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ABSTRACT

Solutions for analytical models of systems with nonlinear
constraints have focused on exact methods for satisfying the con-
straint conditions. Exact methods often require that the con-
straint can be expressed in a piecewise-linear manner, and re-
sult in a series of mapping equations from one linear regime of
the constraint to the next. Due to the complexity of these meth-
ods, exact methods are often limited to analyzing a small number
of constraints for practical reasons. This paper proposes a new
method for analyzing continuous systems with arbitrary nonlin-
ear constraints by approximately satisfying the constraint con-
ditions. Instead of dividing the constraints into multiple linear
regimes, a discontinuous basis function is used to supplement
the system’s linear basis functions. As a result, precise contact
times are not needed, enabling this method to be more compu-
tationally efficient than exact methods. While the discontinuous
basis functions are continuous in displacement, their derivatives
contain discontinuities that allow for the nonlinear forces to be
accounted for with the assumption that the nonlinear constraints
are able to be modeled in a discrete manner. Since each nonlinear
constraint requires only one associated discontinuous basis func-
tion, this method is easily expanded to handle large numbers of
constraints. In order to illustrate the application of this method,
an example with a pinned-pinned beam is presented.
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1 Introduction

Nonlinearities are pervasive in the engineering problems that
are common today; however, either the suite of analytical tools
to efficiently study them often require significant approximations
or simplifications, or the resulting simulations are very compu-
tationally expensive. Systems with nonlinear constraints include
joints in large structures [1, 2], gears with backlash [3,4], steam
generator tubes in nuclear power plants [5,6], rotating shafts with
cracks [7], and fluid conveying pipes with supports [8,9] amongst
many other applications [10-12]. Typically, these nonlinearities
are approximated by piecewise linear constraints. The disconti-
nuities inherent in piecewise linear models have spurred research
to smooth the force-deflection profile using a sigmoid function
[13]. Other types of nonlinearties include Hertzian contact and
coefficient of restitution models [14-16], cubic springs [9, 17],
and Iwan friction models [18, 19].

The existing analytical studies of nonlinearities in continu-
ous systems is limited for several reasons. For piecewise linear
systems, a number of modal mapping methods exist that calcu-
late the mode shapes of the system in each regime of the piece-
wise linear nonlinearity and then use the orthogonality of the
mode shapes to map the displacement of the system across the
point of nonlinearity [5,20-22]. These methods, though, are of-
ten constrained in the order of the system [20,21] or the permiss-
able parameter spaces [5,22]. A recent approach has eliminated
these constraints by proposing a mapping method based on the
L, norm of the system [23]; however, in all cases, the limiting
factor for computational time is finding the exact moment in time
that the system transitions from one regime of the piecewise lin-
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ear constraint to another. For other types of nonlinear constraints
in continuous systems, such as Hertzian contact, only numerical
studies (such as finite difference, finite element, or other approx-
imate methods) exist in the literature.

The method proposed in Section 2 incorporates the effects
of the nonlinear constraints by using a set of discontinuous basis
functions. This approach is able to avoid the pitfalls encoun-
tered in prior methods. Additionally, because it does not involve
switching between the various regimes of a nonlinearity, it is
computationally efficient as it does not have to find exact switch-
ing times. This method originated in the study of large, discrete
(finite element) systems with joints [24,25]. This method has
proven effective in analyzing discrete systems with arbitrary con-
straints; however, there has previously been no obvious approach
for applying it to continuous systems. In Section 3, the method
is applied to a pinned-pinned beam system as an illustrative ex-
ample of its capabilities. Both piecewise-linear and piecewise-
nonlinear constraints are used, and the extension of the method
to multiple constraints is also discussed and illustratively shown.

2 The Discontinuous Basis Function Method
Given a continuous system with position vector x, time ¢,

displacement w(x,), and location of the Nz, nonlinear constraints
{¢1,...,4n, } in the domain, the equation of motion for the sys-

tem is expressed as
NL,
L(w)+Y Nj(w(lj,1))=f 4))
j=1

where L is the equation of motion of the system without the non-
linear constraint, ./\/ j is the constraint force due to the jth nonlin-
ear constraint, and f is comprised of the additional forces acting
on the system.

2.1 Ordinary Basis Functions
The first step in the discontinuous basis function method is
to find the mode shapes of a reference system defined as

L(w)=0 2)

with the same boundary conditions as the original system. For
most systems this is a linear equation that can be cast in matrix-
operator form [26]; that is, expressing L as

MWJ[ + ngt +Kw=0. (3)

The operators M, G, and K are the mass, gyroscopic/damping,
and stiffness operators respectively, and the comma subscript no-
tation is used to denote differentiation with respect to the suc-
ceeding variables. In non-gyroscopic systems (G = 0), this modal
operator notation is not strictly necessary, and more traditional
modal analysis approaches may be used. Equation 3 is cast as

R E R R R

and has known mode shapes

Vi) = () +iv](2) )
R_ —‘Dj¢§(z€)} ;
b4 { o () ©
i 03;‘4)?(5)} ;
¥ { ¢ (x) @

and natural frequencies ®;. Defining the inner product of two
vectors v and v, over the domain I

(vi,v2) = frleizdF ®)

with ¥ denoting the complex conjugate of v, and the system ma-

trices
MO0
A:[ 0 IC] (&)
G K
B:[—/co]’ (10)

orthogonality yields

By, yr) =0
By, ¥1)=0 (11
(B\Hﬁv}y{» = wmamna

(AY517Y§> = Oyn
(A‘i’{w}[’fz) = Oyn
(A yr) =0

with the Kronecker delta function denoted by 9,,,. Since B is
skew-symmetric

By W) =~ (BY,, i) (12)
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In the case where £ is a nonlinear operator, such as for
von Karman plates, alternative methods such as the method of
quadratic components [27-29] are readily available to find the
mode shapes and natural frequencies of the system. The restric-
tions placed on the mode shapes found by alternative methods
are that they are orthonormal with respect to the system’s mass
matrix as above. Additionally, the number N of mode shapes
needed is determined either by the highest frequency of interest
for the analysis of the original system, or by a convergence study.

2.2 Discontinuous Basis Functions

A set of systems are defined that are the same as the refer-
ence system but with a linear spring at the j nonlinear constraint
location; that is,

£(w) +kw(L;,0)8(x ) =0. (13)

Only the first mode shape is needed for this system, and the solu-
tion can be found using the same procedure as for the reference
system in Section 2.1 as the additional term kw({;,1)8(x—¢;) is

linear. The resulting set of mode shapes

¥ (k,x) =P (k,x) +i¥% (k,x) (14)
_ij(p[(kax)
R _ PAREES
; @, 0% (k,x)
7 ek {10

and corresponding natural frequencies ®;(k) vary as a function
of the spring stiffness k. Above a critical stiffness k., the ®;(k)
approach an asymptote as the linear spring acts like a pinned
connection for the mode shape. To determine the discontinuous
basis function, the derivative

—Gf.fwﬂ,k(k,zg) ] mj(Pf,k(k»ZC,)
?jﬁk(k&) B (Pﬁk(kvﬁ) o (Pi',k(kvic,) 17)

is needed. Note that the terms @ ; ;¢ ; are neglected as they are not
necessary for deriving the discontinuous basis functions. To eval-
uate this derivative, an appropriate k is determined by calculating
®;(k) and observing where it transitions from k ~ 0 behavior to
k ~ oo behavior. This set of functions {¥; ;} must be orthonor-

malized with respect to the ordinary basis functions, which can
be efficiently accomplished using a Gram-Schmidt procedure re-

sulting in the set of discontinuous basis functions

Y=Y P Proj\i,n (P1x)

N . 1. (18)
i=Y,i— Y projy, (¥ jx) - o projy,, (¥ jx)-

with the projection proj, (v2) of vector v on to vector v, is
defined as

(vi,v2)
=" 1)

After each discontinuous basis function J; is found it is normal-

ized via Eq. 11, and the associated natural frequency is given as

(BYS, ¥)) = ;. (20)

This complete set of basis functions {W,,\{s,,} spans the entire

response space. While each y,, is at least C' continuous, the

third derivative (in fourth order problems) contains a discontinu-
ity at x = £,,,, which will allow for the nonlinear constraint to be

accounted for. With the response of the system
Wi (Ax.a t) N Np
w(x) :};nn(r)ywn;nm(;)ym, @1

the solution of Eq. 1 is readily available. Due to the nonlinearity
in the system, an implicit integration scheme is recommended.
In the following examples, an implicit-explicit IMEX) Runge-
Kutta backward-Euler method [30] is used. While analytical ex-
pressions are developed for most quantities, they are not neces-
sary for analysis by this method; numerical solutions can suffice
instead of analytical expressions, however, calculating them is
not as computationally efficient as analytical expressions.

3 Pinned-Pinned Beam

As an illustrative example for this method, a beam with
pinned boundary conditions, having length L, position x, total
displacement w(x,7), boundary excitation Q(r), and a piecewise-
linear constraint that contains a deadband region located at x = ¢
(Fig. 1). Because this example deals with a non-gyroscopic sys-
tem, modal operator notation is not necessary, and the standard,
non-operator based, modal analysis is applied instead.
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Figure 1. (a) The pinned-pinned beam system, and (b) the force-
deflection profile of the deadband constraint.

The equation of motion in terms of w(x,¢) is
PAW 41 (x,1) + EIW yyex (x,1) = N (w(£,1)), (22)

where the nonlinear constraint is specified as

k(‘l)(—dx—z) 7 < —dy
N(z) = 0 : —dy<z<dy (23)
k(l)(dx—z) tode <z

3.1 Ordinary Basis Functions
The first step in the analysis is to define the linear reference
system

L(w(x,1)) = pAW 14 (x,1) + EIW e (x,1) =0, (24)
which has boundary conditions

w(0,1) = Q(r)
w(0,) =0

w(L,t)=0

wa(Ln)=0. )

In order to satisfy the inhomogeneous boundary condition, the
superposition function

s =a0(1-7) (26)

is used. Defining the elastic displacement u(x,t) = w(x,r) -
y(x,1), the equation of motion is rewritten as

pAth ()C,t) +E1M,)cxxx = _pAy,l‘l (X,[). (27)
Assuming the separable solution

N
u(x,t) = Z_:]T]n(f)%(x% (28)

the normalized mode shapes are

0(x) = 2 sin(e) 9)
with wavelengths
nm
Ap=— 30
T (30)

and natural frequencies

EI 2
mn:,/—(ﬂ) . 31)
pPA\ L
Substitution of (28) into (27), multiplying by ¢,,(x) and integrat-
ing with respect to x yields the modal equation of motion

Tin(£) + O () = (1) (32)

The modal forces due to the superposition are

L
A [0 le). (33)

3.2 Discontinuous Basis Functions
The discontinuous basis functions are determined by first
considering the system

L(u(x,)) +ku(l,1)d(x-£) =0, 34)
subject to pinned boundary conditions at x = 0 and x = L, with £
defined in Eq. 24. In order to find the mode shapes of this system,

it is conceptually divided into two contiguous regions (denoted
by m =1, 2) about x = ¢, and the problem is recast as

E(um(xvt)) :Oa (35)
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ur (0,1) = (1)
ul(g,t) :”2(€7t)
ul,xx(evt) :u2,)cx(£7t)
MQ(LJ) =0

MQ’M(O,I) =0
uix(£,1) =up < (4,1)
ET(u1 e (£,1) =2 v (€,1)) = kuty (£,1)
uzyxx(L,l) =0.
(36)
Solutions of Egs. 35-36 are found using the separable solution

N
U (x,1) = Znn(t)wmn(x)v (37

n=1

Won (X) = (Bt sin (Ayx) + Binz €08 (Ayx)
+Bun3 sinh (A, x) + Bnacosh (A,x)),  (38)

where A, is found through application of the boundary conditions

and
=+ 252, (39)
pPA

In order to determine an appropriate value of k for calculating the
discontinuous basis functions, the natural frequency @, is calcu-
lated as a function of k, as shown in Fig. 2. Values of k that are
too low or too high will yield discontinuous basis functions that
can not adequately account for the nonlinearity in the system (ei-
ther by being too soft of a constraint for low values of k or by
not having any displacement at the location of the nonlinearity
for high values of k). An appropriate k£ ~ 0.1 N/m (for this exam-
ple, with properties listed in Table 1) is chosen from the region
where @ transitions from a system with approximately no con-
straint (k ~ 0) to that of a pinned constraint (k » co). The deriva-
tive of the mode shapes ,, (x) are numerically evaluated at the
appropriate k, then orthogonalized with respect to the linear basis
functions via a Gram-Schmidt procedure (18). The discontinu-
ous basis functions ¢, (x) are found by normalizing the orthogo-
nal mode shapes from the Gram-Schmidt procedure with respect
to the linear reference system’s operators

L ~ ~
| pAu ()8 (x)dr =5, 40)

In a similar manner, the corresponding natural frequency for the
discontinuous basis function is found by

fo LElén,xxxx(x)&),, (x)dx = @,. 41)

In practice, only one discontinuous basis function is needed per
nonlinearity; consequently, throughout the rest of this example,

0.6

0.2 ¢

Natural Frequency, Hz

2 10° 10

Stiffness, N/m

10 10

Figure 2. The natural frequency as a function of stiffness for the related
problem of the reference system with a linear spring located at x = /1.

Variable Baseline Value
Cross-sectional area, A 0.29 mm?2
Clearance of the spring, d, 2.5 mm
Elastic modulus, E 117 GPa
Second moment of inertia, / 0.000878 mm*
Length of the beam, L 1m
Contact point, [ 0.25m
Number of ordinary basis functions, N 6
Number of discontinuous basis functions, Ny, 1
Beam density, p 11800 kg/m?
Excitation amplitude, Qf 5 mm
Excitation frequency, ®g 1 Hz

Table 1. Material and geometric properties for the pinned-pinned beam
system.

only one discontinuous basis function is used. Both ¢} and
are shown in Fig. 3. Note that while the mode shape (Fig. 3(a))
is continuous, there is a discontinuity in the third derivative
(Fig. 3(b)).

3.3 Results

Verifying that the nonlinear constraint is satisfied, the time
history (Fig. 4) and phase (Fig. 5) of the beam at x = £ show that
max(|w(¢,t)|) ~ dy. The high rebound velocities and no appar-
ent signs of steady-state behavior seen in Fig. 5 are indicative
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Figure 3. The (a) mode shape and (b) third derivative of the mode shape
for the discontinuous basis function ¢1 (—) and the reference mode shape
Y1 (—-) that @1 is derived from with N = 5. The location of the nonlinear

constraint at £ = 0.15 is indicated by the vertical dotted line, and other
parameters for the system are given in Table 1.

25

Displacement, mm

0 5 10

Time, s

Figure 4. The time history of the displacement at x = £; parameters for
the system are given in Table 1.

of the lack of damping in the system. As a result, the displace-
ment of the beam away from the nonlinear constraint increases
in magnitude with every period of the excitation. In Fig. 6, the
displacement of the beam as a function of position x is shown
for 50 evenly spaced time increments (each 0.15 seconds apart).
Because the nonlinear constraint is located at a nodal point for
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Figure 5. The phase diagram of the displacement and velocity at x = /;
parameters for the system are given in Table 1.

Displacement, mm

Position, m

Figure 6. The displacement of the beam as a function of position at 50
evenly spaced time increments; parameters for the system are given in
Table 1. The arrows indicate the location of the nonlinear constraint.

the fourth mode, the fourth mode is the dominant mode in the
response.

3.3.1 Example of a Piecewise-Nonlinear Con-
straint To further illustrate the capabilities of the discontinu-
ous basis function method, the force deflection profile described
by

0.1(-d,-2)* : z<-d,
N(z) = 0 —dy<z<dy (42)
106(dx—z) :ody<z.
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Figure 7. The time history of the displacement at x = £; parameters for
the system are given in Table 1 with the constraint specified by Eq. 42.
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Figure 8. The phase diagram of the displacement and velocity at x = ¢;
parameters for the system are given in Table 1 with the constraint speci-
fied by Eq. 42.

is used in place of Eq. 23 with all other parameters the same as
described in Table 1. The constraint on positive displacements
is still sufficiently stiff to keep max(w(¢,t)) ~ dy; however, be-
cause the constraint on negative displacements is significantly
less stiff, displacements of w(4,r) < —d, are observed in both the
time history (Fig. 7) and phase diagram (Fig. 8). Even though the
constraint was changed from a piecewise-linear to a piecewise-
nonlinear function, no new basis functions or discontinuous basis
functions need to be calculated; the same basis functions as de-
rived for the piecewise-linear constraint are used with no more
calculations than for the piecewise-linear constraint.

Figure 9 shows the displacement of the beam as a func-
tion of x at 50 evenly spaced time increments (each 0.15 sec-

Displacement, mm

Position, m

Figure 9. The displacement of the beam as a function of position at 50
evenly spaced time increments; parameters for the system are given in
Table 1 with the constraint specified by Eq. 42.

onds apart). Despite the change in the nonlinear constraint, the
displacement of the beam is qualitatively similar to the previ-
ous example with the piecewise-linear constraint (Fig. 6). This
reinforces the observation that many different constraint mod-
els can be expressed as limiting cases of piecewise-linear mod-
els [14,31-33] provided that approximately the same stiffness is
used as compared to the system. Even in this example, where
the stiffness of the constraint on negative displacements is much
less than in the piecewise-linear case, the displacement of the
beam is still qualitatively the same away from the location of the
constraint.

The constraint force as a function of time is shown in Fig. 10.

2
O 4

z 5 |
z 1
o -600 L ]
< 6.7225 6.723
S b

0 g

6.45 6.6 6.75

Time, s

Figure 10. The constraint force as a function of time; parameters for the
system are given in Table 1 with the constraint (42). The inset shows a
magnification of the constraint force for 6.7225 <t < 6.723 s.
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Because the constraint for positive displacements is much stiffer
than for negative displacements, the forces must be plotted on
separate scales for clarity. Despite a relatively coarse time step
(as indicated by the non-smooth nature of the constraint force
shown in the inset), the constraint on positive displacements is
still adequately modeled. This is significant because the main
constraint on computational time for this method is time step
size. Since the discontinuous basis function method does not
map from one state of the constraint to another (such as in the
exact methods of [5,20,23]), the exact time of contact between
the beam and the nonlinear constraint is not required.

3.3.2 Extension to Multiple Constraints Previ-
ously, only one constraint has been considered. In extending the
discontinuous basis function method to multiple constraints, only
one additional discontinuous basis function is needed for each
additional constraint. These new discontinuous basis functions
must be normalized with respect to the other basis functions;
beyond this, though, no additional calculation are needed. In
Fig. 11, four nonlinear constraints (located at ¢, =0.2 m, ¢, =0.4
m, 3 =0.6 m, and /4 = 0.8 m) are modeled with the constitutive
relationship described in Eq. 23.

The effect of the additional constraints is to significantly at-
tenuate the magnitude of the displacement along the entire length
of the beam, not just at the location of the constraints. Addition-
ally, every time a constraint is contacted, a sharp change in the
velocity is seen along the beam. This is particulary evident in the
phase diagram for the displacement and velocity of the beam at
x =/¢; (Fig. 12). As a result, high frequency motion is observed

Displacement, mm

Position, m

Figure 11.  The displacement of the beam as a function of position at 50
evenly spaced time increments; parameters for the system are given in
Table 1 with constraints located at /1 =0.2m, ¥ =0.4m, /3=0.6 m,
and 4 = 0.8 m. The arrows and thin lines indicate the location of the
nonlinear constraints.

100

=
E v-2d
€ S
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2 )
£ v
>

-100

Displacement, mm

Figure 12. The phase diagram of the displacement and velocity at x = /;
parameters for the system are given in Table 1 with constraints located at
£1=02m,4y=04m,¢3=0.6m,and 4 =0.8 m.

Displacement, mm

Position, m

Figure 13. The displacement of the beam as a function of position at 50
evenly spaced time increments; parameters for the system are given in
Table 1 with constraints located at £, =0.1nm,n=1,2,...,9. Dashed
lines indicate the deadband region (—dy < w({,,t) < dy) of the nonlinear
constraints.

as waves traveling along the beam due to contact with the con-
straints.

In Fig. 13, the number of constraints is further increased to
9 (located at ¢, =0.1n m, n=1,2,...,9). The displacement is
significantly attenuated along the length of the beam, and the
response is no longer approximately symmetric about w(x,7) =0
(as in Figs. 6 and 11).

Copyright © 2011 by ASME



4 Conclusions

A new method for analyzing discrete, nonlinear constraints
in continuous systems is developed. This method approximately
solves for the state of the system by using discontinuous basis
functions to account for the nonlinear constraints. These discon-
tinuous basis functions are used to supplement the linear basis
functions (eigen modes) of the system. While the discontinu-
ous basis functions are continuous in displacement, their higher
derivatives contain discontinuities. Unlike exact methods that are
limited to piecewise-linear constraints, this new method of dis-
continuous basis functions neither divides the system into mul-
tiple regimes based on the constraints, nor requires the exact
time of engagement of a nonlinear constraint. Additionally, the
only assumption placed on the nonlinear constraint is that it can
be modeled in a discrete manner. An illustrative example of a
pinned-pinned beam is used to demonstrate the application of
this method. Both piecewise-linear and piecewise-nonlinear con-
straints are modeled, and the number of constraints used in the
illustrative results are varied from one to nine. The primary con-
clusions of this work are

1. The discontinuous basis function method is a robust and
efficient technique for modeling the effects of nonlinear
constraints on continuous systems. The advantage of this
method lies in not needing separate sets of basis functions
for each regime of the constraints, and not needing to find
the precise times that different regimes of the constraints are
engaged.

2. Changing the constitutive properties of the nonlinear con-
straint, such as from a linear spring to a piecewise-linear
constraint or to a piecewise-nonlinear constraint, requires no
additional calculations as the discontinuous basis function
method is derived independent of the constraint model.

3. Only one discontinuous basis function is needed for each
nonlinear constraint. Thus, extension of the method to mul-
tiple constraints requires only one additional discontinuous
basis function for each additional constraint.

4. Results from analyzing a pinned-pinned beam shows
that qualitatively similar behavior is observed for both
piecewise-linear and piecewise-nonlinear constraints; how-
ever, the forces and displacements at the constraint location
may differ significantly. Further analysis of this observation
is an area for future work.
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