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Molecular Dynamics used to
Model Material Responses

e Quantum MD
* Includes electronic degrees of freedom
* limited to small system sizes.
 Classical MD

e simpler (pair-wise) interactions between point
atoms

e |larger system
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Modeling Large Systems with

“Coarse” Electronic Transport

e potentials adequate to capture non-
equilibrium behavior

* energy losses due to inelastic
scattering by electrons?
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Locl materlal respnse is Temperature Dependent
The rate at which energy is transported can have a
significant effect on the material response
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What is a Two Temperature Model (TTM)?

System B

/‘ ©

Electrons Nuclel in a metallic crystal

Rapid Heat Deposition (laser, radiation, etc.)

Electrons and Nuclei are out-of-equilibrium

Electrons Delocalized

Heat transfer through the electronic subsystem is non-negligible
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History of TTM

— Caro & Victoria,1989

 Fixed Constant
Uniform T

— Rutherford & Duffy,
2007

« Spatial and Temporal
Variation in Te

— Phillips & Crozier, 2009
 Energy Conserving

* Provided in LAMMPS Finite Element Mesh Coupled to

atoms by inhomogeneous
Langevin Thermostat

TMS2011

Friday, February 4, 2011




Standard Model - Metallic Gas

| /K Electronic
Coupling
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| /K Heat Capacity is ~ linear with
Electronic Temperature

Conductivity Grid Cell Size - Model Parameter
Electronic Coupling is small
Electric Conductivity is high
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Insulator Model

Electronic
Coupling
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Heat Capacity is ~ Step function with Temperature
Electronic Conductivity ~ Negligible

Grid Cell Size ~= Local Excitation Size

Electronic Coupling is High
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Physics Parameters

Heat Capacity, Ce. -

DFT calculation on U Pt ]
36 atom super cell T — D12
. 8 00001 »—« D=2.56-3 E
Electron-ion ! Bl |
coupling, Yp = m/t, g reosf
t =20-200 fs. g 19-06[» |
o . 8 F
Excitation cell size . :
e-07F . | E

- ? (5 2000 | 4000 | 6000 8000

T (Kelvin)

D, step softening .
parameter - ? Ce(T) = =5 * (1 + tanh(D * (T — Tinreshota)))
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Testing the Influence of Models

Attach Heat Source and Sink  Couple Electronic Subystem
|

a-quartz crystal

B N?ﬁ{. ‘ Remove
‘8

¢ Heat Source

€

Equilibrate at 300K

16 ps 1.6 ps 16+ ps

e SiO2 modeled by BKS
interaction potential

65,000 atom system
(20x20x19 primitive cells)

e 14.3 keV deposited into
spherical region
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Different models of
electronic subsystem
e None
e “Short-Circuit”

e |Insulator model
— different size excitation cell
— more or less tightly coupled
— softened step function

* Metallic Model (Fe)
e “Hot” vs “Cold”’ Electronic Subsvstem
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Different models of
electronic subsystem

 None
e “Short-Circuit”

e |Insulator model
— different size excitation cell
— more or less tightly coupled
— softened step function

* Metallic Model (Fe)
e “Hot” vs “Cold”’ Electronic Subsvstem
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Attach Heat Source and Sink  Couple Electronic Subystem
| Amorphous Pocket

a-quartz crystal

. Remove

Heat Source

Equilibrate at 300K Anneal

16 ps 1.6 ps 16+ ps

1 600 T T | T T T T

Defects identified
by a local bond
order analysis
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Defect Si Atoms

“Short Circuit” to heat sink I
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Different models of
electronic subsystem
e None
e “Short-Circuit”

e |Insulator model
— different size excitation cell
— more or less tightly coupled
— softened step function

* Metallic Model (Fe)
e “Hot” vs “Cold”’ Electronic Subsvstem
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Excitation cell size

Excitation Cell 3
Size effect the
system

3
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Different models of
electronic subsystem
e None
e “Short-Circuit”

e |Insulator model
— different size excitation cell
— more or less tightly coupled
— softened step function

* Metallic Model (Fe)
e “Hot” vs “Cold”’ Electronic Subsvstem
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Influence of D & t

1
1

— D=1e-2K
-+ D=5e-3K
— D= 2.5e-3_§(
—e D =1e-3K |
-1 +—+ M (metal)
O-O No Electrons

Ranged from
damage similar
to a metallic
electronic
subsystem to = | = | = |
no electronic
subsystem at
all.

picoseconds
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Conclusions

 Important to include models of the modes of heat
transport!

 The coarse model of the electronic subsystem is
important. An Insulator model acts very different
from a Metal model.

 Refined physics parameters are needed.
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