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& Definitions

* Model: a computational simulation code used to predict physical
phenomena of interest.

e C(Calibration: the identification of optimal parameter settings for a model, so
that agreement between model calculations and a set of experimental data
is maximized. Calibration is sometimes called least-squares methods, system
identification, parameter estimation, or inverse problems.

* Model selection: the process of determining the best model out of N
available models, according to some criterion. The criterion may be a
goodness-of-fit measure, maximum likelihood, an information theoretic
measure, or a maximum posterior model probability in a Bayesian approach.

 Model inference: the process of using calibrated model parameters to
predict a response at new input settings. Model prediction usually does not
just involve one prediction but a set or ensemble of predictions, based on
uncertainty quantification of parameters and/or multiple models.
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ﬁodel Calibration: Frequentist Approaches

* Nonlinear least squares: find the optimal values of 8 to minimize the error
sum of squares function 5(0)

S(0) = Y10 (x) - 9 0F = Y[R O)F

/

Experimental data \ Simulation output that
depends on x and 6

* Maximum Likelihood: find the optimal values of 0 to maximize the
likelihood of the parameters, given the data:

R (vi—9(6)? Vi =90%;0) +, Assuming
{ |2 2 } & ~N(0,0°%) i.i.d.error
Gaussian L(O) = H o
Likelihood — 21/
Function |
LogLikelihood (6) = —g log(277) - g log(o?) — i~ 9(9)2) Ly, ~9(9)
(o)
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" Model Calibration: Bayesian Approaches

Given data D and a prior distribution on parameters to be calibrated,
p(0), find the posterior distribution of the parameters given the data

0(0| D) = p(D,0) _p(D|0)p(d) _  p(D|0)p(9)
p(D) p(D) | p(D10)p(6)do

This is often written as: p(@| D) o« p(D|8)p(H)
posterior o likelihood * prior

Again, we assume a Gaussian likelihood:

[ (Di-g(8)?
p(D|0)=L(<9)=H2\/1ﬂ—Ge[ 26 } V. =9(X;0)+5(X)+e&

i=1

In practice, Monte-Carlo Markov Chain methods (MCMC) are used to
generate posterior distributions. _
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“""Model Selection: Frequentist Approaches

Nonlinear least squares: Pick the model with the smallest error sum of squares
function S(0)

Maximum Likelihood: There are several criteria based on information theory.
They all seek to maximize goodness-of-fit while penalizing for over-fitting

Information theory based on Kullback-Leibler distance.

()
KL(f,g)=| f(x)]
(f.9)=] (X)Og(g(x|9)

The KL distance refers to the information lost when g is used to approximate f.
Akaike showed that model selection should minimize expected K-L distance,
and he found a relationship between the relative expected K-L distance and the
maximized log-likelihood His measure, AlC, is:

AIC = —2log( Lik(8| X)) + 2K

~
/ Penalty for number

. of model
Goodness of fit parameters K @ Sanda
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™ Model Selection: Bayesian Approaches

Given K models, data D and a prior distribution on parameters for each
model, p(0,), choose the model with the highest posterior probability of
being the true model given the data:

o(M, | D) =P MJPM,)
2 p(D[M)p(M,)

Where p(M,) is the prior probability that model M, is the true model, and
p(D|M,) the integrated likelihood function of model M,. This is also
referred to as the evidence for model M,

p(D|M,)=[p(D|G,M,)p@ |M,)dE,

In practice, there do not exist robust methods to calculate this (estimators
of the integrated likelihood tend to have high variance). Some approaches
are the Wolpert method, the harmonic mean, and reversible jump MCMC.
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= Model Selection Criteria

Model Selection Criterion Expression
Akaike (AIC) AIC =—2log p(D|&,,M,)+2N,

Akaike corrected (AIC-c)

AIC, =—2log p(D |4, |\/|k)+2(|\|k + Ni (N, +1)j

N-N, -1
/(A\Bklaci:l)(E'SChwarZ BayESian BIC _ _2 Iog p(D | ék’ Mk) + Nk Iog N

Deviance (DIC): D(@)=-2log p(D|6,,M,)+C

Hierarchical Modeling __

Generalization of AIC D= Eg[D(e)]

effective _ parms=D — D(0)
DIC = D +effective _ parms

Bayesian model selection Log evidence = log p(D | M, )

This may be calculated via simple mean, harmonic mean, or
use of MCMC methods.
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& Model Inference

Nonlinear least squares and Maximum likelihood approaches: Given
calibrated parameters @, evaluate the model at these parameter values.
Use standard approaches to generate confidence intervals on parameters

Bayesian approach: For a particular model, one has an entire posterior
distribution on parameters 6 which can be propagated through the

simulation model to generate posterior realizations of the responses.

In the case of multiple models, Bayesian Model Averaging can also be used
to generate a weighted response (weighted by the posterior probabilities

on the models):
p(R|D) =§p(R | My, D)p(M, | D)
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Pipe2, 2m-long

Pipe3, 6m-long

5 Pipe7, 5m-long
Pump, im-long

Elbow2

Pipe$§, 2m-long

Pipe6, 2m-long

Elbow3

Simple thermal-hydraulics loop
that represents a simplified plant

The loop is 10m tall and 10m wide.

The loop has 8 pipes, 4 elbows, a
pump, the core, a heater and heat
exchanger (HX), a pressurizer, etc.

The working fluid is water at high
temperature and pressure, using
single phase flow.

The power output of this reactor is
set to a nominal value of 1.25 MW.

The purpose of this model is to

demonstrate the calibration
and model selection methods.
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For the purposes of this demo, we had no data.

Virtual Reactor Data

We simulated data, varying two parameters (nominal power output and wall temperature) that

are not part of the calibration parameters.

The plan is to get this methodology integrated and ready for the data from the APEX facility at
Oregon State. This facility will have a % scale reactor whose purpose is to provide V&V data on

PWR reactors, specifically separate and integral effects for thermal hydraulic modeling.
Two outputs of interest: peak temperature profile in the core, and flow rate.

We simulated five data points. The temperature spread is shown below, the flow rate was 684

for all the five runs.
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Different Models in the VR Loop

Heat Transfer

* Single model form

e Dittus-Boelter
*  Nu = NussCoeff #* ReDNussRePower s ppn

 Two calibration parameters: NussCoeff and NussRePower

Pipe3, 6m-long
Elbow2

Pipe5, 2m-long

Pipe2, 2m-long

Wall Friction

Evos * Two models: Blasius or Filonenko
*  Egpsiys = BlasiusCoeff * (ReD) /4
*  Ehionenko = (FiloCoeffl * log,,ReD — FiloCoeff2)?

*  One calibration parameter in Blasius; two in Filonenko

Local Friction in Junction

* Two models: Constant (C) or Expansion-Contraction
y Ce= Ke(l'salsb)2
y Cc = Kc(l'sblsa)

* One calibration parameter in constant model; two in exp-contr Sandia
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Case Study

We generated data from model (1,1) which is the “Truth” data
We want to see if we can calibrate the models to match the truth data

We also want to see if the model selection criteria give us information about the goodness of
the models

Nominal runs of the models are shown below:

Templ Temp2 | Temp3 Temp4 Temp5 Flow Rate

Model (1,1) 574.10 | 57836 | 590.47 | 602.85 | 60521 | 684.52
574.90 | 579.17 | 591.31 | 603.69 | 606.05 | 684.52 . .
57422 | 578.48 | 590.60 | 602.97 | 60534 | 684.52 Flow rate is quite
576.95 | 581.22 | 593.43 | 605.83 | 608.17 | 685.30 different across
57571 | 579.98 | 592.15 | 604.54 | 606.89 | 684.59 .
Model(1,2) 581.58 | 586.11 | 598.72 | 611.17 | 613.47 | 623.09 models, will be
582.36 | 586.90 | 599.51 | 611.95 | 614.23 623.09 harder to match

581.69 586.23 | 598.83 611.29 613.59 623.09
584.36 588.89 | 601.52 613.88 616.12 623.09
583.15 587.69 | 600.31 612.72 614.98 623.09
Model(2,1) 542.50 545.32 | 554.09 | 563.85 565.82 1085.10
543.24 546.08 | 554.91 564.73 566.71 1085.31
542.61 54543 | 554.21 563.98 565.95 1085.13
545.15 548.03 | 557.01 566.99 569.00 1085.91
543.99 546.84 | 555.73 565.62 567.61 1085.54
Model(2,2) 559.13 562.69 | 573.30 | 584.67 586.93 851.85
559.93 563.50 | 574.16 | 585.59 587.85 851.85
559.25 562.81 | 573.43 584.81 587.07 851.85
561.97 565.58 | 576.37 | 587.91 590.19 851.86 Sandia

National
560.73 564.32 | 575.03 | 586.50 588.77 851.86 Laboratories




Step 1: Calibration

Table 3: Parameters to be calibrated for each model combination

Model(1,1) Variables

Lower Bound Upper Bound

NusseltCoeff 0.015 0.025
NusseltRePower 0.79 0.81
BlasCoetf 0.25 0.36
Zeta 0.95 1.05
Model(1,2) Variables | Lower Bound Upper Bound
NusseltCoeff 0.015 0.025
NusseltRePower 0.79 0.81
FiloCoeff1 1.75 [.85
FiloCoeff2 1.6 1.7
Zeta 0.95 1.05
Model(2,1) Variables | Lower Bound Upper Bound
NusseltCoeff 0.015 0.025
NusseltRePower 0.79 0.81
BlasCoetf 0.25 0.36
Ke 0.95 1.05
Kc 0.35 0.45
Model(2,2) Variables | Lower Bound Upper Bound
NusseltCoeff 0.015 0.025
NusseltRePower 0.79 0.81
FiloCoeff1 1.75 [.85
FiloCoeff2 1.6 1.7
Ke 0.95 1.05
Kc 0.35 0.45
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Step 1: Calibration

(@]
O et
(@)
— Model(2,1)
(@]
o —t
(48]
(@]
o —
o —t
[ [ I [
0.016 0.018 0.020 0.022
NusseltCoeff

The interpretation of model parameters having vague prior information can be
dependent on the context in which the parameters are being calibrated.

The bimodality in the marginal distribution of the NusseltCoeff for Model (1,1) is

due to a compensating error with the NusseltRePower parameter (not shown).

Sandia
. . . National
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Model Selection

TEMPERATURE ONLY
With Discrepancy No Discrepancy
Model ML AIC AICC BIC ML AIC AICC BIC
(1,1) -14.50 43 51.47 51.54 -14.50 39 43.42 45.1
(1,2) -14.51 45.02 56.27 54.77 -14.51 41.02 47.24 48.33
(2,1) -23.41 62.83 74.08 72.58 -47.42 106.84 113.06 114.15
(2,2) -17.06 52.12 66.79 63.09 -17.01 48.02 56.49 56.55
TEMPERATURE and FLOW RATE
With Discrepancy No Discrepancy
Model ML AIC AICC BIC ML AIC AICC BIC
(1,1) -11.08 40.17 51.17 52.78 -11.08 34.17 39.04 42.58
(1,2) -17.14 54.29 68.18 68.3 -29.15 72.29 78.84 82.1
(2,1) -28.25 76.5 90.4 90.51 -78.56 171.11 177.66 180.92
(2,2) -20.78 63.56 80.89 78.97 -43.43 102.87 111.44 114.08

Information theoretic criteria:
» All cases rank model(1,1) first, followed by model(1,2), model(2,2), and
model(2,1)
« “With discrepancy” shows fewer differences across models: discrepancy
term compensates for the model inadequacy
« Temperature only is “easier” to fit, has better information criteria valu
EXCEPT for model(1,1)
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% Model Selection: Bayesian Approach

Recall posterior model probability: (M, |D) = p(D M) p(My)
K
|§Lp(D |M;)p(M,)

Where the evidence for model M is: p(D|M,)=[p(D|6,,M,)p@ |M,)db,

Calculation methods are not robust: estimators of the integrated likelihood
tend to have high variance. 1
1. Simple mean of likelihood: p(D|M,) zﬁZ p(D |6, M,)

i=1

_ N
2. Harmonic mean: p(D|M,)~—

CIERYB

i=1

. N
3. Wolpert method: Z[p(Dleki’Mk)}l
El SR NY
N pP(D|M,)
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Model Selection: Bayesian Approach

DEVIANCE INFORMATION CRITERION (DIC)

With Discrepancy No Discrepancy
Model Temp. Only Temp + Flow Rate Temp. Only Temp + Flow Rate
(1,1) 33.4 30.53 32.92 30.51
(1,2) 37.39 46.84 37.75 66.61
(2,1) 56 69.62 101.05 165.66
(2,2) 45.97 57.39 45.98 100.85

The ranking of the models is the SAME regardless of case:

— Matching temperature only vs. temperature and flow rate

— Models with and without discrepancy

These rankings are also consistent with the information theoretic

rankings
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%‘I\/Iodel Prediction: Bayesian Approach

without discrepancy term, calibration to temp only
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%‘I\/Iodel Prediction: Bayesian Approach

with discrepancy term, calibration to temp only
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%‘I\/Iodel Prediction: Bayesian Approach

with discrepancy term, calibration to temp and flow rate
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# Summary

 We tried a variety of calibration and model selection methods
e All of the model selection criteria ranked the models in the same order

 Models had an easier time calibrating to temperature, harder to match
both calibration and flow rate: the addition of another quantity of interest
(and its associated data) increases the difficulty of calibrating to all data
sources simultaneously.

* The presence of a discrepancy term significantly improved the
performance of some models (especially very poor models) relative to the
best performing model, in terms of increasing their information content by
empirically correcting inadequacy in direct model predictions.

* Nevertheless, discrepancy is not able to improve the performance of a
poor model to the extent it would outrank a good model because
empirical corrections of model predictions tend to increase their
uncertainty relative to the prediction uncertainty arising from models not

requiring adjustment.
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# Summary

 The model selection methods were designed for large numbers of
statistical models, not a few substantively different physics models.

* The model selection criteria do not incorporate:

Complexity of the models (except through number of parameter term)
Mesh complexity

Computational cost

Order of physics

Time step

Etc.

e We want to extend the model selection methods to the case of
computational physics models

We want to apply the framework of model
calibration/selection/prediction to other NEAMS problems.
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