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Residual Monte Carlo

= Standard Monte Carlo is simply solving:
Ly =g

where L is the transport operator and q is the source.

= Residual Monte Carlo is solving the following equations iteratively:

Le(m — ()

¢(n) _ Q/,(n—l) + e
where ris a residual error and € is an error correction.

= Residual Monte Carlo does not make hard problems easy.
= Good statistics are still needed in each iteration.
= |teration makes it possible to achieve higher precision.
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Calculation of the Residual i) Natora

= Residual calculation is the new piece required in a Monte Carlo code.
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To evaluate this we need to have Monte Carlo flux tallies on a basis that
permits cell-wise evaluation of the residual:
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The solution is a projection onto the finite-element trial space. This is
more accurate than solving the discretized finite-element problem.




Total Cross Section, Source,
and Spatial Gradient Terms
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The residual terms containing the total cross section and source are trivial

to evaluate when the cross section, flux, and residual are on the same

basis: |
— Jt?iwt}m T Qim

Spatial gradient is composed of the gradient of the flux within the cell and
any discontinuity of flux at cell boundaries.

For the positive u direction with an adjacent upwind cell, the residual is:
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Scattering Source Term ) fouea,

= Scattering Source
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= We map the flux and integration into the scattering frame:
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using the following relationship between the directions:
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= The delta function scattering and one-dimensional fluxes lead to this
simplified integration:
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Scattering Source Term (cont.)

= |nthe scattering source integration we project the result onto our linear
basis. We can precalculate a transfer matrix to represent the scattering
transfer in angular phase-space:
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= The scattering source becomes the following simple matrix operation:

Z > Shy
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Residual Source Sampling Li [

= Having calculated the residual in each cell, we then need to sample from
the residual as a source in the Monte Carlo calculation of the error
correction:

Le(™ — ()

= We analytically evaluate the source

strength. (We have also used \ Flux
quadrature integration, which will be

needed for higher dimension \
problems. We found that even low- \

order quadrature is adequate.) Residual/Source
= \We use a discrete cdf to find the cell 0 —= —-=-—L S —
or cell boundary of a source particle.
= We use rejection sampling to find the
phase-space location within a cell or
on the cell boundary.
= \We assign negative weight to particles
for negative source strength locations.




Test Problem with Solution in the Trial Space ) i,

=  For a uniform flux solution, we use the method of manufactured solutions
(and the residual calculation logic) to calculate the source: ¢ = L)

= 100 cells in a uniform 10x10 grid in space and angle.
op=1,00=09, u, =08 T = 3,
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Test Problem with Solution in the Trial Space (cont. )™ e,

=  For a uniform flux solution, we use the method of manufactured solutions
(and the residual calculation logic) to calculate the source: ¢ = L)

= 100 cells in a uniform 10x10 grid in space and angle.
op=1,00=09, u, =08 T = 3,
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Test Problem with Electron-Like Parameters i) daot

= Cross sections based on 1 MeV electrons:
o = 77,04 = 76.9, T = 0.1,
= The scattering distribution is 4 discrete scattering angles:

1. = {0.98,0.56, —0.19, —0.82}
p, = {0.9916, 0.0070,0.0011, 0.0003}

100 histories/cycle/cell 1600 histories/cycle/cell
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Convergence as a Function of Quadrature Order ) e

= After careful debugging to achieve exponential convergence, we found
that the convergence was not sensitive to the quadrature order used in

integrating the scattering source term.
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=  We have demonstrated the residual Monte Carlo method for the
continuous 1-D transport equation with anisotropic scattering.

= This method can be extended to:

= General anisotropic scattering kernels. This can be done by integrating the discrete
scattering angle over the scattering kernel.

= Multi-dimensional problems. Generalization of the tally and residual calculations
appears to be straightforward. Integration of the scattering source over two angular
dimensions is complicated but can follow the approach we have shown here.

=  Multigroup problems. This appears to be trivial.
= Continuous energy. This would be a challenging undertaking, requiring the
integration of the energy-scattering kernels.
= A production capability requires adaptive refinement of the trial space.
[See Peterson, Morel, Ragusa (2013), but more research is needed.]

= Residual Monte Carlo could be an effective addition to the FW-CADIS
approach, utilizing the forward deterministic calculation to initialize the
Monte Carlo and the adjoint information to guide adaptive refinement.




