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Problem Statement:
Find v € Hy(curl; 2) such that

Introduction

aﬂ(uav) — (.fav)ﬂ Vo € H()(CUI'LQ),

where
an(uw,v) = /Q[(AV xu-V xXv)+ (Bu-v)|dr,
(ﬁwm:Afww-

Goal: DD algorithms for edge element approximations
One Challenge: large near null spaceas B — 0 .
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Some Applications:

Introduction

* Implicit time integration of eddy current model of
Maxwell’s equations

« Solution of linear, magnetostatics problems (B—0)

« Solution of electromagnetic eigenvalue problems
for cavities and waveguides (related saddle-point

systems)
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Introduction

Brief Review:

Key Points of Following Slides:

No comprehensive theory with favorable bounds is
available in either 2D or 3D

Overlapping Schwarz methods presuppose a coarse
mesh, while Neumann-Neumann or FETI methods
require subdomain matrices

Choices very limited in 3D if no coarse mesh
available
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Brief Review:

Introduction

« Overlapping Schwarz (3D):

— Toselli, Numer. Math. (2000) 86:733-752
o Coarse space from coarse finite elements
o Quasi-uniform coarse triangulation
o Convex domains
o Constant material properties

— Pasciak & Zhao, J. Numer. Math. (2002) 10:221-234
o Coarse space from coarse finite elements
0 Non-convex domains
o Constant material properties
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Brief Review:

Introduction

« [lterative Substructuring (2D):

— Toselli, Widlund, Wohlmuth, Math. Comp. (2000)
70:935-949

o0 Coarse space from coarse finite elements
0 Material property jumps allowed between subdomains

K(M~A) < Cn(1 4 log(H/h))?

n = max;(1 + Hizﬁi/cvi)

ag,; (w,u) = [ [i(V xu-V xv) + Biu-v]de
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Brief Review:
« Neumann-Neumann (2D):

— Toselli, ETNA (2000) 11:1-24
 FETI (2D):

— Toselli and Klawonn, SINUM (2001) 39:932-956
 FETI-DP (2D):

— Toselli and Vasseur, SINUM (2005) 42:2590-2611

Introduction

— Theory for all three allows material property jumps
between subdomains. Need subdomain matrices.

R(M~A) < Cn(1 +log(H/h))?
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Brief Review:

Introduction

« [terative Substructuring (3D):

— Hu and Zou, SINUM (2003) 41:1682-1708
0 Tetrahedral subdomains
o Very generous coarse space

« All edges of I' incident to a wire basket node

0 Could not conclude if condition number estimate is
independent of property jumps between subdomains

k(M~1A) < C(1+1og(H/h))?
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Introduction

Brief Review:

- FETI-DP (3D):
_  Toselli, IMA J. Numer. Anal. (2003) 41:1682-1708

O

(0

Requires change of basis along subdomain edges

Theory assumes either all a; or all 3, the same for
each subdomain

2 coarse dofs per subdomain needed to obtain good
performance in theory and practice

r(M~A) < Cn(1 + log(H/h))*
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Brief Review:
« Geometric Multigrid (3D):
— Hiptmair, SINUM (1998) 36:204-225
— Arnold, Falk, Winther, Numer. Math. (2000) 85:197-217

o Convex polyhedron

Introduction

0 Quasi-uniform meshes
o Constant material properties

« Algebraic Multigrid

— Auxiliary Space Preconditioners (Hiptmair, Xu, Beck,
Widmer, Zou, LLNL group, ...)

— Smoothed Aggregation (Sandia group, ...)
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Introduction

Some Observations:

Overlapping Schwarz algorithms presuppose a
coarse mesh and theory is restricted to constant
material properties

FETI-like methods require subdomain matrices

Choices are very limited in 3D if coarse mesh not
available

No comprehensive theory with favorable condition
number bounds appears available in 2D or 3D

Current theory restricted to regular-shaped
subdomains
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Some Goals:

Introduction

« Develop new coarse spaces for H(curl) problems

— Algebraic approach that does not require geometric
information or subdomain matrices

— Based on energy minimization

— Automatic generation of coarse spaces for either
iterative substructuring, overlapping Schwarz, or
hybrid combination

« Extend theory

— More favorable bounds (address the n issue)
— Accommodate irregular-shaped subdomains
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2D Algorithm

Uniform Domains: some examples w/ nice C,

Type 2 subdomain

AVAVAVAVAVAVAVAVAVAVAVAVAVAVA
FAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
AN AYAY AN AN AVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVANIN ANV AVAVANINA
VAV AV AV AV AV AV AV AV AV AV AV AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY,
AYAYAYAYAYAVAYAVAVAY AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA!
N NN NN NNV NN NINININININININININININININININININSNS
AV AYAYAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
N A AN NN N NN NN NINNINNNINNNNNNINNNNNS
AVAVAVAVA"AVA‘I’AVAVA"AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA"AVA‘FAVAVAVAVAVAVAVA
WAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
AYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
WAV AV AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVY,
AYAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV A
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AVAYAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AYAYAYAY AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
AYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
AV AYAYAYAYAVAY AV AV AV AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA!
AVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
AV AV AV AV AV AV AV AV AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA!
AV AYAYAVAY AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYA!
AYAVAYAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AV AYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
AYAVAYAYAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA!
AV A AT AV AT AV AV AV A AV AV AV AV AV AV AV AT AV AV AV AV AV AV AV AVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVA'
AVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

) -
Type 3 subdomain wand
Laboratories



‘ 2D Algorithm

Uniform Domains: some examples w/ nice C,

From graph-based mesh partitioner (Metis)
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2D Algorithm

Uniform Domains: some examples with large C,
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2D Algorithm

« Coarse Space
— One coarse basis function Cg for each £
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2D Algorithm

« Coarse Space

— Coefficients of C¢ nonzero only along £ and
interiors of two neighboring subdomains

dg, te unit vectors

along £: cg-t. =dg - t,
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2D Algorithm

Coarse Space
Coefficients of C< in subdomain interiors chosen to

minimize energy

Ei(cé’) — fQi (aN X ce -V X ce + Bice - Cg) dx

(1=1,B=1

o =0.03,B =1

»
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Recent Tools:
« HX Decomposition

2D Algorithm

there exist g, € W

curl?

For any w, € W

curl’

and pp € Wi ;4 such that

gra

U € (W)

u; = q;, + 11" (0y) + Vpp,
\!Vphlliz(m < C(|lunllr2) + H |V % wl!%z(gm)»

Hhi_lqhH%mzi) + H\IJhH%ﬂ(QZ—) < C|V x uh”%?(szi)

e Useful to DD and MG

* See Hiptmair & Xu, SINUM (2007) 45:2483-2509, Lemmas 5.1, 5.2, see
also Hiptmair, Widmer, Zou, Numer. Math. (2006) 103:435-459. @ Sandia
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2D Algorithm

Local Spaces/Solves:

« [terative Substructuring:
— One solve for each subdomain edge £

— Unknowns are edge coefficients for £ and interiors of
two subdomains sharing £

 Overlapping Schwarz
— One solve for each overlapping subdomain

— Overlapping subdomains obtained by extending
original ones an integer layer of elements
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2D Algorithm

Theory Overview™:
« [terative Substructuring:

R(M™HA) < Ox(1 + log(H/h))?

x = 1 for straight edges
x < (4/3)1°sH/R) for snowflake curve edges

« See talk Thursday morning in M14 by Olof Widlund
for more details.

* An iterative substructuring algorithm for two-dimensional problems in H(curl),
TR-936, 2010, Department of Computer Science, Courant Institute, NYU.
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2D Algorithm

Examples: Scalability No big surprises, but OS performs better

Results for unit square domain decomposed into N subdomains, each with H/h = 4. Numbers
of iterations and condition number estimates (in parenthesis) are reported for a relative residual
tolerance of 10=8. Subdomain material properties given by a; = 1 and [3;

classical iterative substructuring

overlapping Schwarz (H/d = 4)

Type | N | B=10°] B=1 | B=10° | B=107° 3 =10°
1 16 | 18(16.7) | 15(16.3) | 8(3.8) 14(5.1) 3(4.6)
64 | 25(18.6) | 21(18.3) | 10(6.1) 13(5.2) 9(4.5)
o 144 | 28(19.1) | 22(18.9) | 12(8.1) 13(5.1) 10(4.6)
© 256 | 30(19.4) | 23(19.0) | 14(9.9) 12(5.1) 10(4.7)
S | 400 | 30(19.5) | 25(19.3) | 15(11.6) | 12(5.0) 10(4.7)
g 576 | 30(19.5) | 25(19.3) | 16(12.7) | 12(5.0) 11(4.8)
784 | 30(19.5) | 25(19.3) | 16(13.7) | 12(5.0) 11(4.8)
1024 | 30(19.5) | 25(19.3) | 17(14.5) | 12(5.0) 11(4.8)
2 16 | 26(30.0) | 20(28.5) | 8(3.7) 14(5.0) 3(4.6)
64 | 36(33.6) | 29(33.0) | 11(6.8) 17(6.9) 9(4.5)
o | 144 | 40(34.2) | 31(33.8) | 14(10.0) | 19(7.6) 10(4.5)
© | 256 | 42(34.3) | 33(34.1) | 17(13.1) | 19(7.5) 10(4.5)
D) | 400 | 43(34.6) | 34(34.3) | 18(15.8) | 20(8.0) 10(4.5)
S | 576 | 43(34.7) | 34(34.3) | 20(18.5) | 20(8.0) 11(4.6)
o | 784 | 44(34.8) | 35(34.6) | 21(20.8) | 20(7.9) 11(4.6)
1024 | 44(34.8) | 36(34.6) | 22(22.6) | 20(8.1) 11(5.0)




2D Algorithm

Examples: Material Property Jumps

Classical iterative substructuring (CIS) and overlapping Schwarz (OS) results for unit square
domain decomposed into 64 subdomains, each with H/h = 8 and H/§ = 4 for OS. The eight
subdomains along the diagonal from (0,0) to (1,1) have o; = o and 3; = (3, while the remaining
subdomains have o; = 1 and 3; = 1.

Type 1 Type 2

a B CIS 0S CIS 0S
1073 [ 1073 | 25(26.2) | 14(5.7) | 35(46.7) | 15(6.6)
10—3 1 24(26.0) | 13(5.1) | 34(43.8) | 13(5.4)
1073 | 10% | 21(25.1) | 13(5.5) | 33(43.2) | 15(9.8)

1 10—3 1 26(26.3) | 13(6.5) | 36(46.7) | 15(8.0)

1 1 24(26.3) | 12(5.1) | 32(44.5) | 13(5.4)

1 103 | 24(24.7) | 12(5.2) | 32(41.9) | 13(5.6)
10 [ 1073 | 31(27.3) | 13(6.4) | 40(48.7) | 15(7.9)
103 1 25(27.2) | 12(5.1) | 34(46.2) | 13(5.4)
103 103 | 26(26.8) | 14(6.4) | 34(47.2) | 15(6.8)

Covered by theory

Sandia
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2D Algorithm

Examples: Sharpness of Theory

110 ! : .

100 F , e A
—&—Type 1 /

00 - —=—Type 2 / .
—4—Type 3

80 / .

70

60

50

condition number

40

30

20

10 | | | | |
5 10 15 20 25 30 35

Sandia
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2D Algorithm

Examples: Mesh Partitioner

Results for unit square domain decomposed wnto N subdomains. There are 64 elements per
subdomain for the Type 1 (square) subdomains and approrimately 64 elements per subdomain for

subdomains obtained from the mesh partitioner. Material properties are homogeneous with a; = 1

and B; = 3.

classical iterative substructuring | overlapping Schwarz (H/d = 4)

Type N B=10"" B=1 B=10° | 3=10"" B=1 B =107
1 16 20(23.7) 17(23.3) 9(5.8) 12(5.1) 12(5.1) 8(4.6)
64 29(26.6) 24(26.3) 12(9.2) 12(5.1) 12(5.1) 10(4.5)

144 31(27.1) 25(26.8) | 14(12.2) 12(5.1) 12(5.1) 10(4.5)

256 34(27.4) 26(27.1) | 16(14.7) 12(5.1) 11(5.0) 11(4.7)

400 35(27.6) 26(27.3) | 17(16.6) 11(5.0) 11(5.0) 11(4.7)

Metis 16 30(27.8) 23(25.4) 10(5.2) 13(6.5) 13(6.5) 9(5.0)
64 40(33.7) 30(32.2) 13(8.8) 13(5.5) 12(5.4) 11(4.8)

144 | 42(37.4) 33(36.2) | 15(11.9) 18(8.0) 16(7.9) 12(5.9)

257 | 45(38.6) 35(36.8) | 17(13.3) 16(7.2) 16(17.1) 13(6.3)

400 | 46(41.9) 36(40.8) | 17(13.7) 16(7.1) 15(6.9) 13(6.1)

Mesh partitioner results not as good, but not bad

@
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3D Algorithm

Face Decomposition Lemma:

For any u,; € IV?JTI with w; - t, vanishing along all subdomain edges of
Q). there exists a w;r € I/Vh’iﬂ such that wir-t. = w; -t. for alle e Mg, uir-t. =0

for all remaining edges of Mpq,, and

Ei(uir) < C(1 + log(H/h))* Ex(w).

Example: tangential trace 0
along all 12 edges

Ei(u) = [ (VX u-V xu+ fiu-u)dr

Sandia
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3D Algorithm

Face decomposition lemma, unit cube, B = 1
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3D Algorithm

Face decomposition lemma, unit cube, o = 103, B=1
5 I I I I I

45

Ei(u;r)
Ei(u)

max eigenvalue
w
w
I

Computations can
guide theory dev

25-

(1+log(H/h))? @ Sandia
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3D Algorithm
« Material Property Assumptions for Theory

Assumption 1 If Q; and €2 have a subdomain edge in common, then either

a, = o5 and B =05

or

N < O

i and O € P

Assumption 2 LetZy, denote the set of all indices j such that€); contains subdomain
vertex V. Further, let j* € 1y be chosen so that 5, = 3, for all j € Ly. For each
J # j* there exists a sequence Sy = {jo = J, 1.+ Jm1.Jm = J°} such that €);, and
Q) have a subdomain edge in common and 3; < [3;, for k=1,...,m.

!

Jk+1

Sandia
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3D Algorithm

« Coarse Space: Edge functions

3 coarse basis
functions shown
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3D Algorithm

« Coarse Space: Vertex/Face functions

2 coarse basis
functions shown
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3D Algorithm

 Full Coarse Space
— 1 coarse dof for each subdomain edge
— 1 coarse dof for each vertex of each face

E(I"(u)) < C(1 +log(H/h)) E(u)

 Reduced Coarse Space
— 1 coarse dof for each subdomain edge

Sandia
National
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3D Algorithm

« Iterative Substructuring Local Spaces: Vertex

All edges incident to a
subdomain vertex node
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3D Algorithm

« Iterative Substructuring Local Spaces: Edge

All edges incident to one or
more subdomain edge nodes
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3D Algorithm

+ Iterative Substructuring Local Spaces: Face

All edges on a face and in
the interiors of two subs
sharing the face

Sandia
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Hybrid Overlapping Schwarz/lterative Substructuring

« Just like overlapping Schwarz, but

— add static condensation correction so residuals are
always zero in subdomain interiors

— use “boundary layer” subdomains to reduce cost of

—
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3D Algorithm

Theory Overview:

Iterative Substructuring:

kK(M~tA) < C(1+log(H/h))?

Theory only accommodates convex polyhedral
subdomains at this time

Jumps in material properties between subdomains
allowed per Assumptions 1 and 2

Sandia
National
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3D Algorithm

Examples: Scalability

Results for unit cube domain decomposed into N cube subdomains. each
with H/h = 4, for iterative substructuring and hybrid overlapping Schwarz (HOS)
algorithms. Numbers of iterations and condition number estimates (in parenthesis)
are reported for a relative residual tolerance of 10 . Subdomain material properties
given by a; = v and 3; = 1. No Dirichlet BCs, full coarse space, additive corrections.

Iterative Substructuring HOS (H/6 = 4)
N la=10] a=1 |a=107?| a=10? a=1 |a=10"
2731 (38) | 28 (87) | 21 (5.6) | 32 (1L.7) | 29 (114) | 20 (5.8)
6* |32 (9.1) | 30 (9.1) | 23(6.5) | 35 (13.2) | 32 (13.0) | 23 (7.1)
8% 133 (9.3) | 33(9.3) | 25(7.3) | 38 (13.9) | 34 (13.7) | 26 (8.5)
10 | 34 (9.4) | 31 (9.3) | 26 (7.8) | 38 (14.2) | 35 (14.1) | 28 (9.7)

HOS: not the likeable person on Bonanza

Sandia
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3D Algorithm

Examples: Additive vs. Multiplicative

Results for unit cube domain decomposed into N cube subdomains, each with
H/h = 4, for iterative substructuring algorithm. Numbers of iterations and condition
number estimates (in parenthesis) are reported for a relative residual tolerance of
10 ®. Subdomain material properties given by a; = av and 3; = 1. No Dirichlet BCs,
full coarse space.

additive multiplicative

N la=10"] a=1 |la=10°]a=10°| a=1 |a=10"?
4% 131 (8.8) | 28 (8.7) | 21 (5.6) |8 (1.38) | 8 (1.37) | 5 (1.08)
62 | 32 (9.1) | 30 (9.1) | 23 (6.5) | 8(1.42) | 8 (1.41)| 6 (1.15)
8% 133(9.3) 133(9.3) | 25(7.3) | 8(1.43) | 8(1.43)| 7 (1.23)
103 | 34 (9.4) [ 31 (9.3) | 26 (7.8) | 8 (1.44) (1.44) | 7 (1.29)

\ Y J | Y J

like Jacobi like Gauss-Seidel
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3D Algorithm

Examples: Full vs. Reduced Coarse Spaces

Results for unit cube domain decomposed into /N cube subdomains, each with
H/h = 4, for iterative substructuring algorithm. Numbers of iterations and condition
number estimates (in parenthesis) are reported for a relative residual tolerance of 10 %,
Subdomain material properties given by «; = a and 3; = 1. Additive corrections, no

Dirichlet BCs.

full coarse reduced coarse
N | nedof |la=10°| a=1 |a=1072?|ncdof |a=10>| a=1 |a=10 "2
43 648 | 31 (8.8) | 28 (8.7) | 21 (5.6) 108 |29 (8.1) | 27 (8.0) | 20 (5.2)
62 | 2550 |32 (9.1) | 30 (9.1) | 23 (6.5) 450 | 31 (8.5) [ 29 (8.5) | 23 (6.3)
8 | 6468 |33 (9.3) | 33 (9.3) | 25 (7.3) 1176 | 33 (8.7) | 30 (8.7) | 25 (7.1)
10° | 13122 | 34 (9.4) | 31 (9.3) | 26 (7.8) | 2430 | 33 (8.8) | 30 (8.8) | 26 (7.6)

Reduced coarse space gets the job done

Sandia
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3D Algorithm

Examples: Neumann vs. Dirichlet BCs

Results for unit cube domain decomposed into N cube subdomains, each with
H/h = 4, for iterative substructuring algorithm. Numbers of iterations and condition
number estimates (in parenthesis) are reported for a relative residual tolerance of 10 %,
Subdomain material properties given by a; = « and 3; = 1. Additive corrections,
reduced coarse space.

Neumann BCs Dirichlet BCs
N la=102| a=1 |a=107?] a = 10? a=1 o= 1072
4% 129 (8.1) 27 (8.0) | 20 (5.2) | 45 (35.6) | 41 (32.5) | 23 (6.8)
6% | 31 (8.5) | 29 (8.5) | 23 (6.3) | 58 (48.7) | 54 (46.0) | 29 (10.6)
82 | 33 (87) | 30 (8.7) | 25(7.1) | 67 (54.4) | 62 (52.5) | 34 (14.8)
10% | 33 (8.8) ] 30 (8.8) | 26 (7.6) | 72 (57.4) | 66 (56.0) | 39 (19.2)

Both scalable, but expected Dirichlet BCs to be easier.
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3D Algorithm

Examples: Scalability with respect to H/h

Full coarse space, unit cube, 4x4x4 decomp, =1, =1

35

30

condition number estimate

10

251

201

—
[&)]
T

—e— Neumann
—&— Dirichlet

Recall theory has 3
logarithmic factors

5 6 3 8 5
(1+log(H/h))?

!
10

11

@
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3D Algorithm

Examples: Regular vs. Irregular Decompositions
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HOS, iter=29, k ~ 12, HOS, iter=34, k =~ 14,
ne. =108, H/0 = 4 ne =422, H/d =4
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3D Algorithm

Irregular Decompositions

Examples: Regular vs.
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3D Algorithm
Examples: Material Property Jumps (Aligned)

[terative substructuring results for unit cube with 4x4x4 subdomain decom-
position. Numbers of iterations and condition number estimates (in parenthesis) are
reported for a relative residual tolerance of 10 ®. Subdomain material properties are
for a 4x4x4 checkerboard distribution with 5; = 1 and a; = a or a; = &. Additive
corrections, full coarse space, no Dirichlet BCs.

¢ |H/h=4 H/h—G H/h—S
107 | 33 (9.1) | 40 (12.5) | 44 (15.3)
102 | 31 (9.1) (12 5) (15 9)
L | 28(87) |34 (120) | 37 (14
102 | 29 (9.2) (12 7) ( 5)
10| 20 (9.9) |36 (14.3) | 41 (18.1)

Covered by theory
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3D Algorithm

Examples: Material Property Jumps (Not Aligned)

Iterative substructuring results for unit cube domain with 4x4x4 subdomain
decomposition. Numbers of iterations and condition number estimates (in paren-
Subdomain material

thesis) are reported for a relative residual tolerance of 10 %,

properties are for an approrimate 5x5x5 checkerboard distribution with 5; = 1 and
a; = o or «v; = «v. Additive corrections, full coarse space, no Dirichlet BCs.

v H/h=4| H/h =6 H/h =8
10* | 36 (10.2) | 4 46 (16.1)
10 | 33 (10.0) (16 0)

1 | 28 (8.7) 7 (14.6)
10 2| 29 (9.4) 8 (14.6)
10 % | 35 (13.3) 44 (22.2)

Not covered by theory




s;
Closing Remarks

« 2D Algorithm:

— Does not require subdomain matrices and
accommodates irregular-shaped subdomains

— More comprehensive theory than before
o Favorable estimates over broader range of props
o Allows broader class of subdomains (uniform)

« 3D Algorithm
— Same practical advantages as 2D algorithm

— New theory and tools, but some work remains
O Less restrictive assumptions on material properties
O Less restrictive assumptions on subdomain shapes

o Adaptive coarse spaces
@ Sandia
National
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