
An AMR Task Dependency Analysis
and Communications Simulation Methodology

Cy P Chan1, Joseph P Kenny2, Gilbert Hendry2, Vincent E Beckner1, John B Bell1, and John M Shalf1

1Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA

2Sandia National Laboratory∗, P.O. Box 969, Livermore, CA

ABSTRACT
The ability to predict the performance of irregular, asyn-
chronous applications on future hardware is essential to the
exascale co-design process. AMR applications are inherently
irregular in their computation and communication patterns,
resulting in complex relationships between problem param-
eters, machine configuration, data distribution, and appli-
cation performance. We have developed a methodology to
simulate the performance impact of different data distribu-
tions on a variety of network topologies for asynchronous
execution of AMR applications. We demonstrate this frame-
work by simulating CASTRO, a compressible astrophysics
application, indicating that a performance improvement of
up to 20 percent may be obtained through the use of locality-
aware data distributions for some network topologies on an
exascale-class supercomputer.

1. INTRODUCTION
The trend in high performance computing toward massive
parallelism presents many challenges for irregular scientific
applications, not least of which is the network’s ability to
support an increasing amount of data movement. Co-design
has emerged as a promising technique to optimize software
and hardware together to allow users to achieve high per-
formance on future architectures [14]. However, in order to
co-design effectively, we must have tools to quickly predict
the performance of our applications on the potential hard-
ware configurations under consideration.

Data movement has emerged as one of the most important
factors influencing performance on today’s machines, and it
will become even more important on exascale machines due

∗Sandia National Laboratories is a multiprogram labo-
ratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Company, for
the United States Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-
94AL85000.

to the relative performance and energy scaling of processor
and memory technology [8, 16, 13, 2]. In the context of
adaptive mesh refinement (AMR) applications, data move-
ment is largely determined by the machine’s network topol-
ogy and the distribution algorithm used to assign boxes (or
grids) of data to machine locations. Furthermore, the de-
sire to hide the cost of data movement and improve paral-
lel efficiency has spurred the development of asynchronous
runtimes, which replace the traditional alternating phases of
computation and communication with a data-driven execu-
tion style, making performance modeling even more difficult.

Given the complex time-dependent interactions of applica-
tions, runtime, and hardware, structural simulation is of-
ten employed as the only means to evaluate hypothetical
system-wide performance. SST/macro [6, 3] is one tool that
enables this analysis by using efficient, validated, coarse-
grained models and running application code in an online
execution-driven environment. Typically, simulation effi-
ciency is enhanced by a process known as skeletonization
[17], which reduces application code to the parts of inter-
est, namely the code necessary to reproduce communication
characteristics. However, for irregular asynchronous appli-
cations like AMR, this is virtually impossible.

In order to achieve highly efficient structural simulation while
maintaining accurate, detailed application behavior, we have
developed an AMR dependency analysis tool that takes an
AMR box list from the BoxLib [5] library as input and gen-
erates two outputs. The first is a graph that illustrates the
evolution of data (problem state) along with all of the neces-
sary computation and communication events that must oc-
cur during program execution, as well as their dependencies.
The second is an XML file that can be used to drive an asyn-
chronous execution using SST/macro to simulate network
traffic over a configurable network. Our framework allows
us to test configurations for which it would be infeasible to
collect traces from real machines. Furthermore, compared
to MPI traces, our framework allows more flexibility in ex-
amining the fine-grained communications that occur during
execution because traces gathered from real computations
utilize message aggregation, making it difficult to analyze
the effects of data distribution.

Kerbyson et. al. [7] developed a performance model for an
AMR code using a bulk-synchronous execution model over a
parameterized network, but it would be unable to give per-
formance predictions for future machines with features that

SAND2013-7595C

BoxLib	

AMR	
 Library	

Box	
 List	

Level	
 0	

	
 0:	
 ((
 0,	
 0,	
 0)	
 (15,31,15))	
 16	
 32	
 16	
 ::	
 3	

	
 0:	
 ((16,	
 0,	
 0)	
 (39,31,15))	
 24	
 32	
 16	
 ::	
 1	

Level	
 1	

	
 1:	
 ((30,	
 0,	
 0)	
 (47,31,31))	
 18	
 32	
 32	
 ::	
 2	

	
 1:	
 ((48,14,10)	
 (67,29,29))	
 20	
 16	
 20	
 ::	
 3	

...	

Level	
 2	

	
 2:	
 ((72,	
 0,34)	
 (83,19,59))	
 12	
 20	
 26	
 ::	
 1	

	
 2:	
 ((72,	
 0,60)	
 (83,15,75))	
 12	
 16	
 16	
 ::	
 2	

…	
 AMR	
 Dependency	

Analysis	
 Tool	

SST/Macro	

Network	
 SimulaPon	

Problem	

SpecificaPon:	

CASTRO	

XML	

<boxes>	

<box	
 id="R1"	
 loc="0"	
 />	

<box	
 id="R4"	
 loc="1"	
 />	

</boxes>	

	

<events>	

<comp	
 id="E10"	
 dep="E5,E11”	
 Pme="0.0676"	
 />	

<comm	
 id="E12"	
 dep="E2”	
 from="R1"	
 to="R4"	

size="1512"	
 />	

...	

</events>	

Performance	

EsPmate	

Dependency Graph

Figure 1: Workflow

exhibit complex runtime interactions, such as asynchronous
execution or congestion-adaptive routing. Previous evalua-
tion of hierarchical data distribution techniques on existing
machines include various studies of static and dynamic load
balancing [15, 11, 9, 10, 12]. Our work improves upon these
works by providing an automated framework and method-
ology that spans from problem specification to dependency
graph generation to network simulation, helping us to ex-
plore and evaluate our algorithms and architectures for co-
design.

2. FRAMEWORK DESCRIPTION
Our methodology relies on an analysis framework that in-
cludes several components: the BoxLib library for prob-
lem specification and box distribution, an AMR dependency
analysis tool, and the SST/macro network simulation tool.

Figure 1 shows the components in our workflow. A problem
specification including initial state and boundary conditions
is specified within the BoxLib [5] framework, as an appli-
cation code normally would. BoxLib can then generate a
list of boxes that covers the interesting areas of the domain
following some parameters supplied by the user such as max-
imum and minimum box sizes and covering efficiency. The
box distribution can be specified by one of the algorithms
in BoxLib or optionally configured later in the tool chain.
This list of boxes is then parsed by our AMR dependency
analysis tool, which produces a dependency graph and an
XML description of computation and communication. This
XML description is then read by SST/macro, which repro-
duces the behavior of each simulated process running on a
configurable network.

2.1 BoxLib
BoxLib is a hybrid C++/Fortran90 software framework that
provides support for the development of parallel block-structured
AMR applications. The fundamental parallel abstraction
is the MultiFab, which holds data on the union of a set
of boxes for each grid level. We utilized BoxLib to cre-
ate box lists for the CASTRO application, which involved
setting up the initial and boundary conditions of the simu-
lation, tagging cells of interest, and covering the cells with
boxes at the various hierarchy levels. The boxes are dis-
tributed among processes using one of the available box dis-

tribution schemes, which include round-robin (RR), knap-
sack (KS) and space-filling-curve (SFC). The round-robin
and knapsack algorithms balance computational workload
among the processes while the space-filling-curve algorithm
assigns boxes that are near each other in space to adjacent
processes in the machine in order to minimize data move-
ment. Our study examines the effects of these distribution
algorithms on application performance.

Listing 1: Example Box List Input File
Level 0 4 grids 40960 cells 100 % of domain
0: ((0, 0, 0) (15 ,31 ,15)) 16 32 16 :: 3
0: ((16, 0, 0) (39 ,31 ,15)) 24 32 16 :: 1
...

Level 1 12 grids 146368 cells 44.668 % of domain
1: ((30, 0, 0) (47 ,31 ,31)) 18 32 32 :: 2
1: ((48 ,14 ,10) (67 ,29 ,29)) 20 16 20 :: 3
...

Level 2 78 grids 403440 cells 15.39 % of domain
2: ((72, 0,34) (83 ,19 ,59)) 12 20 26 :: 1
2: ((72, 0,60) (83 ,15 ,75)) 12 16 16 :: 2
...

Listing 1 shows an excerpt from an example box list output
by BoxLib. This file specifies a three level AMR hierarchy
where each box has a line that specifies its level, start and
end points, dimensions, and process assignment.

2.2 AMR Dependency Analysis Tool
The AMR Dependency Analysis Tool takes the hierarchical
list of boxes produced by BoxLib as input and generates an
internal representation of the box hierarchy and two analysis
outputs: a dependency graph and an XML file containing
events and communications.

The internal representation generated by our tool from the
box list is a hierarchical graph, where the nodes represent
boxes and edges are drawn between pairs of boxes that in-
teract during the course of the AMR computation. In or-
der to determine the edge locations and properties, we built
an algebraic box set library of parameterized dimension to
compute interactions between logical regions of the domain
space. Regions of space are represented by unions of dis-
joint rectahedral boxes encapsulated within BoxSet objects.
The main operations on BoxSet objects supported by the
library include intersections, unions, inversions, and set dif-
ferences. Utility functions include extending the boundaries
of a BoxSet by a specified number of cells, as well as con-
structing the ghost halo region around a BoxSet. These util-
ity operations facilitate the identification of the interactions
that occur during an AMR computation.

Listing 2: Two-level, Two-box Example

Figure 2: Compact representation of a two-box
AMR hierarchy

Figure 3: Example dependency graph output cor-
responding to the two-box AMR hierarchy for one
time step with a refinement ratio of two. This de-
pendency graph corresponds to an “unfurled” ver-
sion of the internal representation shown in Figure 2.

Level 0 1 grids
0: ((0, 0, 0) (31 ,31 ,31)) 32 32 32 :: 0

Level 1 1 grids
1: ((24 ,24 ,24) (39 ,39 ,39)) 16 16 16 :: 1

The internal graph representation of the AMR hierarchy is
compact in the sense that it is agnostic to the refinement
ratio and number of simulation time steps. Figure 2 de-
picts the internal representation of a two-box hierarchy cor-
responding to the input file in Listing 2. The parallelograms
represent the boxes in the input file, while the rectangles
represent intermediate regions where the boxes interact for
operations such as ghost region interpolation, averaging, and
refluxing. The different colors represent the different types
of interactions that occur between the boxes. The compact
representation can be“unfurled”to generate full dependency
graphs for an AMR computation with arbitrary refinement
ratio and number of time steps.

2.2.1 Dependency Graph Output
Figure 3 shows the output dependency graph of our tool run
on the two-box compact graph representation shown in Fig-
ure 2, which represents an execution of the AMR simulation
code for one coarse time step. The dependency graph output
includes nodes for data, computations, and communications
that occur during the execution of the simulation, and edges
represent dependencies between the nodes. The nodes are
annotated with metadata, such as size and physical location
information.

Each box and intermediate region may appear multiple times
in the output graph because their contents change as the
simulation progresses. Thus, the nodes are also annotated
with time stamps that correspond to the simulation time for
which the data is valid. Note that communications are im-
plicit in the figure, corresponding to the blue colored edges

between data nodes. Depending on the context, it may be
worthwhile to unfurl the dependency graph on an as needed
basis to help reduce the program’s memory footprint during
execution.

2.2.2 Dependency XML Output
The dependency XML is a stripped version of the depen-
dency graph that contains a list of boxes and a list of com-
putation and communication events. The XML does not
contain any direct information about the boxes themselves
(such as their size or spatial extent), nor is there any notion
of box hierarchy. It does however, specify a list of abstract
regions within which computations may occur and between
which communications may occur. The region and event in-
formation are sufficient to drive the next phase of the anal-
ysis: the SST/macro network event simulation tool.

Listing 3: Example XML Output
<boxes>
<box id="R1" loc="0" />
<box id="R4" loc="1" />
</boxes>
<events >
<comp id="E10" dep="E5,E11" type="integrate" at="R4"

size="4096" time="0.0676" />
<comp id="E11" dep="E12 ,E8" type="interpolate" at="R4

" size="1736" time="0.001" />
<comm id="E12" dep="E2" type="copy" from="R1" to="R4"

size="1512" />
...
</events >

Listing 3 shows an example XML output containing two sec-
tions. The first section consists of a list of boxes as well as
their initial process assignments, which may be modified at
simulation time to explore alternative distribution strate-
gies. The second section contains a list of computation and
communication events. Each event is annotated with the
type of the event, its location (or source and destination),
the size of the data that needs to be processed or communi-
cated, and (if the event is a computation) an estimate of the
time to execute. The computation times may be generated
by using a performance model such as the ExaSAT static
analysis model [4]. This allows us to have a completely pa-
rameterized system model that captures both on-node and
off-node performance. The compute times may also be es-
timated by other means, such as using performance profiles
on current machines or a discrete event simulator.

2.3 SST/macro
SST/macro [6, 3] is an open-source coarse-grained simu-
lator for large parallel high-performance applications and
machines that enables the exploration of current and fu-
ture implementations of applications, libraries, and runtimes
on performance models of typical supercomputer hardware.
Typically, interfaces such as MPI are implemented in the
simulator, effectively providing an on-line emulation envi-
ronment for applications which can execute natively on the
simulation host. SST/macro has been validated against ex-
isting HPC hardware [18] using formal Uncertainty Quantifi-
cation techniques, demonstrating the effectiveness of coarse-
grain modeling in efficiently capturing performance charac-
teristics. In this work, we leverage SST/macro to provide
network simulation capability to our analysis toolchain. An

Box Distribution Algorithm Network Topology
Round-Robin (RR) 3D Torus

Knapsack (KS) 7D Torus
Space-Filling-Curve (SFC) 4-ary Fat-Tree

16-ary Fat-Tree

Table 1: Experimental parameters explored

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

3D	
 Torus	
 7D	
 Torus	
 Low-­‐Radix	

Fat	
 Tree	

High-­‐Radix	

Fat	
 Tree	

Si
m
ul
at
ed

	
 T
im

e	

(m

s)
	

Network	
 Topology	

RR	

KS	

SFC	

Figure 4: Simulated execution time for different
network topologies and box distribution algorithms.
RR = round-robin, KS = knapsack, SFC = space-
filling-curve.

XML parsing application was written to be run in SST/-
macro which interprets the computation and communication
tasks output by the AMR dependency tool, and makes MPI
calls accordingly.

3. RESULTS AND FUTURE WORK
To demonstrate our framework, we use the CASTRO AMR
application code [1, 19, 20]. CASTRO is a radiation hydro-
dynamics code developed for computational astrophysics.
The code uses compressible Eulerian hydrodynamics with
self-gravity and multigroup flux-limited radiation diffusion.
For the experiments considered here we only use the hy-
drodynamics component of the code. The discretization of
the hydrodynamics uses an unsplit PPM integrator, which is
an explicit finite volume algorithm that builds in nonlinear
wave interactions. CASTRO uses a block-structured AMR
paradigm in which points requiring additional resolution are
grouped into larger aggregate regions that are represented
as a union of logically rectangular patches of data. For com-
putational efficiency and accuracy, the algorithm subcycles
in time so that regions that are refined in space are also re-
fined in time, with a synchronization step that occurs when
adjacent levels reach the same physical time.

We have conducted some preliminary experiments using a
variety of box distribution algorithms and network topolo-
gies for a fixed problem size of 967 boxes split over 3 AMR
levels and distributed over 480 processes. Some of the ma-
jor parameters explored are displayed in Table 1. Network
parameters (i.e. bandwidths and latencies) were chosen to
reflect estimates of exascale-class machine network capabil-
ities. Computation event time estimates were generated by
profiling the execution of the CASTRO code on NERSC’s
Hopper supercomputer and using a regression model to esti-
mate the on-node performance on an exascale-class machine.
Future work will incorporate using the ExaSAT analysis tool
[4] to make more detailed estimates of the CASTRO appli-
cation’s compute performance.

Figure 4 shows the results of our simulations. The distri-
bution algorithms perform similarly except for the space-
filling-curve (SFC) algorithm, which performs roughly 18
percent faster than the next best algorithm on the fat tree
topologies. This advantage is likely due to the SFC algo-
rithm exploiting locality between boxes, effectively reducing
network traffic, while the other algorithms focus exclusively
on computational load balance.

Our framework allows users to evaluate the performance
of various AMR codes on potential network configurations
without requiring physical access for benchmarking, which is
a valuable capability for software/hardware co-design, espe-
cially in advance of hardware arrival. We plan to utilize our
simulation methodology to help evaluate many other box
distribution algorithms and network topologies. We may
also apply our framework to the evaluation of dynamic load
balancing schemes coupled with more detailed on-node per-
formance estimation tools.

4. REFERENCES
[1] A. S. Almgren et al. CASTRO: A New Compressible

Astrophysical Solver. I. Hydrodynamics and Self-gravity.
Astrophysical Journal, 715:1221–1238, June 2010.

[2] S. Borkar. Design challenges of technology scaling. IEEE
Micro, 19(4):23–29, 1999.

[3] C. L. Janssen et al. Using simulation to design extremescale
applications and architectures: programming model
exploration. SIGMETRICS Perform. Eval. Rev., 38:4–8,
March 2011.

[4] C. Chan, D. Unat, M. Lijewski, W. Zhang, J. Bell, and
J. Shalf. Software design space exploration for exascale
combustion co-design. In ISC, pages 196–212, 2013.

[5] C. for Computational Sciences and E. L. B. N. Laboratory.
Boxlib. https://ccse.lbl.gov/BoxLib/.

[6] C. L. Janssen et al. A simulator for large-scale parallel
computer architectures. IJDST, 1(2):57–73, 2010.

[7] D. J. Kerbyson et al. Predictive performance and scalability
modeling of a large-scale application. In Proceedings of the
2001 ACM/IEEE conference on Supercomputing
(CDROM), pages 37–37, New York, NY, USA, 2001. ACM.

[8] P. Kogge et al. Exascale computing study: Technology
challenges in achieving exascale systems, 2008.

[9] Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing
for structured adaptive mesh refinement applications. In
International Conference on Parallel Processing., pages
571–579, 2001.

[10] X. Li and M. Parashar. Hierarchical partitioning techniques
for structured adaptive mesh refinement applications. The
Journal of Supercomputing, 28(3):265–278, 2004.

[11] X.-Y. Li and S.-H. Teng. Dynamic load balancing for
parallel adaptive mesh refinement. In A. Ferreira, J. Rolim,
H. Simon, and S.-H. Teng, editors, Solving Irregularly
Structured Problems in Parallel, volume 1457 of Lecture
Notes in Computer Science, pages 144–155. Springer Berlin
Heidelberg, 1998.

[12] J. Luitjens and M. Berzins. Improving the performance of
uintah: A large-scale adaptive meshing computational
framework. In Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1–10, 2010.

[13] D. A. B. Miller. Rationale and challenges for optical
interconnects to electronic chips. In Proceedings of the
IEEE, pages 728–749, 2000.

[14] M. Mohiyuddin et al. A design methodology for
domain-optimized power-efficient supercomputing. In
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pages
12:1–12:12, New York, NY, USA, 2009. ACM.

[15] M. Parashar and J. Browne. On partitioning dynamic
adaptive grid hierarchies. In System Sciences, 1996.,
Proceedings of the Twenty-Ninth Hawaii International
Conference on ,, volume 1, pages 604–613 vol.1, 1996.

[16] J. Shalf, S. S. Dosanjh, and J. Morrison. Exascale
computing technology challenges. In VECPAR, volume
6449 of Lecture Notes in Computer Science, pages 1–25.
Springer, 2010.

[17] M. Sottile, A. Dakshinamurthy, G. Hendry, and D. Dechev.
Semi-automatic extraction of software skeletons for
benchmarking large-scale parallel applications. In ACM
SIGSIM PADS, May 2013.

[18] J. J. Wilke et al. Validation and uncertainty assessment of
extreme-scale hpc simulation through bayesian inference. In
Proceedings of EuroPar, August 2013.

[19] W. Zhang, L. Howell, A. Almgren, A. Burrows, and J. Bell.
CASTRO: A New Compressible Astrophysical Solver. II.
Gray Radiation Hydrodynamics. Astrophysical Journal
Supplement, 196:20, Oct. 2011.

[20] W. Zhang, L. Howell, A. Almgren, A. Burrows, J. Dolence,
and J. Bell. CASTRO: A New Compressible Astrophysical
Solver. III. Multigroup Radiation Hydrodynamics.
Astrophysical Journal Supplement, 204:97, 2013.

