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INTRODUCTION

Safety analysis for reactors such as the Annular Core 
Research Reactor (ACRR) at Sandia National 
Laboratories requires evaluation of rapid reactivity 
transients (e.g., pulses reaching 30 GW with a pulse width 
on the order of 10 ms).  Adaptive time step control is a 
desirable feature in a numerical analysis code, and can 
help avoid the trial-and-error of properly specifying time 
steps for different time spans prior to code execution.

For rapid reactivity transients such as a prompt-
critical pulse operation, fission energy deposition rates are 
high, and rapid fuel temperature rises occur before 
conduction can begin to significantly offset the energy 
deposition rate.  This work considers an adaptive time 
step approach which is intended to address the accuracy 
of the fuel temperature as well as the reactor power for 
prompt-critical reactivity transients.  The approach is 
tested for a large, rapid reactivity change.

DESCRIPTION OF THE ACTUAL WORK

The second derivative term of a Taylor series 
expansion of a function f may be used to estimate the
relative truncation error () associated with a numerical 
solution.  This assumes the contributions of higher order 
derivatives to be negligible.  
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The relative truncation error may then be controlled 
via time step size selection.  In order to implement this 
approach, a means of evaluating the second derivative.  
For power (P), this is accomplished by use of the point 
reactor kinetics equations for N delayed neutron groups.
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The second derivative of power is found by 
differentiating Eq. 2.
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Thus, at a given time in the numerical analysis, the 
second derivative of power can then be evaluated from 
the current values for power, reactivity (), and the 
delayed neutron precursors (Ci).  The first derivative of 
the reactivity is estimated from the change in the 
reactivity over the previous time step.

The second derivative for the fuel temperature is 
obtained from the energy equation (Eq. 5) for the fuel, 
neglecting the conduction term.  
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The first derivative of the fuel temperature is thus 
related to the reactor power via the fuel density (F) and 
specific heat capacity (cp), the fuel volume (VF), and an 
appropriate peaking factor (Fq) for the location associated 
with the temperature. By taking the derivative of Eq. 5, a 
relation between the second derivative of the fuel 
temperature and the first derivative of the reactor power is 
obtained.  
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Equation 4 and Equation 6 are then used with Eq. 1 
to obtain a time step specification based on the first 
derivative of the reactor power (t1st), and on the second 
derivative of the reactor power (t2nd).
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Equations 7 and 8 are evaluated prior to each time 
advancement, and the time step used is the minimum of 
the two values.
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RESULTS

Figure 1 shows fuel temperature history for a large 
reactivity addition (implemented over ~100 ms beginning 
at t = 0.2 s) in the ACRR, resulting in a power pulse (~26 
GW peak power, 7 ms pulse width).  Only Eq. 8 was used 
for time step control.  Note that little further refinement 
was obtained for  = 10-8, which was then designated as 
the “best estimate.”

Fig. 1. Fuel temperature using 2nd derivative of power for 
time step control.

Figure 2 shows fuel temperature history for the same 
reactivity addition, using the new approach (i.e., the 
minimum of the time step obtained from Eq. 7 and Eq. 8).  
Note that the “best estimate” result was essentially 
obtained using  = 10-4 (vs.  = 10-8 for a 2nd derivative 
only approach).  Code execution time decreased (~10
minutes for  = 10-4, vs. ~45 minutes for  = 10-8 using the 
2nd derivative only).  The specified time step does 
increase once the pulse is over.  However, neglecting the 
conduction term in Eq. 5 does result in a post-pulse time 
step which is more restrictive than necessary.

Fig. 2. Fuel temperature using 1st and 2nd derivative of 
power for time step control.

CONCLUSION

Adaptive time step control which considers both the 
second derivative of power and the first derivative of 
power (which is proportional to the second derivative of 
the fuel temperature) can be used to achieve better 
accuracy in the fuel temperature for rapid reactivity 
transients.  Future work is appropriate to incorporate 
conduction in Eq. 5 to allow for less restrictive time steps 
after the initial power pulse.

800

810

820

830

840

0.32 0.33 0.34 0.35

T
em

p
er

at
u

re
 (

o C
)

Time (s)

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-08 - Best Estimate

800

810

820

830

840

0.32 0.33 0.34 0.35

T
em

p
er

a
tu

re
 (

o C
)

Time (s)

1.00E-03

1.00E-04

1.00E-05

1.00E-06

Best Estimate


