrate the
increased resilience of the jobs due to the substitution frame-
work: With arbitrary and unlimited substitutions, the failure
probability has to approach 1 before progress is even some-
what halted. By comparison, the progress ratio drops dra-
matically with increasing failure probability when no sub-
stitutions are allowed.

Considering now the /; error measure, our results are
somewhat mixed (see Figures 7 and 8). On a 10 x 10 grid, it

Yevgeniy Vorobeychik et al.

=#=No substitutions * M Unlimited substitutions

Subst + empirical

Error (11)

0 001 002 003 004 005 006 007 008 009 01
Pr{failure}

Fig. 7 [error (over all state values) on a 10 x 10 grid world as a func-

tion of failure probability (keeping @ = 1 fixed).

=#=No substitutions <M Unlimited substitutions Subst + empirical

Error (I11)

0 0.002 0.004 0.006 0.008 0.01
Pr{failure}

Fig. 8 [error (over all state values) on a 50 x 50 grid world as a func-
tion of failure probability (keeping o = 1 fixed).

appears that substitutions do introduce greater overall evalu-
ation error. However, a 50 x 50 grid shows an unambiguous
advantage to substitutions, so it seems that substitutions are
more advantageous with greater scale, something of great
relevance to us, as we are motivated by exascale computing.

In these figures, we also compare the case when substi-
tution weights are kept constant throughout the run at the
value of upper bounds derived above, or are empirically es-
timated by directly comparing task data. Surprisingly, even
though we do not impose a limit on substitutions, empiri-
cally derived weights show a clear advantage, most likely
because even though we allow unlimited substitutions, the
choice of which tasks to substitute is driven by optimiza-
tion, and finer-grained information about the resulting errors
allows us to make better decisions.

5 Conclusion

We developed a novel architecture, termed DAS, that allows
a high degree of fault tolerance and, under some conditions,
even fault obliviousness. Fault tolerance is promoted by the
use of a graph that keeps track of dependencies between

tasks, while fault obliviousness is achieved by making prin-
cipled decisions to substitute dynamically some tasks for
others that have failed, without requiring a job or even a
failed task restart. Our simulations demonstrate the efficacy
of our approach, showing considerable tolerance to even a
very large likelihood of node failures, and demonstrating
that substitution errors can be relatively low when an au-
tomated empirical method for deriving substitution weights
from observations is utilized.

Acknowledgements Sandia National Laboratories is a multiprogram
laboratory operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-
94AL85000.

References

1. Archibald, T., McKinnon, K., Thomas, L.: Serial and parallel value
iteration algorithms for discounted Markov decision processes. Eu-
ropean Journal of Operations Research 67, 188-203 (1993)

2. Brandt, J., Gentile, A., Mayo, J., Pébay, P., Roe, D., Thompson, D.,
Wong, M.: Methodologies for advance warning of compute clus-
ter problems via statistical analysis: A case study. In: Proc. Re-
silience 2009 Workshop, part of 18th ACM International Sympo-
sium on High Performance Distributed Computing. Garching, Ger-
many (2009)

3. Catalyurek, U., Boman, E., Devine, K., Bozdag, D., Heaphy, R.,
Riesen, L.: Hypergraph-based dynamic load balancing for adaptive
scientific computations. In: Proc. 21st IEEE International Parallel
and Distributed Processing Symposium. Long Beach, CA (2007)

4. Daly, J.: A model for predicting the optimum checkpoint interval
for restart dumps. In: PM.A. Sloot, D. Abramson, A.V. Bogdanov,
J.J. Dongarra, A.Y. Zomaya, Y.E. Gorbachev (eds.) Computational
Science — ICCS 2003, Lecture Notes in Computer Science, vol.
2660, pp. 3—12. Springer (2003)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company
(1979)

6. Gullapali, V., Barto, A.G.: Convergence of indirect adaptive asyn-
chronous value iteration algorithms. In: Neural Information Pro-
cessing Systems, pp. 695-702 (1994)

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning. The MIT Press
(1998)

	Introduction
	Example Application
	Dependency and Substitution (DAS) Architecture for Dynamic Task Replication and Substitution
	Simulation and Results
	Conclusion

