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* Alcohols are important components of modern transportation fuels.

* Butanol is a promising fuel alternative with more similar properties to traditional
gasoline = can be used in unmodified internal combustion engines.

Butanol combustion is infricate due fo the isomers arising from the parent
molecules and the possible H-abstraction sites & 16 possible C,H,O isomers

In this work propanol is investigated (7 possible C;H,0 isomers). Our
calculations are compared to the experimental data available in the literature on
the elementary reaction kinetics of propanol + OH.

Here we present high-level electronic structure calculations coupled to RRKM-
based master equation (ME) methodology to study the initial steps of propanol
combustion.

H-abstraction by H, OH and HO, !

[C3H7]OH + H — [C3H,0] + H, )]

[C3H,JOH + OH — [C5H,0] + H,0 @)

[C3H71OH + HO, — [C3H;0] + H,0, (3)
Unimolecular dissociation of the resulting radicals

[C3H,0] - products 4)

* the [ means that all relevant isomers are considered

Energetics of the n/i-propanol + H/OH/HO, reactions
and C;H,0 dissociation/isomerization
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alculation of rate coefficien‘l‘s
¢ Rate coefficients are calculated using RRKM-based ME, given in the form

dw()) _
gy

6|w(1)) , where G describes the chemical exchange

between different wells and also the £ transfer during collisions, while |#(#)) contains the unknown populations. The master equation is
solved using VARIFLEX 2.0.
At low enough temperatures chemical reactions are related to the slow, chemically significant eigenvalues (CSE's), while the fast ones
are the internal energy relaxation eigenvalues (IERE's).
At higher temperatures CSE's get closer to, and eventually merge into IERE's & phenomenological rate coefficients are undefined here.
Two methods to obtain rate coefficients from the ME:

Initial-rate method: applicable as long as the IERE » CSE

Long-time method: applicable as long as IERE > CSE
* When one or more CSE's merge into the IERE's, rate coefficients related o the unmerged CSE's can be only obtained by reducing the
number of chemical species in the problem by merging equilibrating species into a "superspecies”.
Tunneling corrections are taken into account by asymmetric Eckart transmission probabilities. Internal rotors are treated using the
Pitzer-Gwinn-like approximations by Fourier fits to the relaxed B3LYP potentials.
For barrierless channels the £,J-resolved number of states is calculated variationally using the direct variable-reaction-coordinate
transition-state theory. The distance between the center of mass of the fragments is taken as a reaction coordinate. The potential
energy is calculated using CASPT2(5e,40)/aug-cc-pVDZ in the case of propene + OH, and CASPT2(2e,30)/aug-cc-pVDZ for propanol +
OH. The VaReCoF program is used to obtain capture rate constants.
The barrierless entrance channel, the van der Waals well and the submerged barriers are represented by an effective two-transition-
state model at the microcanonical, J-resolved level with the generul form of:

mr(E J)+ZN (E J)

N/,:ff(E'J) =

QCISD(T)/cc-pVeoZ//B3LYP/6-311++6(d,p) level
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For reactions (2) and (3) weakly bound complexes exist on both the reactant and
the product side. From a kinetic point of view only the reactant complexes of
reaction (2) are important, due to the low-lying transition states. The well depth of
the OH-propanol van der Waals complexes is ~7 kcal mol.

Possible channels for the dissociation of the resulting C3H,0 radicals
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The channels leading to OH + propene also feature submerged barriers and weakly
bound complexes.

Temperature and pressure dependent unimolecular dissociation of the C;H,O radicals
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Unimolecular dissociation rate coefficients and product channels for hydroxypropyl radicals
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Catalytic dehydration of 7//-propanol via B-hydrogen abstraction by OH. The hydroxyl radical is regenerated, leading to increased
reactivity under low-temperature combustion conditions.

CH,4CH,CH,OH + OH — CH,CHCH,OH + H,0 CHyCHOHCH; + OH — CH,CHOHCH, + H,0

CH,CHCH,OH — CH,CHCH, + OH CH,CHOHCH, — CH,CHCH, + OH

Well-skipping (formally direct) channels persist even at high pressures. In this case, these channels do not originate from chemical
activation, but from isomerization reactions, where collisional stabilization in the intermediate wells is ineffective. E.g. the reaction
CH,CH,CH,0H — C,Hs + CH,0

takes place to a significant extent without stabilization in the intermediate propoxy well.

Vinyl alcohol is formed from various dissociation channels. Vinyl alcohol has been identified as an intermediate in 1- and 2-propanol flames
using electron ionization and VUV-photoionization molecular-beam mass spectrometry. The concentration of vinyl alcohol was reported to
be 10x more in 1-propanol flames compared to 2-propanol ones, which is qualitatively in line with our dissociation and H-abstraction rate
coefficients.
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