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Molecular Dynamics used to 
Model Material Responses

• Quantum MD 
• Includes electronic degrees of freedom
• limited to small system sizes.

• Classical MD 
• simpler (pair-wise) interactions between point 

atoms 
• larger system
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Modeling Large Systems with 
“Coarse” Electronic Transport

• potentials adequate to capture non-
equilibrium behavior

• energy losses due to inelastic 
scattering by electrons?

Local material response is Temperature Dependent.  
The rate at which energy is transported can have a 
significant effect on the material response
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What is a Two Temperature Model (TTM)?

System A System B
∆E

∆ETE

Electrons Nuclei in a metallic crystal 

• Rapid Heat Deposition (laser, radiation, etc.)
• Electrons and Nuclei are out-of-equilibrium
• Electrons Delocalized
• Heat transfer through the electronic subsystem is non-negligible 
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History of TTM
– Caro & Victoria,1989

• Fixed Constant 
Uniform Te

– Rutherford & Duffy, 
2007

• Spatial and Temporal 
Variation in Te

– Phillips & Crozier, 2009
• Energy Conserving
• Provided in LAMMPS Finite Element Mesh Coupled to 

atoms by inhomogeneous 
Langevin Thermostat
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Standard Model - Metallic Gas

Ce, TE
TA

1/γ

1/κ

1/κ

1/κ

1/κ

Electronic
Coupling

Electronic 
Conductivity

Heat Capacity is ~ linear with 
Temperature
Grid Cell Size - Model Parameter
Electronic Coupling is small
Electric Conductivity is high
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Insulator Model

Ce, TE
TA

1/γ

Electronic
Coupling

Heat Capacity is ~ Step function with Temperature
Electronic Conductivity ~ Negligible
Grid Cell Size ~= Local Excitation Size
Electronic Coupling is High
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Physics Parameters

• Heat Capacity, Ce - 
DFT calculation on 
36 atom super cell

• Electron-ion 
coupling, ϒp = m/τ,    
τ = 20-200 fs.

• Excitation cell size 
- ?

• D, step softening 
parameter - ?
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Testing the Influence of Models

• SiO2 modeled by BKS 
interaction potential

• 65,000 atom system 
(20x20x19 primitive cells)

• 14.3 keV deposited into 
spherical region

16 ps

Attach Heat Source and Sink

1.6 ps

Couple Electronic Subystem

16+ ps

Anneal

-quartz crystal Amorphous Pocket

Equilibrate at 300K 

Remove 
Heat Source

Friday, February 4, 2011



Different models of 
electronic subsystem

• None
• “Short-Circuit’’ 
• Insulator model

– different size excitation cell
– more or less tightly coupled
– softened step function

• Metallic Model (Fe)
• “Hot” vs “Cold” Electronic Subsystem
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Excitation cell size
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Influence of D & τ

Ranged from 
damage similar 
to a metallic 
electronic 
subsystem to 
no electronic 
subsystem at 
all.
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Conclusions
• Important to include models of the modes of heat 

transport!  
• The coarse model of the electronic subsystem is 

important.  An Insulator model acts very different 
from a Metal model.

• Refined physics parameters are needed.
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