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Abstract—Hippocampus within medial temporal lobe of the 

brain is essentially involved in episodic memory formation.  

Rather than simply being a mechanism of storing information, 

episodic memory associates information such as the spatial and 

temporal context of an event.  Using hippocampus 

neurophysiology and functionality as an inspiration, we have 

developed an artificial neural network architecture called 

Associative-ARTMAP to associate k-tuples of inputs.  In this 

paper we present an overview of hippocampus 

neurophysiology, explain the design of our neural network 

architecture, and present experimental results from an 

implementation of our architecture. 

I. INTRODUCTION 

PISODIC memory allows us to remember specific 

personal experiences.  In doing so, we are able to 

remember more than just a particular event.  Rather, we 

are capable of remembering the detailed sequence of events 

comprising an experience as well as the temporal and spatial 

context of each event in the sequence [1].  One brain area, 

hippocampus, is critically involved in remembering the 

spatial and temporal context of an event.  Hippocampus 

location within human brain may be seen in Fig. 1.  The 

medial temporal lobe (MTL), where hippocampus is located, 

is the recipient of inputs from widespread areas of the cortex 

and supports the ability to bind together cortical 

representations. 

 A key component of episodic memory is association 

formation.  This capability allows you to relate information 
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pertaining to an event such as who, what, when, and where.  

In this paper we present an artificial neural network 

architecture for association formation inspired by 

hippocampal functionality.  First we give a brief overview of 

hippocampal neurophysiology, and then we provide an 

explanation of how we have incorporated key hippocampal 

functionality into our architecture, next we provide 

experimental results from an implementation of our 

architecture, and close with future work and conclusion.   

II. HIPPOCAMPUS NEUROPHYSIOLOGY 

Cortical inputs to MTL arrive from various sensory 

modalities, with different emphases depending upon the 

mammalian species.  For instance, rats receive a significant 

olfactory influence whereas bats receive a strong auditory 

influence [2].  Nevertheless, across species, most of the 

neocortical inputs to the perirhinal cortex come from cortical 

areas which process unimodal sensory information about 

qualities of objects (“what” information), and most of the 

neocortical inputs to the parahippocampal cortex come from 

cortical areas which process polymodal spatial (“where”) 

information [2][3].  There are some connections between the 

two streams, however overall processing of the streams 

remains largely segregated until they converge within 

hippocampus.   

Extensive neuroscience research typically identifies 

hippocampus to be composed of a loop receiving inputs 
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Fig. 1.  Hippocampus location within human brain. 
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from entorhinal cortex (EC) and beginning with dentate 

gyrus (DG), proceeding to CA3, followed by CA1 and 

propagating back to cortex.  These sub regions will be 

addressed individually as follows. 

The DG receives the conjoined multimodal sensory 

signals from EC.  Anatomically, DG consists of a large 

number of neurons with relatively sparse neural activation at 

a given instant.  Effectively, this behavior suggests that the 

DG creates non-overlapping sparse codes for unique events 

[4].  The sparse DG outputs serve as the input for CA3. 

The CA3 region of hippocampus consists of extensive 

recurrent connections.  Additionally, the presence of 

numerous inhibitory and excitatory interneurons enables 

CA3 to perform auto-association processes.    Anatomically, 

the output of CA3 proceeds to CA1 and subiculum as the 

major output regions of hippocampus. 

While the exact functionality of subiculum is largely 

unknown, CA1 functionality is typically identified as 

learning relational information for temporal sequences and 

connecting episodic encodings from CA3 with the original 

EC sensory activations.  

We have used some of these functional properties of 

hippocampus as the basis for an artificial neural network 

architecture for association formation which we will 

describe next.   

III. COMPUTATIONAL ARCHITECTURE 

In general, an association is a relationship between entities 

of a particular type.  For example, an individual is associated 

with their name or two individuals may be associated by a 

common workplace.  All entities are trivially related to 

themselves, but more interesting associations are between 

pairs and k- tuples of entities.  A pair is the simplest non 

trivial association, but more complexly, k individual entities 

may be associated with each other as a k-tuple.  And so the 

question arises as to how relationships are formed.   

 

Numerous domain specific rules or heuristics may be 

derived based upon criteria such as distance metrics or 

shared features.  But instead, our architecture, which is 

inspired by hippocampus, answers this question by the 

premise of associating a focus with its context, analogous to 

the dorsal and ventral partitioning in EC sensory input 

signals.  In other words, our approach associates what and 

where information based upon their shared frame of 

reference.  For example, a man may be associated with the 

home he is seen living at.     

However, beyond simply deciding what entities should be 

associated with one another there is also the issue of 

representation.  Prior to entering hippocampus, sensory 

signals pass through numerous layers of cortex.  And 

throughout these layers a representation for entities is built 

up.  Eventually, within hippocampus, the DG is believed to 

create unique sparse encodings for unique perceptions.  

Likewise, our architecture relies upon having a unique 

representation of the inputs it receives such that it can 

identify whether the current input is an item it has seen 

before and update any existing associations appropriately, or 

whether the input is novel necessitating a new encoding.  

 Our architecture, shown in Fig. 2, addresses this 

capability by using fuzzy-Adaptive Resonance theory (ART) 

artificial neural network modules.  Developed by Carpenter 

and Grossberg, the ART family of neural networks are 

online, unsupervised neural networks which are excellent at 

category recognition [5].  The fuzzy-ART variant which we 

have employed in our architecture operates upon real valued 

inputs.  Given a vector of real valued numbers 

corresponding to a particular input, fuzzy-ART performs 

pattern classification and through winner-take-all 

competition yields a unique output value to represent a 

group of similar inputs.  A vigilance parameter allows us to 

control how similar inputs must be to be classified within the 

same category.  A vigilance value of one specifies the inputs 

must be identical, and lowering the vigilance parameter 

towards zero allows for generalization such that similar, but 

not exactly identical, inputs may be grouped together.  If no 

existing category is sufficiently close to represent a novel 

input, then a growing version of ART is capable of 

expanding and creating a new category.  We have utilized 

these capabilities by employing a fuzzy-ART module to 

classify the inputs presented to our architecture.  In the 

neurophysiology, DG creates a unique encoding of unique 

inputs.  Likewise, the fuzzy-ART module we are using in 

our architecture creates representative categories for inputs.  

Repeated presentation of formerly presented inputs activates 

the same categorical representation whereas newly seen 

inputs can be represented by their own encoding.  These 

unique categorical activations may then be further processed 

and associated together.   

The DG encodings of hippocampus propagate to the CA3 

region which is heavily composed of recurrent connections 

and association is believed to occur.  In our architecture, by 

connecting a mapfield to the template activations of the 

fuzzy-ART module we are able to encode associations 

among k-tuples of inputs.  Existent neural network 

architecture ARTMAP links two ART modules by a 

mapfield such that the mapfield may record simultaneous 

activations across the two ART modules.  The rectangular 

mapfield of ARTMAP connects one ART module to each 

axis of the map grid and the intersecting grid lines encode a 

connection between the two ART modules [6].  This 

architecture allows input pairs simultaneously presented to 

be linked together such that a label presented to right (or B) 

side ART module may be correlated with the encoding the 

 
Fig. 2.  Associative-ARTMAP Architecture. 



 

 

 

left (or A) side ART module is learning, and as such the 

architecture may further be used to identify future left side 

inputs by the learned right side label for that item.       

Our Associative-ARTMAP architecture consists of only a 

single fuzzy-ART module and utilizes the mapfield to 

encode associations between k-tuples of entities presented to 

it rather than between two ART modules.  Instead of 

connecting a separate ART module to each axis of the 

mapfield, the outputs of our single ART module are 

mirrored connecting it to both sides of the mapfield and 

subsequently allowing associations to be formed across the 

single ART module.  The mapfield stores a value of one at 

the grid intersection of the associated entities and a value of 

zero indicates the two entities represented by that mapfield 

grid intersection point are not associated with one another 

based upon formerly received inputs.  Consequently, the 

mapfield of our Associative-ARTMAP architecture creates a 

symmetric binary association matrix. 

Using a single fuzzy-ART module necessitates that rather 

than presenting associated inputs simultaneously, they are 

presented sequentially to our architecture.  Furthermore, 

rather than encoding the instantaneous activation, the 

mapfield associates the previous k fuzzy-ART outputs.  

Associations are symmetric and may be many-to-many.     

The overall Associative-ARTMAP architecture is 

depicted in Fig. 2.    

IV. IMAGE ASSOCIATION EXPERIMENT 

As a demonstration of the associative capability of our 

Associative-ARTMAP architecture we have constructed a 

simple image association experiment with 13 unique inputs 

and 14 associations amongst the inputs.  As the base case, 

we have set k equal to two so that the associations are pairs.  

While ART is capable of processing any vectorized inputs, 

for this experiment we have presented our architecture with 

grayscale images of uniquely numbered circles as shown in 

Fig. 3.  Each row in the figure portrays an associative pairing 

and the column depicts the individual input which was 

presented to the architecture.       

V. IMAGE ASSOCIATION RESULTS 

The ordering of the pairs is arbitrary in regards to the 

overall result, however computationally by using a fuzzy-

ART neural network, the ordering influences the 

representative template encoding of the input.  Additionally, 

the placement of an input in column one or two is also 

arbitrary.  For example, Input 2 in the first row is the same 

image as Input 1 in the second row.  Due to the fact that both 

Input 1 and Input 2 are processed by the same Fuzzy-ART 

module, the repeated presentation of an input is represented 

by the same output activation as opposed to a unique 

encoding whether the input was presented as Input 1 or Input 

2.     

For this simple example, we were able to manually 

construct the association matrix yielded by the pairing of the 

inputs for comparison purposes and verify the association 

matrix yielded by our Associative-ARTMAP architecture 

was equivalent.  The association matrix generated by our 

architecture is shown in Fig. 4, which is identical to the 

manually constructed association matrix.   

Additionally, as a more intuitive depiction we have 

generated an association graph from the mapfield which is 

shown in Fig. 5.  As illustrated in this figure, while simple 

pairs were presented to the architecture, the net result is a 

more complex associative graph or network in which larger 

transitive and group associations may be inferred.  For 

example, while input circles 10 and 4 were never associated 

with one another, transitive association paths exist by which 

the two inputs may be connected.    

 
Fig. 3.  Input image pairs for experiment testing association 

capabilities of the architecture. 

 
Fig. 4.  Graph of resulting associations. 



 

 

 

VI. TEXT ASSOCIATION EXPERIMENT 

As a second exemplar illustrating the associative 

capabilities of our architecture, we have created a text based 

association example.  Just as an individual’s physical self is 

associated with their name, an individual’s first and last 

name are associated with one another.  And so, for this 

example we have used the first and last names of United 

States Presidents as our dataset [7].  First and last names 

were presented to the architecture individually and 

consecutively as text strings.  John Quincy Adams and the 

two President Bush’s were presented as triples rather than 

pairs to differentiate these individuals.  The full input data is 

portrayed in Fig. 6.  The ordering shown in the image is the 

same as the order presented to our architecture, and although 

the ordering does not affect the final associations formed we 

have presented the paired names in order of presidency.   

In order to process text strings using a Fuzzy-ART 

module the text string must be mapped to a numeric vector.  

In this case, we have done so by forming a vector consisting 

of the American Standard Code for Information Interchange 

(ASCII) decimal value for each individual letters in the 

names [8].  Additionally, because Fuzzy-ART requires a 

fixed length input vector, we have padded the shorter names 

with zero values at the end of the vector to attain a constant 

length for all text strings.  Alternative numeric text 

encodings are possible but would not alter the resulting 

association formations.         

VII. TEXT ASSOCIATION RESULTS 

This example illustrates our architecture’s ability to 

operate upon various input types, not just graphics as 

demonstrated in the first example.  The particular 

characteristics of an association graph or network are 

dependent upon the data presented to the architecture.  This 

second example is a larger input data set which exhibits 

some characteristics not present in the first example.  Due to 

the increased complexity of this example, the full association 

matrix generated by the architecture is too large to 

meaningfully display within this paper.  However, Fig. 7 

depicts a few of the interesting associations extracted from 

the overall resultant association matrix.   

In this example, the overall association graph is not 

connected, but rather disjoint groupings form, some of 

 
Fig. 5.  Graph of resulting associations. 

 
Fig. 6.  Input text pairs of U.S. President Names. 

 
Fig. 7.  Partial graph of text associations of U.S. President Names. 



 

 

 

which are shown in Fig. 7.  For example, as may be seen on 

the right side of Fig. 7, James has been a popular first name 

among several presidents and thus six different presidents 

are all associated with this first name.  Other associations are 

unique in the sense that they do not share a first or last name 

with any other president and consequently only the two 

names are associated with each other and nothing else.  Two 

such examples shown in Fig. 7 are Abraham Lincoln and 

Ronal Reagan near the top right corner of the figure.   

John Adams was the second President and John Quincy 

Adams was the sixth President.  As previously stated, the 

name John Quincy Adams was presented as a triple to 

differentiate these two men.  The graph of the resulting 

association group is illustrated in the upper left portion of 

Fig. 7.   

VIII. CONCLUSION AND FUTURE WORK 

In this paper we have presented an artificial neural 

network computational architecture with functionality 

inspired by the neural functionality of hippocampus.  

Specifically, this architecture was designed based upon the 

CA3 region of hippocampus to learn associations amongst k-

tuples of entities.  Our approach is general, as opposed to a 

domain specific solution, in the sense that it can handle any 

sort of input as long as the input may be represented as a 

numeric vector.     

Future development of this architecture may include 

additional processing within the mapfield.  Rather than 

simply recording a binary association value, additional 

metrics such as a frequency count or a recency value may 

provide interesting enhancements.  Incorporating a 

frequency count is one possibility to identify strength of 

association such that pairings repeatedly presented together 

are more strongly associated than items only presented once.  

In our preliminary architecture, presentation order is 

irrelevant, but if instead order matters a temporal marker 

could be utilized to assess how recently an association was 

formed.  From this approach, various further processing 

could be incorporated such as the decay of associations over 

time.    Depending upon the particular application, 

architecture modifications such as these provide great 

potential for enhanced further processing.   
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