
Multiple Model Inference:   
Calibration, Selection, and Prediction with 

Multiple Models 
 Laura P. Swiler 

Sandia National Laboratories 
P.O. Box 5800, Albuquerque, NM, 87185-1318 

lpswile@sandia.gov, 505-844-8093 
 

Brian Williams 
Statistical Sciences Group 

Los Alamos National Laboratory, 
 PO Box 1663, MS F600 
 Los Alamos, NM 87545 

brianw@lanl.gov;505-667-2331 
 

Presentation at the NEAMS PI Meeting 
Argonne National Labs, October 11-13, 2011 

    Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly 

owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear 

Security Administration under contract DE-AC04-94AL85000.  

SAND 2011-XXXX C    

SAND2011-7204C

mailto:lpswile@sandia.gov


Overview 
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• Case study with R7 

• Results 

• Summary 
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Definitions 

• Model:  a computational simulation code used to predict physical 
phenomena of interest. 

• Calibration:  the identification of optimal parameter settings for a model, so 
that agreement between model calculations and a set of experimental data 
is maximized. Calibration is sometimes called least-squares methods, system 
identification, parameter estimation, or inverse problems. 

• Model selection:  the process of determining the best model out of N 
available models, according to some criterion. The criterion may be a 
goodness-of-fit measure, maximum likelihood, an information theoretic 
measure, or a maximum posterior model probability in a Bayesian approach. 

• Model inference:  the process of using calibrated model parameters to 
predict a response at new input settings.  Model prediction usually does not 
just involve one prediction but a set or ensemble of predictions, based on 
uncertainty quantification of parameters and/or multiple models. 
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Model Calibration:  Frequentist Approaches 
• Nonlinear least squares:  find the optimal values of  to minimize the error 

sum of squares function S()   

 

 

 

 

 

• Maximum Likelihood:  find the optimal values of  to maximize the 
likelihood of the parameters, given the data:   
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Simulation output that 
depends on x and  

Experimental data 
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Model Calibration:  Bayesian Approaches 
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Given data D and a prior distribution on parameters to be calibrated, 
p(),  find the posterior distribution of the parameters given the data 
 
 
 
 
This is often written as: 
 
 
Again, we assume a Gaussian likelihood: 
 
 
 
 
In practice, Monte-Carlo Markov Chain methods (MCMC) are used to 
generate posterior distributions.    
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Model Selection:  Frequentist Approaches 
• Nonlinear least squares:  Pick the model with the smallest error sum of squares 

function S()   

• Maximum Likelihood:  There are several criteria based on information theory.  
They all seek to maximize goodness-of-fit while penalizing for over-fitting 

• Information theory based on Kullback-Leibler distance.   

 

 

• The KL distance refers to the information lost when g is used to approximate f.   
Akaike showed that model selection should minimize expected K-L distance, 
and he found a relationship between the relative expected K-L distance and the 
maximized log-likelihood  His measure, AIC, is:  
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Model Selection:  Bayesian Approaches 
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Given K models, data D and a prior distribution on parameters for each 
model, p(k),  choose the model with the highest posterior probability of 
being the true model given the data:  
 
 
 
 
Where p(Mk) is the prior probability that model Mk is the true model, and 
p(D|Mk) the integrated likelihood function of model Mk.  This is also 
referred to as the evidence for model Mk: 

 
 
 
 

In practice, there do not exist robust methods to calculate this (estimators 
of the integrated likelihood tend to have high variance).  Some approaches 
are the Wolpert method, the harmonic mean, and reversible jump MCMC.   
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Model Selection Criteria 
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Model Selection Criterion Expression 

Akaike (AIC) 
kkk NMDpAIC 2),ˆ|(log2    

Akaike corrected (AIC-c) 
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Bayesian model selection Log evidence = )|(log kMDp
 

This may be calculated via simple mean, harmonic mean, or 

use of MCMC methods. 

 



Model Inference 
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Nonlinear least squares and Maximum likelihood approaches:  Given 
calibrated parameters    , evaluate the model at these parameter values.  
Use standard approaches to generate confidence intervals on parameters 
 
Bayesian approach:   For a particular model, one has an entire posterior 
distribution on parameters  which can be propagated through the 
simulation model to generate posterior realizations of the responses.  
 
In the case of multiple models, Bayesian Model Averaging can also be used 
to generate a weighted response (weighted by the posterior probabilities 
on the models): 
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Case study:  R7 Virtual Reactor 

• Simple thermal-hydraulics loop 
that represents a simplified plant 

• The loop is 10m tall and 10m wide. 

• The loop has 8 pipes, 4 elbows, a 
pump, the core, a heater and heat 
exchanger (HX), a pressurizer, etc.   

• The working fluid is water at high 
temperature and pressure, using 
single phase flow.   

• The power output of this reactor is 
set to a nominal value of 1.25 MW.  
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The purpose of this model is to 
demonstrate the calibration 

and model selection methods. 



Virtual Reactor Data 
• For the purposes of this demo, we had no data. 

• We simulated data, varying two parameters (nominal power output and wall temperature) that 
are not part of the calibration parameters. 

• The plan is to get this methodology integrated and ready for the data from the APEX facility at 
Oregon State.   This facility will have a ¼ scale reactor whose purpose is to provide V&V data on 
PWR reactors, specifically separate and integral effects for thermal hydraulic modeling.  

• Two outputs of interest:  peak temperature profile in the core, and flow rate. 

• We simulated five data points.  The temperature spread is shown below, the flow rate was 684 
for all the five runs. 
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Different Models in the VR Loop 
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• Single model form 

• Dittus-Boelter 

• Nu = NussCoeff  ReDNussRePower  Prn 

• Two calibration parameters:  NussCoeff and NussRePower 
 

 

 

 

Heat Transfer 

• Two models:  Blasius or Filonenko 
•      Blasius = BlasiusCoeff * (ReD)-1/4 

• Filonenko = (FiloCoeff1 * log10ReD – FiloCoeff2)2 

• One calibration parameter in Blasius; two in Filonenko 
 

 

 

 

Wall Friction 

• Two models:  Constant () or Expansion-Contraction 
•       e = Ke(1-Sa/Sb)

2 

•      c = Kc(1-Sb/Sa) 

• One calibration parameter in constant model; two in exp-contr 
 

 

Local Friction in Junction 



Case Study 
• We generated data from model (1,1) which is the “Truth” data 

• We want to see if we can calibrate the models to match the truth data 

• We also want to see if the model selection criteria give us information about the goodness of 
the models 

• Nominal runs of the models are shown below:  
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Temp1 Temp2 Temp3 Temp4 Temp5 Flow Rate 

Model (1,1) 574.10 578.36 590.47 602.85 605.21 684.52 

574.90 579.17 591.31 603.69 606.05 684.52 

574.22 578.48 590.60 602.97 605.34 684.52 

576.95 581.22 593.43 605.83 608.17 685.30 

  575.71 579.98 592.15 604.54 606.89 684.59 

Model(1,2) 581.58 586.11 598.72 611.17 613.47 623.09 

582.36 586.90 599.51 611.95 614.23 623.09 

  581.69 586.23 598.83 611.29 613.59 623.09 

584.36 588.89 601.52 613.88 616.12 623.09 

  583.15 587.69 600.31 612.72 614.98 623.09 

Model(2,1) 542.50 545.32 554.09 563.85 565.82 1085.10 

543.24 546.08 554.91 564.73 566.71 1085.31 

542.61 545.43 554.21 563.98 565.95 1085.13 

545.15 548.03 557.01 566.99 569.00 1085.91 

  543.99 546.84 555.73 565.62 567.61 1085.54 

Model(2,2) 559.13 562.69 573.30 584.67 586.93 851.85 

559.93 563.50 574.16 585.59 587.85 851.85 

559.25 562.81 573.43 584.81 587.07 851.85 

561.97 565.58 576.37 587.91 590.19 851.86 

560.73 564.32 575.03 586.50 588.77 851.86 

Flow rate is quite  

different across 

models, will be 

harder to match 



Step 1:  Calibration 
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Step 1:  Calibration 
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The interpretation of model parameters having vague prior information can be 

dependent on the context in which the parameters are being calibrated.  

 

The bimodality in the marginal distribution of the NusseltCoeff for Model (1,1) is 

due to a compensating error with the NusseltRePower parameter (not shown).  

 

A more informative prior on the NusseltCoeff would be useful. 

Model(1,1) 
Model(2,1) 



Model Selection 
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Information theoretic criteria:   

•  All cases rank model(1,1) first, followed by model(1,2), model(2,2), and 

model(2,1) 

• “With discrepancy” shows fewer differences across models:  discrepancy 

term compensates for the model inadequacy 

• Temperature only is “easier” to fit, has better information criteria values 

EXCEPT for model(1,1) 

 

TEMPERATURE ONLY 

  With Discrepancy No Discrepancy 

Model ML AIC AICC BIC ML AIC AICC BIC 

(1,1) -14.50 43 51.47 51.54 -14.50 39 43.42 45.1 

(1,2) -14.51 45.02 56.27 54.77 -14.51 41.02 47.24 48.33 

(2,1) -23.41 62.83 74.08 72.58 -47.42 106.84 113.06 114.15 

(2,2) -17.06 52.12 66.79 63.09 -17.01 48.02 56.49 56.55 

TEMPERATURE and FLOW RATE 

  With Discrepancy No Discrepancy 

Model ML AIC AICC BIC ML AIC AICC BIC 

(1,1) -11.08 40.17 51.17 52.78 -11.08 34.17 39.04 42.58 

(1,2) -17.14 54.29 68.18 68.3 -29.15 72.29 78.84 82.1 

(2,1) -28.25 76.5 90.4 90.51 -78.56 171.11 177.66 180.92 

(2,2) -20.78 63.56 80.89 78.97 -43.43 102.87 111.44 114.08 



Model Selection:  Bayesian Approach 
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Recall posterior model probability:  
 
 
 
Where the evidence for model Mk is: 

 
 

Calculation methods are not robust:  estimators of the integrated likelihood 
tend to have high variance.  
1.  Simple mean of likelihood:  
 
2.  Harmonic  mean:  
 
 
3.  Wolpert method: 
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Model Selection:  Bayesian Approach 

• The ranking of the models is the SAME regardless of case:  

– Matching temperature only vs. temperature and flow rate 

– Models with and without discrepancy 

• These rankings are also consistent with the information theoretic 
rankings 
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DEVIANCE INFORMATION CRITERION (DIC) 

  With Discrepancy No Discrepancy 

Model Temp. Only  Temp + Flow Rate Temp. Only  Temp + Flow Rate 

(1,1) 33.4 30.53 32.92 30.51 

(1,2) 37.39 46.84 37.75 66.61 

(2,1) 56 69.62 101.05 165.66 

(2,2) 45.97 57.39 45.98 100.85 



Model Prediction:  Bayesian Approach 
without discrepancy term, calibration to temp only 
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MODEL (1,1)     MODEL(2,1) 



Model Prediction:  Bayesian Approach 
with discrepancy term, calibration to temp only 
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MODEL (1,1)     MODEL(2,1) 



Model Prediction:  Bayesian Approach 
with discrepancy term, calibration to temp and flow rate 
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MODEL (2,1) before discrepancy  MODEL(2,1) after discrepancy 



Summary 

• We tried a variety of calibration and model selection methods 

• All of the model selection criteria ranked the models in the same order 

• Models had an easier time calibrating to temperature, harder to match 
both calibration and flow rate:  the addition of another quantity of interest 
(and its associated data) increases the difficulty of calibrating to all data 
sources simultaneously. 

• The presence of a discrepancy term significantly improved the 
performance of some models (especially very poor models) relative to the 
best performing model, in terms of increasing their information content by 
empirically correcting inadequacy in direct model predictions. 

• Nevertheless, discrepancy is not able to improve the performance of a 
poor model to the extent it would outrank a good model because 
empirical corrections of model predictions tend to increase their 
uncertainty relative to the prediction uncertainty arising from models not 
requiring adjustment. 
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Summary 

• The model selection methods were designed for large numbers of 
statistical models, not a few substantively different physics models.  

• The model selection criteria do not incorporate:  
– Complexity of the models (except through number of parameter term) 

– Mesh complexity 

– Computational cost 

– Order of physics 

– Time step 

– Etc.  

• We want to extend the model selection methods to the case of 
computational physics models 

• We want to apply the framework of model 
calibration/selection/prediction to other NEAMS problems. 
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