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Abstract—Hippocampus within medial temporal lobe of the
brain is essentially involved in episodic memory formation.
Rather than simply being a mechanism of storing information,
episodic memory associates information such as the spatial and
temporal context of an event. Using hippocampus
neurophysiology and functionality as an inspiration, we have
developed an artificial neural network architecture called
Associative-ARTMAP to associate k-tuples of inputs. In this
paper we present an overview of hippocampus
neurophysiology, explain the design of our neural network
architecture, and present experimental results from an
implementation of our architecture.

I. INTRODUCTION

EPISODIC memory allows us to remember specific
personal experiences. In doing so, we are able to
remember more than just a particular event. Rather, we
are capable of remembering the detailed sequence of events
comprising an experience as well as the temporal and spatial
context of each event in the sequence [1]. One brain area,
hippocampus, is critically involved in remembering the
spatial and temporal context of an event. Hippocampus
location within human brain may be seen in Fig. 1. The
medial temporal lobe (MTL), where hippocampus is located,
is the recipient of inputs from widespread areas of the cortex
and supports the ability to bind together cortical
representations.
A key component of episodic memory is association
formation. This capability allows you to relate information
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pertaining to an event such as who, what, when, and where.
In this paper we present an artificial neural network
architecture  for association formation inspired by
hippocampal functionality. First we give a brief overview of
hippocampal neurophysiology, and then we provide an
explanation of how we have incorporated key hippocampal
functionality into our architecture, next we provide
experimental results from an implementation of our
architecture, and close with future work and conclusion.
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Fig. 1. Hippocampus location within human brain.

Il. HipPOCAMPUS NEUROPHYSIOLOGY

Cortical inputs to MTL arrive from various sensory
modalities, with different emphases depending upon the
mammalian species. For instance, rats receive a significant
olfactory influence whereas bats receive a strong auditory
influence [2]. Nevertheless, across species, most of the
neocortical inputs to the perirhinal cortex come from cortical
areas which process unimodal sensory information about
qualities of objects (“what” information), and most of the
neocortical inputs to the parahippocampal cortex come from
cortical areas which process polymodal spatial (“where”)
information [2][3]. There are some connections between the
two streams, however overall processing of the streams
remains largely segregated until they converge within
hippocampus.

Extensive neuroscience research typically identifies
hippocampus to be composed of a loop receiving inputs



from entorhinal cortex (EC) and beginning with dentate
gyrus (DG), proceeding to CA3, followed by CA1l and
propagating back to cortex. These sub regions will be
addressed individually as follows.

The DG receives the conjoined multimodal sensory
signals from EC. Anatomically, DG consists of a large
number of neurons with relatively sparse neural activation at
a given instant. Effectively, this behavior suggests that the
DG creates non-overlapping sparse codes for unique events
[4]. The sparse DG outputs serve as the input for CA3.

The CA3 region of hippocampus consists of extensive
recurrent connections.  Additionally, the presence of
numerous inhibitory and excitatory interneurons enables
CA3 to perform auto-association processes. Anatomically,
the output of CA3 proceeds to CAL and subiculum as the
major output regions of hippocampus.

While the exact functionality of subiculum is largely
unknown, CA1l functionality is typically identified as
learning relational information for temporal sequences and
connecting episodic encodings from CA3 with the original
EC sensory activations.

We have used some of these functional properties of
hippocampus as the basis for an artificial neural network
architecture for association formation which we will
describe next.

I1l. COMPUTATIONAL ARCHITECTURE

In general, an association is a relationship between entities
of a particular type. For example, an individual is associated
with their name or two individuals may be associated by a
common workplace. All entities are trivially related to
themselves, but more interesting associations are between
pairs and k- tuples of entities. A pair is the simplest non
trivial association, but more complexly, k individual entities
may be associated with each other as a k-tuple. And so the
question arises as to how relationships are formed.
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Fig. 2. Associative-ARTMAP Architecture.

Numerous domain specific rules or heuristics may be
derived based upon criteria such as distance metrics or
shared features. But instead, our architecture, which is
inspired by hippocampus, answers this question by the
premise of associating a focus with its context, analogous to
the dorsal and ventral partitioning in EC sensory input
signals. In other words, our approach associates what and
where information based upon their shared frame of

reference. For example, a man may be associated with the
home he is seen living at.

However, beyond simply deciding what entities should be
associated with one another there is also the issue of
representation. Prior to entering hippocampus, sensory
signals pass through numerous layers of cortex. And
throughout these layers a representation for entities is built
up. Eventually, within hippocampus, the DG is believed to
create unique sparse encodings for unique perceptions.
Likewise, our architecture relies upon having a unique
representation of the inputs it receives such that it can
identify whether the current input is an item it has seen
before and update any existing associations appropriately, or
whether the input is novel necessitating a new encoding.

Our architecture, shown in Fig. 2, addresses this
capability by using fuzzy-Adaptive Resonance theory (ART)
artificial neural network modules. Developed by Carpenter
and Grossberg, the ART family of neural networks are
online, unsupervised neural networks which are excellent at
category recognition [5]. The fuzzy-ART variant which we
have employed in our architecture operates upon real valued
inputs. Given a vector of real valued numbers
corresponding to a particular input, fuzzy-ART performs
pattern classification and through winner-take-all
competition yields a unique output value to represent a
group of similar inputs. A vigilance parameter allows us to
control how similar inputs must be to be classified within the
same category. A vigilance value of one specifies the inputs
must be identical, and lowering the vigilance parameter
towards zero allows for generalization such that similar, but
not exactly identical, inputs may be grouped together. If no
existing category is sufficiently close to represent a novel
input, then a growing version of ART is capable of
expanding and creating a new category. We have utilized
these capabilities by employing a fuzzy-ART module to
classify the inputs presented to our architecture. In the
neurophysiology, DG creates a unique encoding of unique
inputs. Likewise, the fuzzy-ART module we are using in
our architecture creates representative categories for inputs.
Repeated presentation of formerly presented inputs activates
the same categorical representation whereas newly seen
inputs can be represented by their own encoding. These
unique categorical activations may then be further processed
and associated together.

The DG encodings of hippocampus propagate to the CA3
region which is heavily composed of recurrent connections
and association is believed to occur. In our architecture, by
connecting a mapfield to the template activations of the
fuzzy-ART module we are able to encode associations
among k-tuples of inputs. Existent neural network
architecture ARTMAP links two ART modules by a
mapfield such that the mapfield may record simultaneous
activations across the two ART modules. The rectangular
mapfield of ARTMAP connects one ART module to each
axis of the map grid and the intersecting grid lines encode a
connection between the two ART modules [6]. This
architecture allows input pairs simultaneously presented to
be linked together such that a label presented to right (or B)
side ART module may be correlated with the encoding the



left (or A) side ART module is learning, and as such the
architecture may further be used to identify future left side
inputs by the learned right side label for that item.

Our Associative-ARTMAP architecture consists of only a
single fuzzy-ART module and utilizes the mapfield to
encode associations between k-tuples of entities presented to
it rather than between two ART modules. Instead of
connecting a separate ART module to each axis of the
mapfield, the outputs of our single ART module are
mirrored connecting it to both sides of the mapfield and
subsequently allowing associations to be formed across the
single ART module. The mapfield stores a value of one at
the grid intersection of the associated entities and a value of
zero indicates the two entities represented by that mapfield
grid intersection point are not associated with one another
based upon formerly received inputs. Consequently, the
mapfield of our Associative-ARTMAP architecture creates a
symmetric binary association matrix.

Using a single fuzzy-ART module necessitates that rather
than presenting associated inputs simultaneously, they are
presented sequentially to our architecture. Furthermore,
rather than encoding the instantaneous activation, the
mapfield associates the previous k fuzzy-ART outputs.
Associations are symmetric and may be many-to-many.

The overall Associative-ARTMAP architecture is
depicted in Fig. 2.

IV. IMAGE ASSOCIATION EXPERIMENT

As a demonstration of the associative capability of our
Associative-ARTMAP architecture we have constructed a
simple image association experiment with 13 unique inputs
and 14 associations amongst the inputs. As the base case,
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Fig. 3. Input image pairs for experiment testing association
capabilities of the architecture.

we have set k equal to two so that the associations are pairs.
While ART is capable of processing any vectorized inputs,
for this experiment we have presented our architecture with
grayscale images of uniquely numbered circles as shown in
Fig. 3. Each row in the figure portrays an associative pairing
and the column depicts the individual input which was
presented to the architecture.

V. IMAGE ASSOCIATION RESULTS

The ordering of the pairs is arbitrary in regards to the
overall result, however computationally by using a fuzzy-
ART neural network, the ordering influences the
representative template encoding of the input. Additionally,
the placement of an input in column one or two is also
arbitrary. For example, Input 2 in the first row is the same
image as Input 1 in the second row. Due to the fact that both
Input 1 and Input 2 are processed by the same Fuzzy-ART
module, the repeated presentation of an input is represented
by the same output activation as opposed to a unique
encoding whether the input was presented as Input 1 or Input
2.

For this simple example, we were able to manually
construct the association matrix yielded by the pairing of the
inputs for comparison purposes and verify the association
matrix yielded by our Associative-ARTMAP architecture
was equivalent. The association matrix generated by our
architecture is shown in Fig. 4, which is identical to the
manually constructed association matrix.
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Fig. 4. Graph of resulting associations.

Additionally, as a more intuitive depiction we have
generated an association graph from the mapfield which is
shown in Fig. 5. As illustrated in this figure, while simple
pairs were presented to the architecture, the net result is a
more complex associative graph or network in which larger
transitive and group associations may be inferred. For
example, while input circles 10 and 4 were never associated
with one another, transitive association paths exist by which
the two inputs may be connected.



Fig. 5. Graph of resulting associations.

VI.
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TEXT ASSOCIATION EXPERIMENT

As a second exemplar illustrating the associative
capabilities of our architecture, we have created a text based
association example. Just as an individual’s physical self is
associated with their name, an individual’s first and last
name are associated with one another. And so, for this
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Fig. 6. Input text pairs of U.S. President Names.
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example we have used the first and last names of United
States Presidents as our dataset [7]. First and last names
were presented to the architecture individually and
consecutively as text strings. John Quincy Adams and the
two President Bush’s were presented as triples rather than
pairs to differentiate these individuals. The full input data is
portrayed in Fig. 6. The ordering shown in the image is the
same as the order presented to our architecture, and although
the ordering does not affect the final associations formed we
have presented the paired names in order of presidency.

In order to process text strings using a Fuzzy-ART
module the text string must be mapped to a numeric vector.
In this case, we have done so by forming a vector consisting
of the American Standard Code for Information Interchange
(ASCII) decimal value for each individual letters in the
names [8]. Additionally, because Fuzzy-ART requires a
fixed length input vector, we have padded the shorter names
with zero values at the end of the vector to attain a constant
length for all text strings. Alternative numeric text
encodings are possible but would not alter the resulting
association formations.

VII. TEXT ASSOCIATION RESULTS

This example illustrates our architecture’s ability to
operate upon various input types, not just graphics as
demonstrated in the first example. The particular
characteristics of an association graph or network are
dependent upon the data presented to the architecture. This
second example is a larger input data set which exhibits
some characteristics not present in the first example. Due to
the increased complexity of this example, the full association
matrix generated by the architecture is too large to
meaningfully display within this paper. However, Fig. 7
depicts a few of the interesting associations extracted from
the overall resultant association matrix.
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Fig. 7. Partial graph of text associations of U.S. President Names.

In this example, the overall association graph is not
connected, but rather disjoint groupings form, some of



which are shown in Fig. 7. For example, as may be seen on
the right side of Fig. 7, James has been a popular first name
among several presidents and thus six different presidents
are all associated with this first name. Other associations are
unique in the sense that they do not share a first or last name
with any other president and consequently only the two
names are associated with each other and nothing else. Two
such examples shown in Fig. 7 are Abraham Lincoln and
Ronal Reagan near the top right corner of the figure.

John Adams was the second President and John Quincy
Adams was the sixth President. As previously stated, the
name John Quincy Adams was presented as a triple to
differentiate these two men. The graph of the resulting
association group is illustrated in the upper left portion of
Fig. 7.

VIIl. CONCLUSION AND FUTURE WORK

In this paper we have presented an artificial neural
network computational architecture with functionality
inspired by the neural functionality of hippocampus.
Specifically, this architecture was designed based upon the
CA3 region of hippocampus to learn associations amongst k-
tuples of entities. Our approach is general, as opposed to a
domain specific solution, in the sense that it can handle any
sort of input as long as the input may be represented as a
numeric vector.

Future development of this architecture may include
additional processing within the mapfield. Rather than
simply recording a binary association value, additional
metrics such as a frequency count or a recency value may
provide interesting enhancements. Incorporating a
frequency count is one possibility to identify strength of
association such that pairings repeatedly presented together
are more strongly associated than items only presented once.
In our preliminary architecture, presentation order is
irrelevant, but if instead order matters a temporal marker
could be utilized to assess how recently an association was
formed. From this approach, various further processing
could be incorporated such as the decay of associations over
time. Depending upon the particular application,
architecture modifications such as these provide great
potential for enhanced further processing.
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