
Two Domain Decomposition Algorithms 
for Problems in H(curl)

2020thth International Conference on Domain Decomposition Methods International Conference on Domain Decomposition Methods 

February 7 February 7 –– 11, 201111, 2011
UC San Diego, in La Jolla UC San Diego, in La Jolla 

Clark Dohrmann
Joint work withJoint work with 

Olof Widlund

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2011-0848C



Thanks

• Scientific Committee 
• Conference Organizers



• Introduction

OUTLINE

– Problem Statement
– Some Applications

B i f R i– Brief Review

• 2D Algorithm2D Algorithm
– Coarse Space
– Recent Tools
– Local Spaces
– Theory Overview

Examples– Examples



• 3D Algorithm

OUTLINE

– Face Decomposition Lemma
– Coarse Spaces

L l S & H b id M th d– Local Spaces & Hybrid Method
– Theory Overview
– Examplesp

• Closing Remarks



Problem Statement:

Introduction

Goal: DD algorithms for edge element approximationsg g pp
One Challenge: large near null space as B → 0 



Some Applications:

Introduction

• Implicit time integration of eddy current model of 
Maxwell’s equationsMaxwell s equations

• Solution of linear, magnetostatics problems (B→0)

• Solution of electromagnetic eigenvalue problems• Solution of electromagnetic eigenvalue problems 
for cavities and waveguides (related saddle-point 
systems)



Brief Review:

Introduction

• Key Points of Following Slides:
– No comprehensive theory with favorable bounds is p y

available in either 2D or 3D

– Overlapping Schwarz methods presuppose a coarse 
mesh while Neumann-Neumann or FETI methodsmesh, while Neumann-Neumann or FETI methods 
require subdomain matrices

– Choices very limited in 3D if no coarse mesh 
il blavailable



Brief Review:

Introduction

• Overlapping Schwarz (3D):
– Toselli, Numer. Math. (2000) 86:733-752, ( )

o Coarse space from coarse finite elements
o Quasi-uniform coarse triangulation
o Convex domains
o Constant material properties

‒ Pasciak & Zhao, J. Numer. Math. (2002) 10:221-234
o Coarse space from coarse finite elements
o Non-convex domains
o Constant material properties



Brief Review:

Introduction

• Iterative Substructuring (2D):
– Toselli, Widlund, Wohlmuth, Math. Comp. (2000) , , , p ( )

70:935-949 
o Coarse space from coarse finite elements
o Material property jumps allowed between subdomainsp p y j p



Brief Review:

Introduction

• Neumann-Neumann (2D):
– Toselli, ETNA (2000) 11:1-24  

• FETI (2D):
‒ Toselli and Klawonn, SINUM (2001) 39:932-956

FETI DP (2D)• FETI-DP (2D):
‒ Toselli and Vasseur, SINUM (2005) 42:2590-2611

‒ Theory for all three allows material property jumpsTheory for all three allows material property jumps 
between subdomains. Need subdomain matrices.



Brief Review:

Introduction

• Iterative Substructuring (3D):
– Hu and Zou, SINUM (2003) 41:1682-1708 , ( )

o Tetrahedral subdomains
o Very generous coarse space

• All edges of  incident to a wire basket nodeAll edges of  incident to a wire basket node
o Could not conclude if condition number estimate is 

independent of property jumps between subdomains



Brief Review:

Introduction

• FETI-DP (3D):
– Toselli, IMA J. Numer. Anal. (2003) 41:1682-1708 , ( )

o Requires change of basis along subdomain edges

o Theory assumes either all i or all i the same for 
h bd ieach subdomain

o 2 coarse dofs per subdomain needed to obtain good 
performance in theory and practice



Brief Review:

Introduction

• Geometric Multigrid (3D):
– Hiptmair, SINUM (1998) 36:204-225

– Arnold, Falk, Winther, Numer. Math. (2000) 85:197-217 
o Convex polyhedron

Q i if ho Quasi-uniform meshes
o Constant material properties

• Algebraic MultigridAlgebraic Multigrid
‒ Auxiliary Space Preconditioners (Hiptmair, Xu, Beck, 

Widmer, Zou, LLNL group, …)

‒ Smoothed Aggregation (Sandia group, …)



Some Observations:

Introduction

• Overlapping Schwarz algorithms presuppose a 
coarse mesh and theory is restricted to constant 
material propertiesmaterial properties

• FETI-like methods require subdomain matrices

• Choices are very limited in 3D if coarse mesh not• Choices are very limited in 3D if coarse mesh not 
available

• No comprehensive theory with favorable condition y
number bounds appears available in 2D or 3D

• Current theory restricted to regular-shaped 
subdomainssubdomains



Some Goals:

Introduction

• Develop new coarse spaces for H(curl) problems
‒ Algebraic approach that does not require geometric 

information or subdomain matricesinformation or subdomain matrices
‒ Based on energy minimization
‒ Automatic generation of coarse spaces for either 

iterative substructuring, overlapping Schwarz, or 
hybrid combination

• Extend theoryExtend theory
‒ More favorable bounds (address the  issue)
‒ Accommodate irregular-shaped subdomains



Uniform Domains: some examples w/ nice CU

2D Algorithm

Type 2 subdomain Type 3 subdomain 



Uniform Domains: some examples w/ nice CU

2D Algorithm

From graph-based mesh partitioner (Metis) 



Uniform Domains: some examples with large CU

2D Algorithm



• Coarse Space

2D Algorithm

– One coarse basis function       for each



• Coarse Space

2D Algorithm

– Coefficients of       nonzero only along     and 
interiors of two neighboring subdomains 



• Coarse Space

2D Algorithm

– Coefficients of       in subdomain interiors chosen to 
minimize energy 



Recent Tools:

2D Algorithm

• HX Decomposition

• Useful to DD and MG

* See Hiptmair & Xu, SINUM (2007) 45:2483-2509, Lemmas 5.1, 5.2, see 
also Hiptmair, Widmer, Zou, Numer. Math. (2006) 103:435-459. 



Local Spaces/Solves:

2D Algorithm

• Iterative Substructuring:
‒ One solve for each subdomain edge 

Unknowns are edge coefficients for and interiors of‒ Unknowns are edge coefficients for    and interiors of 
two subdomains sharing 

• Overlapping Schwarz
‒ One solve for each overlapping subdomain
‒ Overlapping subdomains obtained by extendingOverlapping subdomains obtained by extending 

original ones an integer layer of elements



Theory Overview*:

2D Algorithm

• Iterative Substructuring:

• See talk Thursday morning in M14 by Olof WidlundSee talk Thursday morning in M14 by Olof Widlund 
for more details.

* An iterative substructuring algorithm for two-dimensional problems in H(curl)* An iterative substructuring algorithm for two-dimensional problems in H(curl), 
TR-936, 2010, Department of Computer Science, Courant Institute, NYU.



Examples: Scalability

2D Algorithm
No big surprises, but OS performs better 
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Examples: Material Property Jumps

2D Algorithm

Covered by theory



Examples: Sharpness of Theory

2D Algorithm



Examples: Mesh Partitioner

2D Algorithm

Mesh partitioner results not as good, but not bad



Face Decomposition Lemma:

3D Algorithm

Example: tangential trace 0 
along all 12 edges



3D Algorithm

Computations can 
help early on 



3D Algorithm

Computations can 
guide theory dev 



• Material Property Assumptions for Theory

3D Algorithm



• Coarse Space: Edge functions

3D Algorithm

3 coarse basis3 coarse basis 
functions shown



• Coarse Space: Vertex/Face functions

3D Algorithm

2 coarse basis2 coarse basis 
functions shown



• Full Coarse Space

3D Algorithm

– 1 coarse dof for each subdomain edge
– 1 coarse dof for each vertex of each face

• Reduced Coarse Space
– 1 coarse dof for each subdomain edge



• Iterative Substructuring Local Spaces: Vertex

3D Algorithm

All edges incident to aAll edges incident to a 
subdomain vertex node



• Iterative Substructuring Local Spaces: Edge

3D Algorithm

All edges incident to one orAll edges incident to one or 
more subdomain edge nodes



• Iterative Substructuring Local Spaces: Face

3D Algorithm

All edges on a face and inAll edges on a face and in 
the interiors of two subs 
sharing the face



Hybrid Overlapping Schwarz/Iterative SubstructuringHybrid Overlapping Schwarz/Iterative Substructuring

• Just like overlapping Schwarz, butJust like overlapping Schwarz, but

– add static condensation correction so residuals are 
always zero in subdomain interiors

– use “boundary layer” subdomains to reduce cost of 
solves on overlapping subdomains





Theory Overview:

3D Algorithm

• Iterative Substructuring:

• Theory only accommodates convex polyhedral 
subdomains at this timesubdomains at this time

• Jumps in material properties between subdomains 
allowed per Assumptions 1 and 2allowed per Assumptions 1 and 2



Examples: Scalability

3D Algorithm

HOS: not the likeable person on Bonanza



Examples: Additive vs. Multiplicative

3D Algorithm

like Jacobi like Gauss-Seidel



Examples: Full vs. Reduced Coarse Spaces

3D Algorithm

Reduced coarse space gets the job done



Examples: Neumann vs. Dirichlet BCs

3D Algorithm

Both scalable, but expected Dirichlet BCs to be easier. 



Examples: Scalability with respect to H/h

3D Algorithm

Recall theory has 3 
logarithmic factors



Examples: Regular vs. Irregular Decompositions

3D Algorithm



Examples: Regular vs. Irregular Decompositions

3D Algorithm



Examples: Material Property Jumps (Aligned)

3D Algorithm

Covered by theory



Examples: Material Property Jumps (Not Aligned)

3D Algorithm

Not covered by theory



• 2D Algorithm:

Closing Remarks

– Does not require subdomain matrices and 
accommodates irregular-shaped subdomains
More comprehensive theory than before– More comprehensive theory than before
o Favorable estimates over broader range of props
o Allows broader class of subdomains (uniform)

• 3D Algorithm
– Same practical advantages as 2D algorithm
– New theory and tools, but some work remains

o Less restrictive assumptions on material properties
o Less restrictive assumptions on subdomain shapeso Less restrictive assumptions on subdomain shapes
o Adaptive coarse spaces


